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The Gaussian Isoperimetric problem

I In Euclidean space: among all sets of volume a, the ball of
volume a minimizes the surface area (Steiner 1838, Levy 1919
etc.)

I The Gaussian analog of this result is due to B. Tsirelson and
V. Sudakov (1974) and independently due to C. Borell (1975).

I The inequality states that if A ⊂ Rn and
B = {x ∈ Rn : x · a ≥ b} ⊂ Rn is a half-space of the same
gaussian measure (γn(A) = γn(B)) then:

I γ+n (A) ≥ γ+n (B) where γ+n is the Gaussian surface area.

I

γ+n (A) := lim inf
ε→0

1

ε
(γn(Aε)−γn(A)), Aε = {y : d2(y ,A) ≤ ε}.

I In other words: γ+n (A) ≥ I (γn(A)), where I (x) := ϕ(Φ−1(x))
and ϕ,Φ are the Gaussian density, CDF).
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Uniqueness and robustness

Natural questions

Are half spaces the only minimizers of Gaussian surface area?

Is A with almost minimal boundary necessarily almost a half space?
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The uniqueness and robustness question

Are half spaces the only minimizers of Gaussian surface area?

Is A with almost minimal boundary neccasirly almost a half space?

I Slow progress since the 70s.

I Erhard (86): Uniqueness for nice sets.

I Carlen and Kerce (01): Uniqueness for general sets.

I Assume γn(A) = 0.5.

I Cianchi, Fusco, Maggi, and Pratelli (2011): If
γ+n (A) ≤ I (γn(A)) + δ then there exists a half space B with
γn(A∆B) ≤ c(n)δ1/2.

I No bound on c(n).

I M, Neeman (12): If γ+n (A) ≤ I (A) + δ then there exists a half
space with γn(A∆B) ≤ C log−1/6(1/δ).

4 / 18



The uniqueness and robustness question

Are half spaces the only minimizers of Gaussian surface area?

Is A with almost minimal boundary neccasirly almost a half space?

I Slow progress since the 70s.

I Erhard (86): Uniqueness for nice sets.

I Carlen and Kerce (01): Uniqueness for general sets.

I Assume γn(A) = 0.5.

I Cianchi, Fusco, Maggi, and Pratelli (2011): If
γ+n (A) ≤ I (γn(A)) + δ then there exists a half space B with
γn(A∆B) ≤ c(n)δ1/2.

I No bound on c(n).

I M, Neeman (12): If γ+n (A) ≤ I (A) + δ then there exists a half
space with γn(A∆B) ≤ C log−1/6(1/δ).

4 / 18



The uniqueness and robustness question

Are half spaces the only minimizers of Gaussian surface area?

Is A with almost minimal boundary neccasirly almost a half space?

I Slow progress since the 70s.

I Erhard (86): Uniqueness for nice sets.

I Carlen and Kerce (01): Uniqueness for general sets.

I Assume γn(A) = 0.5.

I Cianchi, Fusco, Maggi, and Pratelli (2011): If
γ+n (A) ≤ I (γn(A)) + δ then there exists a half space B with
γn(A∆B) ≤ c(n)δ1/2.

I No bound on c(n).

I M, Neeman (12): If γ+n (A) ≤ I (A) + δ then there exists a half
space with γn(A∆B) ≤ C log−1/6(1/δ).

4 / 18



The uniqueness and robustness question

Are half spaces the only minimizers of Gaussian surface area?

Is A with almost minimal boundary neccasirly almost a half space?

I Slow progress since the 70s.

I Erhard (86): Uniqueness for nice sets.

I Carlen and Kerce (01): Uniqueness for general sets.

I Assume γn(A) = 0.5.

I Cianchi, Fusco, Maggi, and Pratelli (2011): If
γ+n (A) ≤ I (γn(A)) + δ then there exists a half space B with
γn(A∆B) ≤ c(n)δ1/2.

I No bound on c(n).

I M, Neeman (12): If γ+n (A) ≤ I (A) + δ then there exists a half
space with γn(A∆B) ≤ C log−1/6(1/δ).

4 / 18



The uniqueness and robustness question

Are half spaces the only minimizers of Gaussian surface area?

Is A with almost minimal boundary neccasirly almost a half space?

I Slow progress since the 70s.

I Erhard (86): Uniqueness for nice sets.

I Carlen and Kerce (01): Uniqueness for general sets.

I Assume γn(A) = 0.5.

I Cianchi, Fusco, Maggi, and Pratelli (2011): If
γ+n (A) ≤ I (γn(A)) + δ then there exists a half space B with
γn(A∆B) ≤ c(n)δ1/2.

I No bound on c(n).

I M, Neeman (12): If γ+n (A) ≤ I (A) + δ then there exists a half
space with γn(A∆B) ≤ C log−1/6(1/δ).

4 / 18



The uniqueness and robustness question

Are half spaces the only minimizers of Gaussian surface area?

Is A with almost minimal boundary neccasirly almost a half space?

I Slow progress since the 70s.

I Erhard (86): Uniqueness for nice sets.

I Carlen and Kerce (01): Uniqueness for general sets.

I Assume γn(A) = 0.5.

I Cianchi, Fusco, Maggi, and Pratelli (2011): If
γ+n (A) ≤ I (γn(A)) + δ then there exists a half space B with
γn(A∆B) ≤ c(n)δ1/2.

I No bound on c(n).

I M, Neeman (12): If γ+n (A) ≤ I (A) + δ then there exists a half
space with γn(A∆B) ≤ C log−1/6(1/δ).

4 / 18



The uniqueness and robustness question

Are half spaces the only minimizers of Gaussian surface area?

Is A with almost minimal boundary neccasirly almost a half space?

I Slow progress since the 70s.

I Erhard (86): Uniqueness for nice sets.

I Carlen and Kerce (01): Uniqueness for general sets.

I Assume γn(A) = 0.5.

I Cianchi, Fusco, Maggi, and Pratelli (2011): If
γ+n (A) ≤ I (γn(A)) + δ then there exists a half space B with
γn(A∆B) ≤ c(n)δ1/2.

I No bound on c(n).

I M, Neeman (12): If γ+n (A) ≤ I (A) + δ then there exists a half
space with γn(A∆B) ≤ C log−1/6(1/δ).

4 / 18



Robustness Results

Assume γn(A) = 0.5 and γ+n (A) ≤ I (A) + δ

I Cianchi, Fusco, Maggi, and Pratelli (2011): Exists a half
space B with

γn(A∆B) ≤ c(n)δ1/2

I No bound on c(n).

I M, Neeman (2012): If Exists a half space B with

γn(A∆B) ≤ C log−1/6(1/δ).

I Natural conjecture: Exists a half space B with

γn(A∆B) ≤ C
√
δ.
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Techniques

I A common approach is using geometric techniques such as
symmetrizations (starting with Steiner 1838!).

I Our approach follows Bobkov and Ledoux in:

I Analyzing a function version of the inequality.
I Utilizing the semi-group flow.
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Bobkov’s ineqaulity

Bobkov proved a functional version of the inequality:

I Bobkov: For any smooth function f : Rn → [0, 1] of bounded
variation,

I (Ef ) ≤ E
√

I 2(f ) + ‖∇f ‖22.

I Since I (0) = I (1) = 0 then one can show that if A is a ”nice
set” then:

I (γn(A)) ≤ ”E[‖∇1A‖2]” = γ+n (A)
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Ledoux’ proof of Bobkov’s inequality

I Consider the Ornstein-Uhlenbeck semigroup:

(Pt f )(x) =

∫
Rn

f (e−tx +
√

1− e−2ty) dγn(y).

I look at: ψ(t) := E
√

I 2(Pt f ) + ‖∇Pt f ‖2.
I When t = 0: ψ(0) = E

√
I 2(f ) + ‖∇f ‖2

I and when t =∞: ψ(∞) = I (Ef ).

I Suffices to prove ψt is decreasing.
I Nice properties that allow to establish ψ′(t) ≤ 0:

I II ′′ = −1
I Integration by parts

∫
−fLg dγn =

∫
〈∇f ,∇g〉dγn (where

Lf (x) = ∆f (x)− 〈x ,∇f 〉 is the generator).
I etc.
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Carlen and Kerce analysis

I Carlen and Kerce (2001):

I Let f : Rn → [0, 1] be smooth. Define ht = Φ−1 ◦ (Pt f ) and

δ(f ) = E
√
I 2(f ) + ‖∇f ‖2 − I (Ef ).

I Then

δ(f ) ≥
∫ ∞
0

E
ϕ(ht)‖H(ht)‖2F

(1 + ‖∇ht‖2)3/2
dt,

where H(ht) is the Hessian matrix of ht and ‖ · ‖F denotes the
Frobenius norm.

I δ(f ) = 0 =⇒ ht is linear t > 0 =⇒ Pt f is Gaussian ∀t.

I f = 1A and δ(f ) = 0 by limiting arguments f is a half-space.
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M + Neeman proof Strategy

I Use the Carlen and Kerce bound.

I Show that if δ(f ) is small then ht close to linear.

I Conclude that f is close to a Gaussian / half-space.
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Proof Cartoon

I To demonstrate the main ideas of the proof assume a stronger
result than Carlen and Kerce:

δ(f ) ≥
∫ ∞
0

E‖H(ht)‖2F dt,

(ht = Φ−1 ◦ (Pt f ), δ(f ) = E
√
I 2(f ) + ‖∇f ‖2 − I (Ef ).)

I If δ(f ) < ε2 then there exists a t ∈ [0, ε] with ‖H(ht)‖2F ≤ ε.
I Second order Poincare inequality: For any twice-differentiable

f ∈ L2(Rn, γn),

min
a,b

E(f (x)− a · x − b)2 ≤ E‖H(f )‖2F ,

I =⇒ E(ht(x)− a · x − b)2 ≤ ε =⇒ ft is close to a Gaussian.

I Now apply P−1t to obtain that f is close to Gaussian.
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Challenges

For the real proof there are a few challenges:
I Need to prove a second order Poincare inequality.

I P−1t is not bounded - so cannot simply apply it.
I Main challenge: prove that there exists a t∗ such that for

t > t∗ − 1 and f with Ef ≤ 1/2 it holds that:

(∗) E
ϕ(ht)‖H(ht)‖2F

(1 + ‖∇ht‖2)3/2
≥ cI 2(Ef )

(
E
(
‖H(ht)‖2F

))4
log−3

1

Ef
.

I Given (*) , if δ(f ) < ε then∫ t

t∗−1
E
ϕ(ht)‖H(ht)‖2F

(1 + ‖∇ht‖2)3/2
dt < ε.

Therefore there exists t < t∗ such that

E
(
‖H(ht)‖2F

)
≤ c−1ε1/4 log3/4

1

Ef
I−2(Ef )

I So the main challenge is to prove (*).

12 / 18



Challenges

For the real proof there are a few challenges:
I Need to prove a second order Poincare inequality.
I P−1t is not bounded - so cannot simply apply it.

I Main challenge: prove that there exists a t∗ such that for
t > t∗ − 1 and f with Ef ≤ 1/2 it holds that:

(∗) E
ϕ(ht)‖H(ht)‖2F

(1 + ‖∇ht‖2)3/2
≥ cI 2(Ef )

(
E
(
‖H(ht)‖2F

))4
log−3

1

Ef
.

I Given (*) , if δ(f ) < ε then∫ t

t∗−1
E
ϕ(ht)‖H(ht)‖2F

(1 + ‖∇ht‖2)3/2
dt < ε.

Therefore there exists t < t∗ such that

E
(
‖H(ht)‖2F

)
≤ c−1ε1/4 log3/4

1

Ef
I−2(Ef )

I So the main challenge is to prove (*).

12 / 18



Challenges

For the real proof there are a few challenges:
I Need to prove a second order Poincare inequality.
I P−1t is not bounded - so cannot simply apply it.
I Main challenge: prove that there exists a t∗ such that for

t > t∗ − 1 and f with Ef ≤ 1/2 it holds that:

(∗) E
ϕ(ht)‖H(ht)‖2F

(1 + ‖∇ht‖2)3/2
≥ cI 2(Ef )

(
E
(
‖H(ht)‖2F

))4
log−3

1

Ef
.

I Given (*) , if δ(f ) < ε then∫ t

t∗−1
E
ϕ(ht)‖H(ht)‖2F

(1 + ‖∇ht‖2)3/2
dt < ε.

Therefore there exists t < t∗ such that

E
(
‖H(ht)‖2F

)
≤ c−1ε1/4 log3/4

1

Ef
I−2(Ef )

I So the main challenge is to prove (*).

12 / 18



Challenges

For the real proof there are a few challenges:
I Need to prove a second order Poincare inequality.
I P−1t is not bounded - so cannot simply apply it.
I Main challenge: prove that there exists a t∗ such that for

t > t∗ − 1 and f with Ef ≤ 1/2 it holds that:

(∗) E
ϕ(ht)‖H(ht)‖2F

(1 + ‖∇ht‖2)3/2
≥ cI 2(Ef )

(
E
(
‖H(ht)‖2F

))4
log−3

1

Ef
.

I Given (*) , if δ(f ) < ε then∫ t

t∗−1
E
ϕ(ht)‖H(ht)‖2F

(1 + ‖∇ht‖2)3/2
dt < ε.

Therefore there exists t < t∗ such that

E
(
‖H(ht)‖2F

)
≤ c−1ε1/4 log3/4

1

Ef
I−2(Ef )

I So the main challenge is to prove (*).

12 / 18



Challenges

For the real proof there are a few challenges:
I Need to prove a second order Poincare inequality.
I P−1t is not bounded - so cannot simply apply it.
I Main challenge: prove that there exists a t∗ such that for

t > t∗ − 1 and f with Ef ≤ 1/2 it holds that:

(∗) E
ϕ(ht)‖H(ht)‖2F

(1 + ‖∇ht‖2)3/2
≥ cI 2(Ef )

(
E
(
‖H(ht)‖2F

))4
log−3

1

Ef
.

I Given (*) , if δ(f ) < ε then∫ t

t∗−1
E
ϕ(ht)‖H(ht)‖2F

(1 + ‖∇ht‖2)3/2
dt < ε.

Therefore there exists t < t∗ such that

E
(
‖H(ht)‖2F

)
≤ c−1ε1/4 log3/4

1

Ef
I−2(Ef )

I So the main challenge is to prove (*).
12 / 18



A second order Poincare inequality

I 2nd order Poincare inequality: For any twice-differentiable
f ∈ L2(Rn, γn),

min
a,b

E(f (x)− a · x − b)2 ≤ E‖H(f )‖2F ,

I Almost surely known.
I Proof sketch: Hermite Expand: f =

∑
α bαHα.

I mina,b E(f (x)− a · x − b)2 =
∑
|α|≥2 b

2
αα!.

I

E‖H(f )‖2F =
∑
i ,j

E
( ∂2f

∂xi∂xj

)2
=
∑
i 6=j

∑
{α:αi ,αj≥1}

b2ααiαjα! +
∑
i

∑
{α:αi≥2}

b2ααi (αi − 1)α!

≥
∑
|α|≥2

b2αα! = min
a,b

E(f (x)− a · x − b)2.

]
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Boundedness of P−1
t

I Challenge: Assume E(ft − Φ(aẋ + b))2 ≤ ε. Is it true that

min
a∈[0,∞]

E(‖ft − Φ(a′ẋ + b)‖2 ≤ ε′(t, ε)?

I Good news: P−1t Φ(aẋ + b) = Φ(a′ẋ + b) when defined.

I Good news: P−1t Hα = et‖α|Hα
I Bad news: P−1t not bounded!

I The fix: if f is smooth or f = 1A has small boundary then
cannot have too much mass on high coefficients.

I E.g. by Ledoux (94): Ef (f − Pt f ) ≤ c
√
tE‖∇f ‖.

I If E‖∇f ‖ ≥ 10 then

δ(f ) = E
√

I 2(f ) + ‖∇f ‖2 − I (Ef ) ≥ E‖∇f ‖ − I (Ef ) ≥ 9.

I Similar arguments for sets.
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The main challenge

I Need to prove that for f taking values in [0, 1] and Ef ≤ 1/2:

(∗) E
ϕ(ht)‖H(ht)‖2F

(1 + ‖∇ht‖2)3/2
≥ c(Ef )

(
E
(
‖H(ht)‖2F

))4

I For this, using the reverse log Sobolev inequality we prove
that for t large enough:

(∗∗) ‖∇ht‖ ≤ 1 a.s. , ‖∇ft‖ ≤
√

2e−t√
1− e−2t

ft

√
log

1

ft
a.s

I We then use (**), the concavity of I , the reverse-Hölder
inequality, and reverse hyper-contractivity to show that

(∗ ∗ ∗) E
(
ϕ(ht)‖H(ht)‖2F

)
≥ cI 2(Ef ) (E‖H(ht)‖F )2

I Finally using almost all of the tools before and additionally
concentration of measure and Hanson-Wright inequalities we
prove that for t large enough

(∗ ∗ ∗∗) (E‖H(ht)‖3F )1/3 ≤
√

log(1/(Ef ))
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Combining the pieces

I By (**) for some t∗ and t > t∗:

E
ϕ(ht)‖H(ht)‖2F

(1 + ‖∇ht‖2)3/2
≥ cE

(
ϕ(ht)‖H(ht)‖2F

)

I By (***) for t > t∗:

E
(
ϕ(ht)‖H(ht)‖2F

)
≥ c(Ef ) (E‖H(ht)‖F )2 .

I Sadly - the square is outside the expectation.

I However by Hölder’s inequality

E
(
‖H(ht)‖2F

)
≤
(
E‖H(ht)‖F

)1/2(
E‖H(ht)‖3F

)1/2
and therefore by (****) the upper bound on E‖H(ht)‖F yields
an upper bound on E

(
‖H(ht)‖2F

)
.
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an upper bound on E

(
‖H(ht)‖2F

)
.
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I However by Hölder’s inequality

E
(
‖H(ht)‖2F

)
≤
(
E‖H(ht)‖F

)1/2(
E‖H(ht)‖3F

)1/2
and therefore by (****) the upper bound on E‖H(ht)‖F yields
an upper bound on E

(
‖H(ht)‖2F

)
.

16 / 18



Open Problems

I Prove that if f = 1A satisfies δ(f ) ≤ δ then there exists a half
space B such that γn(A∆B) ≤ Cδ1/2.

I Analyze equality case and robustness of isoperimetric
problems for other log-concave measures.
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Current and Future Work (M+Neeman)

I Borell showed that if γn(B) = γn(A) and B is a half-space
then

(+) E[1APt1A] ≤ E[1BPt1B ]

I Say something about the proofs.

I Problem: Are half-spaces the only optimizers?

I Problem: Is there a robust version?

I A’s: Yes, Yes (M + Neeman, 2012-3).
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