Election manipulation: the average-case Joint work with Miklós Z. Rácz

Elchanan Mossel

UC Berkeley

May 15, 2012

US Election 2000

Votes in Florida

48.84%

48.85%

1.64%

Nader supporters could have

voted strategically and elected Gore.

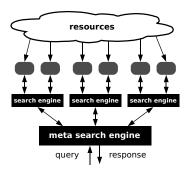
Artificial Intelligence & Computer Science

Virtual elections a standard tool in preference aggregation

- ► Elections can solve planning problems in multiagent systems (Ephrati and Rosenschein, 1991)
- Web metasearch engine (Dwork et al., 2001)
 - engines = voters, web pages = candidates

Threat of manipulation relevant, since software agents

- have computing power,
- have no moral obligation to act honestly.



Outline

Social Choice Theory

Quantitative Social Choice

Proof ideas

Outline

Social Choice Theory

Quantitative Social Choice

Proof ideas

Social Choice Theory

- Social Choice Theory is the theory of collective decision making
- Originates from Condorcet's voting paradox, late 18th century
- ► Theory developed in Economics in 1950-70s
- Celebrated results are negative:
 - Arrow's impossibility theorem (1950):
 "irrationality" of ranking 3 or more candidates
 - Gibbard-Satterthwaite theorem (1973-75): any non-dictatorial way of electing a winner out of 3 or more candidates can be manipulated

Basic Setup

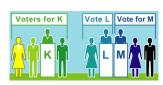
- n voters, k candidates
- Each voter ranks the candidates: vote of voter *i* denoted by σ_i ∈ S_k
- Social Choice Function (SCF)
 f: S_kⁿ → [k] selects a winner:

$$\sigma = (\sigma_1, \ldots, \sigma_n) \mapsto f(\sigma)$$

Examples

Majority

Electoral college



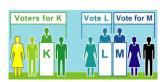
Plurality

Dictatorship

Examples

Majority socially acceptable

Electoral college socially acceptable



Plurality socially acceptable

Dictatorship socially unacceptable

Manipulation by a single voter

Definition

The SCF f is manipulable by voter i if there exist two ranking profiles $\sigma = (\sigma_i, \sigma_{-i})$ and $\sigma' = (\sigma'_i, \sigma_{-i})$ such that

$$f\left(\sigma'\right) \stackrel{\sigma_i}{>} f\left(\sigma\right)$$
.

That is, a manipulative voter can cast a vote that is not his true preference in order to obtain a more desirable outcome according to his true preference.

Strategyproof SCFs

- Ideally, we want the SCF f to be nonmanipulable, a.k.a. strategyproof
- Q: When is this possible?
- Dictatorship:

$$d_i(\sigma) := \mathsf{top}(\sigma_i)$$

...anything socially acceptable?

2 candidates

For 2 candidates:

strategyproofness is equivalent to monotonicity

Definition

The SCF *f* is monotone if for any candidate *a*, moving *a* up in any coordinate cannot make *a* lose.

Many examples of monotone SCFs:

- Majority
- Electoral college
- Borda count
- etc.

3 or more candidates

For 3 or more candidates: no such examples.

Theorem (Gibbard-Satterthwaite, 1973-75)

Every SCF that takes on at least three values and is not a dictator is manipulable.

Outline

Social Choice Theory

Quantitative Social Choice

Proof ideas

Is there a way around manipulation?

Two lines of research:

- Are there SCFs where it is hard to manipulate?
- Can manipulation be avoided with good probability?

Assumption: large number of voters and/or candidates.

Computational hardness of manipulation

Idea: election is vulnerable to manipulation only if it can be computed efficiently.

- ▶ Bartholdi, Tovey, Trick (1989): there exists a voting rule, such that it is NP-hard to compute a manipulative vote.
- Bartholdi, Orlin (1991): manipulation is NP-hard for Single Transferable Vote (Oakland mayor elections)
- ...many other developments...
- Problem: relies on NP-hardness as a measure of computational difficulty
- Is it hard on average?
 What if it is typically easy to manipulate?

Quantitative Social Choice

Basic question: is it possible to avoid manipulation with very good probability?

- \rightsquigarrow Random rankings
 - ► Kelly, 1993: Consider people voting uniformly and independently at random; i.e. $\sigma \in S_k^n$ is uniform.
 - Q: What is the probability of manipulation?

$$M(f) := \mathbb{P}(\sigma : \text{ some voter can manipulate } f \text{ at } \sigma)$$

► Gibbard-Satterthwaite theorem: If *f* takes on at least 3 values and is not a dictator, then

$$M(f) \geq \frac{1}{(k!)^n}$$

If manipulation is so unlikely, perhaps we do not care?

Quantitative Social Choice

If f is "close" to a dictator $\rightsquigarrow M(f)$ can be very small Quantifying distance:

$$\mathbf{D}(f,g) = \mathbb{P}(f(\sigma) \neq g(\sigma))$$

$$\mathbf{D}(f,G) = \min_{\sigma \in G} \mathbb{P}(f(\sigma) \neq g(\sigma))$$

Assumption: f is ε -far from nonmanipulable functions:

$$\mathbf{D}(f, \mathsf{NONMANIP}) \geq \varepsilon$$

Conjecture (Friedgut, Kalai, Nisan (2008))

If $k \geq 3$ and **D** $(f, NONMANIP) \geq \varepsilon$, then

$$M(f) \geq poly(n, k, \varepsilon^{-1})^{-1}$$
,

and a random manipulation works.

In particular: manipulation is easy on average.

Results

Theorem (Friedgut, Kalai, Keller, Nisan (2008,2011))

For k = 3 candidates, if **D** $(f, NONMANIP) \ge \varepsilon$ then

$$M(f) \geq c \frac{\varepsilon^6}{n}$$
.

If, in addition, f is neutral, then

$$M(f) \geq c' \frac{\varepsilon^2}{n}$$
.

Neutrality of *f*: treats all candidates in the same way, i.e. is invariant under permutation of the candidates.

No computational consequences, since k = 3.

Note: some dependence on n is needed, see e.g. plurality: $O(n^{-1/2})$ probability of manipulation.

Results, cont'd

Theorem (Isaksson, Kindler, Mossel (2009))

If $k \ge 4$ and f is neutral, then $\mathbf{D}(f, NONMANIP) \ge \varepsilon$ implies

$$M(f) \geq poly(n, k, \varepsilon^{-1})^{-1}$$
.

Moreover, the trivial algorithm for manipulation works.

Computational consequences.

Removing neutrality:

Theorem (M, Rácz (2011))

If k > 3 and **D** $(f, NONMANIP) > \varepsilon$, then

$$M(f) \ge poly(n, k, \varepsilon^{-1})^{-1}$$
.

Moreover, the trivial algorithm for manipulation works.

Why is removing neutrality important?

- Anonymity vs. neutrality:
 - conflict, coming from tie-breaking rules
 - ▶ common SCFs anonymous → not neutral
- In virtual election setting, neutrality can be not natural, e.g.:
 - (meta)search engine might treat websites in different languages in a different way
 - child-safe (meta)search engine: cannot have adult websites show up
- Sometimes candidates cannot be elected from the start
 - Local elections in Philadelphia, 2011
 - Dead man on NY State Senate 2010 election ballot (he received 828 votes)

Outline

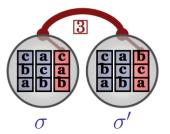
Social Choice Theory

Quantitative Social Choice

Proof ideas

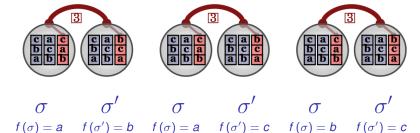
Rankings Graph

- ▶ Vertices: ranking profiles $\sigma \in S_k^n$
- ▶ Edges: if differ in one coordinate, i.e. (σ, σ') is an edge in voter i if $\sigma_j = \sigma'_j$ for all $j \neq i$, and $\sigma_i \neq \sigma'_i$



- ▶ SCF $f: S_k^n \to [k]$ induces a partition of the vertices
- Manipulation point can only occur on a boundary
- **Boundary** between candidates a and b in voter i: $B_i^{a,b}$.

Boundary edges



This edge is monotone and nonmanipulable.

This edge is monotone-neutral and manipulable.

This edge is anti-monotone and manipulable.

Isoperimetry

Recall: $k \geq 3$, uniform distribution, $\mathbf{D}(f, NONMANIP) \geq \varepsilon$.

Lemma (Isoperimetric Lemma, IKM (2009))

There exist two voters $i \neq j$ such that $B_i^{a,b}$ and $B_j^{c,d}$ are big, i.e.

$$\mathbb{P}\left(\left(\sigma,\sigma^{(i)}\right)\in\mathcal{B}_{i}^{a,b}\right)\geq\frac{\varepsilon}{poly(n,k)},\quad\mathbb{P}\left(\left(\sigma,\sigma^{(j)}\right)\in\mathcal{B}_{j}^{c,d}\right)\geq\frac{\varepsilon}{poly(n,k)},$$

where $c \notin \{a, b\}$.

If f is neutral, may assume $\{a,b\} \cap \{c,d\} = \emptyset \rightsquigarrow \mathsf{IKM}$ (2009)

Now: assume $B_1^{a,b}$ and $B_2^{a,c}$ are big.

Fibers

- Partition the graph further, into so-called fibers
- ► Fibers are already used in Friedgut, Kalai, Keller, Nisan (2008,2011)
- ▶ Ranking profile $\sigma \in S_k^n$ induces a vector of preferences between a and b:

$$x^{a,b} \equiv x^{a,b}(\sigma) = \left(x_1^{a,b}(\sigma), \dots, x_n^{a,b}(\sigma)\right)$$

where $x_i^{a,b}(\sigma) = 1$ if a > b, and $x_i^{a,b}(\sigma) = -1$ otherwise.

- A fiber: $F(z^{a,b}) := \{ \sigma : X^{a,b}(\sigma) = Z^{a,b} \}$
- Can partition the graph according to fibers:

$$S_k^n = \bigcup_{z^{a,b} \in \{-1,1\}^n} F\left(z^{a,b}\right)$$

Small and large fibers

Can also partition the boundaries according to the fibers:

$$B_1\left(z^{a,b}\right) := \left\{\sigma \in F\left(z^{a,b}\right) : f(\sigma) = a, \exists \sigma' \text{ s.t. } \left(\sigma, \sigma'\right) \in B_1^{a,b}\right\},$$

Distinguish between *small* and *large* fibers for boundary $B_1^{a,b}$:

Definition (Small and large fibers)

Fiber $B_1(z^{a,b})$ is *large* if

$$\mathbb{P}\left(\sigma \in B_1\left(z^{a,b}\right) \middle| \sigma \in F\left(z^{a,b}\right)\right) \ge 1 - \mathsf{poly}\left(n, k, \varepsilon^{-1}\right)^{-1},$$

and small otherwise.

Notation:

Lg $(B_1^{a,b})$: union of large fibers for the boundary $B_1^{a,b}$ Sm $(B_1^{a,b})$: union of small fibers for the boundary $B_1^{a,b}$

Cases

Recall: boundaries $B_1^{a,b}$ and $B_2^{a,c}$ are big.

Cases:

- ► Sm $\left(B_1^{a,b}\right)$ is big
- ► Sm $(B_2^{a,c})$ is big
- ▶ $Lg(B_1^{a,b})$ and $Lg(B_2^{a,c})$ are both big

Large fiber case

Assume $Lg\left(B_1^{a,b}\right)$ and $Lg\left(B_2^{a,c}\right)$ are both big.

Two steps:

- ► Reverse hypercontractivity implies that the *intersection* of $Lg\left(B_1^{a,b}\right)$ and $Lg\left(B_2^{a,c}\right)$ is also big
- ▶ Gibbard-Satterthwaite implies that if $\sigma \in Lg\left(B_1^{a,b}\right) \cap Lg\left(B_2^{a,c}\right)$, then there exists manipulation point $\hat{\sigma}$ "nearby": σ and $\hat{\sigma}$ agree in all except perhaps two coordinates.

→ many manipulation points.

Small fiber case (sketch)

Assume $Sm(B_1^{a,b})$ is big.

1. By isoperimetric theory, for every small fiber $B_1(z^{a,b})$, the size of the boundary, $\partial B_1(z^{a,b})$, is comparable:

$$\left|\partial B_1\left(z^{a,b}\right)\right| \geq \operatorname{poly}\left(n,k,\varepsilon^{-1}\right)^{-1}\left|B_1\left(z^{a,b}\right)\right|$$

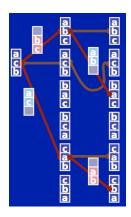
- 2. If $\sigma \in \partial B_1(z^{a,b})$ in some direction $j \neq 1 \rightsquigarrow$ there exists a manipulation point $\hat{\sigma}$ "nearby", i.e. σ and $\hat{\sigma}$ agree in all but two coordinates
- 3. If $\sigma \in \partial B_1(z^{a,b})$ in direction 1, then either there exists a manipulation point $\hat{\sigma}$ "nearby", or fixing coordinates 2 through n, we have a dictator on the first coordinate.
- 4. Look at the boundary of the set of dictators
 → manipulation point nearby.

Subtleties...

- We cheated in a few places...
- ► Most importantly, when we apply Gibbard-Satterthwaite, we lose a factor of $(k!)^2$...
- ➤ OK for constant number of candidates, but not for large k.

Refined rankings graph

- To get polynomial dependency, use refined rankings graph
- ▶ $(\sigma, \sigma') \in E$ if σ, σ' differ in a single voter and an adjacent transposition
- Need to prove: geometry = refined geometry, up to poly (k) factors.
- Need to prove: combinatorics still works
- Gives manipulation by permuting only a few adjacent candidates
- Much of the work in this case a quantitative version for one voter.



Open Problems

- Q1: Among anonymous functions which minimizes probability of manipulation?
- Q2: Is the dependency on k needed?
- ▶ Q3: Better dependency on k, n and ϵ .
- Note: All questions above sensitive to the definition of manipulability.
- A few options: Probability the is a manipulating voter, expected number of manipulating voters, expected number of manipulation edges.
- Other product distributions?
- Non-product distributions?

Take aways

- Robust impossibility theorems: manipulation is computationally easy on average
- Interesting math involved

Thank you!