Robust Dimension Free Isoperimetry in Gaussian Space

Elchanan Mossel and Joe Neeman (UC Berkeley)

May 10, 2012

 In Euclidean space: among all sets of volume *a*, the ball of volume *a* minimizes the surface area (Steiner 1838, Levy 1919 etc.)

- In Euclidean space: among all sets of volume a, the ball of volume a minimizes the surface area (Steiner 1838, Levy 1919 etc.)
- The Gaussian analog of this result is due to B. Tsirelson and V. Sudakov (1974) and independently due to C. Borell (1975).

- In Euclidean space: among all sets of volume a, the ball of volume a minimizes the surface area (Steiner 1838, Levy 1919 etc.)
- The Gaussian analog of this result is due to B. Tsirelson and V. Sudakov (1974) and independently due to C. Borell (1975).
- The inequality states that if A ⊂ ℝⁿ and B = {x ∈ ℝⁿ : x ⋅ a ≥ b} ⊂ ℝⁿ is a half-space of the same gaussian measure (γ_n(A) = γ_n(B)) then:

- In Euclidean space: among all sets of volume a, the ball of volume a minimizes the surface area (Steiner 1838, Levy 1919 etc.)
- The Gaussian analog of this result is due to B. Tsirelson and V. Sudakov (1974) and independently due to C. Borell (1975).
- ▶ The inequality states that if $A \subset \mathbb{R}^n$ and $B = \{x \in \mathbb{R}^n : x \cdot a \ge b\} \subset \mathbb{R}^n$ is a half-space of the same gaussian measure $(\gamma_n(A) = \gamma_n(B))$ then:
- $\gamma_n^+(A) \ge \gamma_n^+(B)$ where γ_n^+ is the Gaussian surface area.

- In Euclidean space: among all sets of volume a, the ball of volume a minimizes the surface area (Steiner 1838, Levy 1919 etc.)
- The Gaussian analog of this result is due to B. Tsirelson and V. Sudakov (1974) and independently due to C. Borell (1975).
- ▶ The inequality states that if $A \subset \mathbb{R}^n$ and $B = \{x \in \mathbb{R}^n : x \cdot a \ge b\} \subset \mathbb{R}^n$ is a half-space of the same gaussian measure $(\gamma_n(A) = \gamma_n(B))$ then:
- $\gamma_n^+(A) \ge \gamma_n^+(B)$ where γ_n^+ is the Gaussian surface area.

$$\gamma_n^+(A) := \liminf_{\epsilon \to 0} \frac{1}{\epsilon} (\gamma_n(A_\epsilon) - \gamma_n(A)), \quad A_\epsilon = \{y : d_2(y, A) \leq \epsilon\}.$$

- In Euclidean space: among all sets of volume a, the ball of volume a minimizes the surface area (Steiner 1838, Levy 1919 etc.)
- The Gaussian analog of this result is due to B. Tsirelson and V. Sudakov (1974) and independently due to C. Borell (1975).
- ▶ The inequality states that if $A \subset \mathbb{R}^n$ and $B = \{x \in \mathbb{R}^n : x \cdot a \ge b\} \subset \mathbb{R}^n$ is a half-space of the same gaussian measure $(\gamma_n(A) = \gamma_n(B))$ then:
- $\gamma_n^+(A) \ge \gamma_n^+(B)$ where γ_n^+ is the Gaussian surface area.

$$\gamma_n^+(A) := \liminf_{\epsilon \to 0} \frac{1}{\epsilon} (\gamma_n(A_\epsilon) - \gamma_n(A)), \quad A_\epsilon = \{y : d_2(y, A) \leq \epsilon\}.$$

▶ In other words: $\gamma_n^+(A) \ge I(\gamma_n(A))$, where $I(x) := \varphi(\Phi^{-1}(x))$ and φ, Φ are the Gaussian density, CDF).

Are half spaces the only minimizers of Gaussian surface area?

Are half spaces the <u>only</u> minimizers of Gaussian surface area? Is A with almost minimal boundary <u>necessarily</u> almost a half space?

Are half spaces the <u>only</u> minimizers of Gaussian surface area? Is A with almost minimal boundary <u>necessarily</u> almost a half space?

Are half spaces the only minimizers of Gaussian surface area?

Is A with almost minimal boundary neccasirly almost a half space?

Slow progress since the 70s.

Are half spaces the only minimizers of Gaussian surface area?

Is A with almost minimal boundary neccasirly almost a half space?

- Slow progress since the 70s.
- Erhard (86): Uniqueness for nice sets.

Are half spaces the only minimizers of Gaussian surface area?

Is A with almost minimal boundary neccasirly almost a half space?

4/18

- Slow progress since the 70s.
- Erhard (86): Uniqueness for nice sets.
- ► Carlen and Kerce (01): Uniqueness for general sets.

Are half spaces the only minimizers of Gaussian surface area?

Is A with almost minimal boundary neccasirly almost a half space?

- Slow progress since the 70s.
- Erhard (86): Uniqueness for nice sets.
- ► Carlen and Kerce (01): Uniqueness for general sets.
- Assume $\gamma_n(A) = 0.5$.

Are half spaces the only minimizers of Gaussian surface area?

Is A with almost minimal boundary neccasirly almost a half space?

- Slow progress since the 70s.
- Erhard (86): Uniqueness for nice sets.
- ► Carlen and Kerce (01): Uniqueness for general sets.

• Assume
$$\gamma_n(A) = 0.5$$
.

• Cianchi, Fusco, Maggi, and Pratelli (2011): If $\gamma_n^+(A) \leq I(\gamma_n(A)) + \delta$ then there exists a half space B with $\gamma_n(A\Delta B) \leq c(n)\delta^{1/2}$.

Are half spaces the only minimizers of Gaussian surface area?

Is A with almost minimal boundary neccasirly almost a half space?

- Slow progress since the 70s.
- Erhard (86): Uniqueness for nice sets.
- ► Carlen and Kerce (01): Uniqueness for general sets.

• Assume
$$\gamma_n(A) = 0.5$$
.

- Cianchi, Fusco, Maggi, and Pratelli (2011): If $\gamma_n^+(A) \leq I(\gamma_n(A)) + \delta$ then there exists a half space B with $\gamma_n(A\Delta B) \leq c(n)\delta^{1/2}$.
- ▶ No bound on *c*(*n*).

Are half spaces the only minimizers of Gaussian surface area?

Is A with almost minimal boundary neccasirly almost a half space?

- Slow progress since the 70s.
- Erhard (86): Uniqueness for nice sets.
- Carlen and Kerce (01): Uniqueness for general sets.

• Assume
$$\gamma_n(A) = 0.5$$
.

- Cianchi, Fusco, Maggi, and Pratelli (2011): If $\gamma_n^+(A) \leq I(\gamma_n(A)) + \delta$ then there exists a half space B with $\gamma_n(A\Delta B) \leq c(n)\delta^{1/2}$.
- No bound on c(n).
- M, Neeman (12): If γ⁺_n(A) ≤ I(A) + δ then there exists a half space with γ_n(AΔB) ≤ C log^{-1/6}(1/δ).

Assume $\gamma_n(A) = 0.5$ and $\gamma_n^+(A) \le I(A) + \delta$

 <u>Cianchi, Fusco, Maggi, and Pratelli (2011)</u>: Exists a half space B with

 $\gamma_n(A\Delta B) \leq c(n)\delta^{1/2}$

Assume $\gamma_n(A) = 0.5$ and $\gamma_n^+(A) \le I(A) + \delta$

 <u>Cianchi, Fusco, Maggi, and Pratelli (2011)</u>: Exists a half space B with

 $\gamma_n(A\Delta B) \leq c(n)\delta^{1/2}$

No bound on c(n).

Assume $\gamma_n(A) = 0.5$ and $\gamma_n^+(A) \le I(A) + \delta$

 <u>Cianchi, Fusco, Maggi, and Pratelli (2011)</u>: Exists a half space B with

$$\gamma_n(A\Delta B) \leq c(n)\delta^{1/2}$$

- No bound on c(n).
- ▶ <u>M, Neeman (2012)</u>: If Exists a half space B with

 $\gamma_n(A\Delta B) \leq C \log^{-1/6}(1/\delta).$

Assume $\gamma_n(A) = 0.5$ and $\gamma_n^+(A) \le I(A) + \delta$

 <u>Cianchi, Fusco, Maggi, and Pratelli (2011)</u>: Exists a half space B with

$$\gamma_n(A\Delta B) \leq c(n)\delta^{1/2}$$

- No bound on c(n).
- ▶ <u>M, Neeman (2012)</u>: If Exists a half space B with

$$\gamma_n(A\Delta B) \leq C \log^{-1/6}(1/\delta).$$

▶ Natural conjecture: Exists a half space B with

$$\gamma_n(A\Delta B) \leq C\sqrt{\delta}.$$

5/18

 A common approach is using geometric techniques such as symmetrizations (starting with Steiner 1838!).

- A common approach is using geometric techniques such as symmetrizations (starting with Steiner 1838!).
- Our approach follows Bobkov and Ledoux in:

- A common approach is using geometric techniques such as symmetrizations (starting with Steiner 1838!).
- Our approach follows Bobkov and Ledoux in:
 - Analyzing a function version of the inequality.

- A common approach is using geometric techniques such as symmetrizations (starting with Steiner 1838!).
- Our approach follows Bobkov and Ledoux in:
 - Analyzing a function version of the inequality.
 - Utilizing the semi-group flow.

Bobkov proved a functional version of the inequality:

Bobkov: For any smooth function f : ℝⁿ → [0, 1] of bounded variation,

$$I(\mathbb{E}f) \leq \mathbb{E}\sqrt{I^2(f) + \|
abla f\|_2^2}.$$

Bobkov proved a functional version of the inequality:

▶ Bobkov: For any smooth function f : ℝⁿ → [0, 1] of bounded variation,

$$I(\mathbb{E}f) \leq \mathbb{E}\sqrt{I^2(f) + \|\nabla f\|_2^2}.$$

Since I(0) = I(1) = 0 then one can show that if A is a "nice set" then:

$$I(\gamma_n(A)) \leq "\mathbb{E}[\|\nabla \mathbf{1}_A\|_2]" = \gamma_n^+(A)$$

7/18

Consider the Ornstein-Uhlenbeck semigroup:

$$(P_t f)(x) = \int_{\mathbb{R}^n} f(e^{-t}x + \sqrt{1 - e^{-2t}}y) d\gamma_n(y).$$

Consider the Ornstein-Uhlenbeck semigroup:

$$(P_t f)(x) = \int_{\mathbb{R}^n} f(e^{-t}x + \sqrt{1 - e^{-2t}}y) d\gamma_n(y).$$

• look at: $\psi(t) := \mathbb{E}\sqrt{I^2(P_t f) + \|\nabla P_t f\|^2}$.

Consider the Ornstein-Uhlenbeck semigroup:

$$(P_t f)(x) = \int_{\mathbb{R}^n} f(e^{-t}x + \sqrt{1 - e^{-2t}}y) d\gamma_n(y).$$

▶ look at: ψ(t) := E√I²(P_tf) + ||∇P_tf||².
▶ When t = 0: ψ(0) = E√I²(f) + ||∇f||²

Consider the Ornstein-Uhlenbeck semigroup:

$$(P_t f)(x) = \int_{\mathbb{R}^n} f(e^{-t}x + \sqrt{1 - e^{-2t}}y) d\gamma_n(y).$$

- look at: $\psi(t) := \mathbb{E}\sqrt{I^2(P_t f) + \|\nabla P_t f\|^2}.$
- When t = 0: $\psi(0) = \mathbb{E}\sqrt{I^2(f) + \|\nabla f\|^2}$
- and when $t = \infty$: $\psi(\infty) = I(\mathbb{E}f)$.

Consider the Ornstein-Uhlenbeck semigroup:

$$(P_t f)(x) = \int_{\mathbb{R}^n} f(e^{-t}x + \sqrt{1 - e^{-2t}}y) d\gamma_n(y).$$

- look at: $\psi(t) := \mathbb{E}\sqrt{I^2(P_t f) + \|\nabla P_t f\|^2}.$
- When t = 0: $\psi(0) = \mathbb{E}\sqrt{I^2(f) + \|\nabla f\|^2}$
- and when $t = \infty$: $\psi(\infty) = I(\mathbb{E}f)$.
- Suffices to prove ψ_t is decreasing.

Consider the Ornstein-Uhlenbeck semigroup:

$$(P_t f)(x) = \int_{\mathbb{R}^n} f(e^{-t}x + \sqrt{1 - e^{-2t}}y) d\gamma_n(y).$$

- look at: $\psi(t) := \mathbb{E}\sqrt{I^2(P_t f) + \|\nabla P_t f\|^2}.$
- When t = 0: $\psi(0) = \mathbb{E}\sqrt{I^2(f) + \|\nabla f\|^2}$
- and when $t = \infty$: $\psi(\infty) = I(\mathbb{E}f)$.
- Suffices to prove ψ_t is decreasing.
- Nice properties that allow to establish $\psi'(t) \leq 0$:

• Integration by parts $\int -fLg \, d\gamma_n = \int \langle \nabla f, \nabla g \rangle d\gamma_n$ (where $Lf(x) = \Delta f(x) - \langle x, \nabla f \rangle$ is the generator).

etc.

Carlen and Kerce analysis

Carlen and Kerce analysis

• Carlen and Kerce (2001):

• Let $f : \mathbb{R}^n \to [0,1]$ be smooth. Define $h_t = \Phi^{-1} \circ (P_t f)$ and

$$\delta(f) = \mathbb{E}\sqrt{I^2(f) + \|\nabla f\|^2} - I(\mathbb{E}f).$$

Carlen and Kerce analysis

• Carlen and Kerce (2001):

• Let $f : \mathbb{R}^n \to [0,1]$ be smooth. Define $h_t = \Phi^{-1} \circ (P_t f)$ and

$$\delta(f) = \mathbb{E}\sqrt{I^2(f) + \|\nabla f\|^2} - I(\mathbb{E}f).$$

Then

$$\delta(f) \geq \int_0^\infty \mathbb{E} \frac{\varphi(h_t) \|H(h_t)\|_F^2}{(1+\|\nabla h_t\|^2)^{3/2}} dt,$$

where $H(h_t)$ is the Hessian matrix of h_t and $\|\cdot\|_F$ denotes the Frobenius norm.

Carlen and Kerce analysis

Carlen and Kerce (2001):

• Let $f : \mathbb{R}^n \to [0,1]$ be smooth. Define $h_t = \Phi^{-1} \circ (P_t f)$ and

$$\delta(f) = \mathbb{E}\sqrt{I^2(f) + \|\nabla f\|^2} - I(\mathbb{E}f).$$

Then

$$\delta(f) \geq \int_0^\infty \mathbb{E} \frac{\varphi(h_t) \| \mathcal{H}(h_t) \|_F^2}{(1 + \| \nabla h_t \|^2)^{3/2}} \, dt,$$

where $H(h_t)$ is the Hessian matrix of h_t and $\|\cdot\|_F$ denotes the Frobenius norm.

•
$$\delta(f) = 0 \implies h_t$$
 is linear $t > 0 \implies P_t f$ is Gaussian $\forall t$.

Carlen and Kerce analysis

• Carlen and Kerce (2001):

• Let $f : \mathbb{R}^n \to [0,1]$ be smooth. Define $h_t = \Phi^{-1} \circ (P_t f)$ and

$$\delta(f) = \mathbb{E}\sqrt{I^2(f) + \|\nabla f\|^2} - I(\mathbb{E}f).$$

Then

$$\delta(f) \geq \int_0^\infty \mathbb{E} rac{arphi(h_t) \| \mathcal{H}(h_t) \|_F^2}{(1+ \|
abla h_t \|^2)^{3/2}} \, dt,$$

where $H(h_t)$ is the Hessian matrix of h_t and $\|\cdot\|_F$ denotes the Frobenius norm.

•
$$\delta(f) = 0 \implies h_t$$
 is linear $t > 0 \implies P_t f$ is Gaussian $\forall t$.

• $f = 1_A$ and $\delta(f) = 0$ by limiting arguments f is a half-space.

Use the Carlen and Kerce bound.

- Use the Carlen and Kerce bound.
- Show that if $\delta(f)$ is small then h_t close to linear.

- Use the Carlen and Kerce bound.
- Show that if $\delta(f)$ is small then h_t close to linear.
- ▶ Conclude that *f* is close to a Gaussian / half-space.

Proof Cartoon

To demonstrate the main ideas of the proof assume a stronger result than Carlen and Kerce:

$$\delta(f) \geq \int_0^\infty \mathbb{E} \|H(h_t)\|_F^2 dt,$$

$$(h_t = \Phi^{-1} \circ (P_t f), \quad \delta(f) = \mathbb{E}\sqrt{I^2(f) + \|\nabla f\|^2} - I(\mathbb{E}f).$$

Proof Cartoon

To demonstrate the main ideas of the proof assume a stronger result than Carlen and Kerce:

$$\delta(f) \geq \int_0^\infty \mathbb{E} \|H(h_t)\|_F^2 dt,$$

 $(h_t = \Phi^{-1} \circ (P_t f), \quad \delta(f) = \mathbb{E}\sqrt{I^2(f) + \|\nabla f\|^2} - I(\mathbb{E}f).)$ • If $\delta(f) < \epsilon^2$ then there exists a $t \in [0, \epsilon]$ with $\|H(h_t)\|_F^2 \le \epsilon.$

Proof Cartoon

To demonstrate the main ideas of the proof assume a stronger result than Carlen and Kerce:

$$\delta(f) \geq \int_0^\infty \mathbb{E} \|H(h_t)\|_F^2 dt,$$

$$(h_t = \Phi^{-1} \circ (P_t f), \quad \delta(f) = \mathbb{E}\sqrt{I^2(f) + \|\nabla f\|^2} - I(\mathbb{E}f).)$$

- ▶ If $\delta(f) < \epsilon^2$ then there exists a $t \in [0, \epsilon]$ with $||H(h_t)||_F^2 \le \epsilon$.
- Second order Poincare inequality: For any twice-differentiable $f \in L_2(\mathbb{R}^n, \gamma_n)$,

$$\min_{a,b} \mathbb{E}(f(x) - a \cdot x - b)^2 \leq \mathbb{E} \|H(f)\|_F^2,$$

To demonstrate the main ideas of the proof assume a stronger result than Carlen and Kerce:

$$\delta(f) \geq \int_0^\infty \mathbb{E} \|H(h_t)\|_F^2 dt,$$

$$(h_t = \Phi^{-1} \circ (P_t f), \quad \delta(f) = \mathbb{E}\sqrt{I^2(f) + \|\nabla f\|^2} - I(\mathbb{E}f).)$$

- ▶ If $\delta(f) < \epsilon^2$ then there exists a $t \in [0, \epsilon]$ with $||H(h_t)||_F^2 \le \epsilon$.
- Second order Poincare inequality: For any twice-differentiable $f \in L_2(\mathbb{R}^n, \gamma_n)$,

$$\min_{a,b} \mathbb{E}(f(x) - a \cdot x - b)^2 \leq \mathbb{E} \|H(f)\|_F^2,$$

 $\blacktriangleright \implies \mathbb{E}(h_t(x) - a \cdot x - b)^2 \le \epsilon \implies f_t \text{ is close to a Gaussian.}$

To demonstrate the main ideas of the proof assume a stronger result than Carlen and Kerce:

$$\delta(f) \geq \int_0^\infty \mathbb{E} \|H(h_t)\|_F^2 dt,$$

$$(h_t = \Phi^{-1} \circ (P_t f), \quad \delta(f) = \mathbb{E}\sqrt{I^2(f) + \|\nabla f\|^2} - I(\mathbb{E}f).)$$

- ▶ If $\delta(f) < \epsilon^2$ then there exists a $t \in [0, \epsilon]$ with $||H(h_t)||_F^2 \le \epsilon$.
- Second order Poincare inequality: For any twice-differentiable $f \in L_2(\mathbb{R}^n, \gamma_n)$,

$$\min_{a,b} \mathbb{E}(f(x) - a \cdot x - b)^2 \leq \mathbb{E} \|H(f)\|_F^2,$$

- $\blacktriangleright \implies \mathbb{E}(h_t(x) a \cdot x b)^2 \le \epsilon \implies f_t \text{ is close to a Gaussian.}$
- Now apply P_t^{-1} to obtain that f is close to Gaussian.

For the real proof there are a few challenges:

Need to prove a second order Poincare inequality.

For the real proof there are a few challenges:

- Need to prove a second order Poincare inequality.
- P_t^{-1} is not bounded so cannot simply apply it.

For the real proof there are a few challenges:

- Need to prove a second order Poincare inequality.
- P_t^{-1} is not bounded so cannot simply apply it.
- Main challenge: prove that there exists a t_∗ such that for t > t_∗ − 1 and f with Ef ≤ 1/2 it holds that:

$$(*) \mathbb{E} \frac{\varphi(h_t) \|H(h_t)\|_F^2}{(1+\|\nabla h_t\|^2)^{3/2}} \geq c l^2(\mathbb{E} f) \Big(\mathbb{E} \big(\|H(h_t)\|_F^2 \big) \Big)^4 \log^{-3} \frac{1}{\mathbb{E} f}.$$

For the real proof there are a few challenges:

- Need to prove a second order Poincare inequality.
- P_t^{-1} is not bounded so cannot simply apply it.
- Main challenge: prove that there exists a t_∗ such that for t > t_∗ − 1 and f with Ef ≤ 1/2 it holds that:

$$(*) \mathbb{E}\frac{\varphi(h_t) \|H(h_t)\|_F^2}{(1+\|\nabla h_t\|^2)^{3/2}} \ge c l^2 (\mathbb{E}f) \Big(\mathbb{E}\big(\|H(h_t)\|_F^2\big) \Big)^4 \log^{-3} \frac{1}{\mathbb{E}f}.$$

▶ Given (*) , if $\delta(f) < \epsilon$ then

$$\int_{t*-1}^t \mathbb{E}rac{arphi(h_t)\|\mathcal{H}(h_t)\|_F^2}{(1+\|
abla h_t\|^2)^{3/2}} \ dt < \epsilon.$$

Therefore there exists t < t* such that

$$\mathbb{E}(\|H(h_t)\|_F^2) \le c^{-1}\epsilon^{1/4}\log^{3/4}rac{1}{\mathbb{E}f}I^{-2}(\mathbb{E}f)$$

For the real proof there are a few challenges:

- Need to prove a second order Poincare inequality.
- P_t^{-1} is not bounded so cannot simply apply it.
- Main challenge: prove that there exists a t_∗ such that for t > t_∗ − 1 and f with Ef ≤ 1/2 it holds that:

$$(*) \mathbb{E}\frac{\varphi(h_t) \|H(h_t)\|_F^2}{(1+\|\nabla h_t\|^2)^{3/2}} \ge c l^2 (\mathbb{E}f) \Big(\mathbb{E}\big(\|H(h_t)\|_F^2\big) \Big)^4 \log^{-3} \frac{1}{\mathbb{E}f}.$$

▶ Given (*) , if $\delta(f) < \epsilon$ then

$$\int_{t*-1}^t \mathbb{E}rac{arphi(h_t)\|\mathcal{H}(h_t)\|_F^2}{(1+\|
abla h_t\|^2)^{3/2}} \ dt < \epsilon.$$

Therefore there exists t < t* such that

$$\mathbb{E}(\|H(h_t)\|_F^2) \le c^{-1} \epsilon^{1/4} \log^{3/4} rac{1}{\mathbb{E}f} I^{-2}(\mathbb{E}f)$$

So the main challenge is to prove (*).

12 / 18

► <u>2nd order Poincare inequality</u>: For any twice-differentiable $f \in L_2(\mathbb{R}^n, \gamma_n),$ $\min_{a,b} \mathbb{E}(f(x) - a \cdot x - b)^2 \le \mathbb{E} \|H(f)\|_F^2,$

- ► <u>2nd order Poincare inequality</u>: For any twice-differentiable $f \in L_2(\mathbb{R}^n, \gamma_n),$ $\min_{a,b} \mathbb{E}(f(x) - a \cdot x - b)^2 \leq \mathbb{E} \|H(f)\|_F^2,$
- Almost surely known.

- ► <u>2nd order Poincare inequality</u>: For any twice-differentiable $f \in L_2(\mathbb{R}^n, \gamma_n),$ $\min_{a,b} \mathbb{E}(f(x) - a \cdot x - b)^2 \leq \mathbb{E} \|H(f)\|_F^2,$
- Almost surely known.
- Proof sketch: Hermite Expand: $f = \sum_{\alpha} b_{\alpha} H_{\alpha}$.

- ► <u>2nd order Poincare inequality</u>: For any twice-differentiable $f \in L_2(\mathbb{R}^n, \gamma_n),$ $\min_{a,b} \mathbb{E}(f(x) - a \cdot x - b)^2 \le \mathbb{E} \|H(f)\|_F^2,$
- Almost surely known.
- <u>Proof sketch</u>: Hermite Expand: $f = \sum_{\alpha} b_{\alpha} H_{\alpha}$.

•
$$\min_{a,b} \mathbb{E}(f(x) - a \cdot x - b)^2 = \sum_{|\alpha| \ge 2} b_{\alpha}^2 \alpha!$$
.

- ► <u>2nd order Poincare inequality</u>: For any twice-differentiable $f \in L_2(\mathbb{R}^n, \gamma_n),$ $\min_{a,b} \mathbb{E}(f(x) - a \cdot x - b)^2 \le \mathbb{E} \|H(f)\|_F^2,$
- Almost surely known.
- ▶ <u>Proof sketch</u>: Hermite Expand: $f = \sum_{\alpha} b_{\alpha} H_{\alpha}$. ▶ $\overline{\min_{a,b} \mathbb{E}(f(x) - a \cdot x - b)^2} = \sum_{|\alpha| \ge 2} b_{\alpha}^2 \alpha!$.

$$\mathbb{E} \| H(f) \|_{F}^{2} = \sum_{i,j} \mathbb{E} \left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \right)^{2}$$

$$= \sum_{i \neq j} \sum_{\{\alpha:\alpha_{i},\alpha_{j} \geq 1\}} b_{\alpha}^{2} \alpha_{i} \alpha_{j} \alpha! + \sum_{i} \sum_{\{\alpha:\alpha_{i} \geq 2\}} b_{\alpha}^{2} \alpha_{i} (\alpha_{i} - 1) \alpha!$$

$$\geq \sum_{|\alpha| \geq 2} b_{\alpha}^{2} \alpha! = \min_{a,b} \mathbb{E} (f(x) - a \cdot x - b)^{2}.$$

• Challenge: Assume $\mathbb{E}(f_t - \Phi(a\dot{x} + b))^2 \leq \epsilon$. Is it true that

$$\min_{a\in[0,\infty]} \mathbb{E}(\|f_t - \Phi(a'\dot{x} + b)\|_2 \le \epsilon'(t,\epsilon)?$$

• Challenge: Assume $\mathbb{E}(f_t - \Phi(a\dot{x} + b))^2 \le \epsilon$. Is it true that

$$\min_{a\in[0,\infty]} \mathbb{E}(\|f_t - \Phi(a'\dot{x} + b)\|_2 \le \epsilon'(t,\epsilon)?$$

• Good news: $P_t^{-1}\Phi(a\dot{x}+b) = \Phi(a'\dot{x}+b)$ when defined.

• Challenge: Assume $\mathbb{E}(f_t - \Phi(a\dot{x} + b))^2 \le \epsilon$. Is it true that

$$\min_{a\in[0,\infty]} \mathbb{E}(\|f_t - \Phi(a'\dot{x} + b)\|_2 \le \epsilon'(t,\epsilon)?$$

- Good news: $P_t^{-1}\Phi(a\dot{x}+b) = \Phi(a\dot{x}+b)$ when defined.
- Good news: $P_t^{-1}H_\alpha = e^{t||\alpha|}H_\alpha$
- Bad news: P_t^{-1} not bounded!

• Challenge: Assume $\mathbb{E}(f_t - \Phi(a\dot{x} + b))^2 \le \epsilon$. Is it true that

$$\min_{a\in[0,\infty]} \mathbb{E}(\|f_t - \Phi(a'\dot{x} + b)\|_2 \le \epsilon'(t,\epsilon)?$$

- Good news: $P_t^{-1}\Phi(a\dot{x}+b) = \Phi(a\dot{x}+b)$ when defined.
- Good news: $P_t^{-1}H_\alpha = e^{t||\alpha|}H_\alpha$
- Bad news: P_t^{-1} not bounded!
- The fix: if f is smooth or $f = 1_A$ has small boundary then cannot have too much mass on high coefficients.

• Challenge: Assume $\mathbb{E}(f_t - \Phi(a\dot{x} + b))^2 \le \epsilon$. Is it true that

$$\min_{a\in[0,\infty]} \mathbb{E}(\|f_t - \Phi(a'\dot{x} + b)\|_2 \le \epsilon'(t,\epsilon)?$$

- Good news: $P_t^{-1}\Phi(a\dot{x}+b) = \Phi(a\dot{x}+b)$ when defined.
- <u>Good news</u>: $P_t^{-1}H_\alpha = e^{t||\alpha|}H_\alpha$
- Bad news: P_t^{-1} not bounded!
- The fix: if f is smooth or $f = 1_A$ has small boundary then cannot have too much mass on high coefficients.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

14/18

► E.g. by Ledoux (94): $\mathbb{E}f(f - P_t f) \leq c\sqrt{t}\mathbb{E}\|\nabla f\|$.

• Challenge: Assume $\mathbb{E}(f_t - \Phi(a\dot{x} + b))^2 \le \epsilon$. Is it true that

$$\min_{a\in[0,\infty]} \mathbb{E}(\|f_t - \Phi(a'\dot{x} + b)\|_2 \le \epsilon'(t,\epsilon)?$$

- Good news: $P_t^{-1}\Phi(a\dot{x}+b) = \Phi(a\dot{x}+b)$ when defined.
- <u>Good news</u>: $P_t^{-1}H_\alpha = e^{t||\alpha|}H_\alpha$
- Bad news: P_t^{-1} not bounded!
- The fix: if f is smooth or $f = 1_A$ has small boundary then cannot have too much mass on high coefficients.
- ► E.g. by Ledoux (94): $\mathbb{E}f(f P_t f) \leq c\sqrt{t}\mathbb{E}\|\nabla f\|$.
- If $\mathbb{E} \| \nabla f \| \ge 10$ then

$$\delta(f) = \mathbb{E}\sqrt{I^2(f) + \|
abla f\|^2} - I(\mathbb{E}f) \ge \mathbb{E}\|
abla f\| - I(\mathbb{E}f) \ge 9$$

• Challenge: Assume $\mathbb{E}(f_t - \Phi(a\dot{x} + b))^2 \le \epsilon$. Is it true that

$$\min_{a\in[0,\infty]} \mathbb{E}(\|f_t - \Phi(a'\dot{x} + b)\|_2 \le \epsilon'(t,\epsilon)?$$

- Good news: $P_t^{-1}\Phi(a\dot{x}+b) = \Phi(a\dot{x}+b)$ when defined.
- <u>Good news</u>: $P_t^{-1}H_\alpha = e^{t||\alpha|}H_\alpha$
- Bad news: P_t^{-1} not bounded!
- The fix: if f is smooth or $f = 1_A$ has small boundary then cannot have too much mass on high coefficients.
- ► E.g. by Ledoux (94): $\mathbb{E}f(f P_t f) \leq c\sqrt{t}\mathbb{E}\|\nabla f\|$.
- If $\mathbb{E} \| \nabla f \| \ge 10$ then

$$\delta(f) = \mathbb{E}\sqrt{I^2(f) + \|\nabla f\|^2} - I(\mathbb{E}f) \ge \mathbb{E}\|\nabla f\| - I(\mathbb{E}f) \ge 9$$

Similar arguments for sets.

▶ Need to prove that for f taking values in [0,1] and $\mathbb{E}f \leq 1/2$: (*) $\mathbb{E} \frac{\varphi(h_t) \| H(h_t) \|_F^2}{(1 + \| \nabla h_t \|^2)^{3/2}} \geq c(\mathbb{E}f) \Big(\mathbb{E} \big(\| H(h_t) \|_F^2 \big) \Big)^4$

- ► Need to prove that for f taking values in [0,1] and $\mathbb{E}f \leq 1/2$: (*) $\mathbb{E} \frac{\varphi(h_t) \|H(h_t)\|_F^2}{(1+\|\nabla h_t\|^2)^{3/2}} \geq c(\mathbb{E}f) \Big(\mathbb{E} \big(\|H(h_t)\|_F^2\big)\Big)^4$
- For this, using the reverse log Sobolev inequality we prove that for t large enough:

$$(**) \ \|\nabla h_t\| \leq 1 \text{ a.s. }, \quad \|\nabla f_t\| \leq \frac{\sqrt{2}e^{-t}}{\sqrt{1-e^{-2t}}}f_t\sqrt{\log\frac{1}{f_t}} \text{ a.s.}$$

- ▶ Need to prove that for f taking values in [0,1] and $\mathbb{E}f \leq 1/2$: (*) $\mathbb{E} \frac{\varphi(h_t) \| H(h_t) \|_F^2}{(1 + \| \nabla h_t \|^2)^{3/2}} \geq c(\mathbb{E}f) \Big(\mathbb{E} \big(\| H(h_t) \|_F^2 \big) \Big)^4$
- For this, using the reverse log Sobolev inequality we prove that for t large enough:

$$(**) \ \|
abla h_t \| \leq 1 ext{ a.s. }, \quad \|
abla f_t \| \leq rac{\sqrt{2}e^{-t}}{\sqrt{1-e^{-2t}}} f_t \sqrt{\log rac{1}{f_t}} ext{ a.s. }$$

We then use (**), the concavity of I, the reverse-Hölder inequality, and reverse hyper-contractivity to show that

$$(***) \mathbb{E}(\varphi(h_t) \| H(h_t) \|_F^2) \geq c l^2(\mathbb{E}f) \left(\mathbb{E} \| H(h_t) \|_F \right)^2$$

- ▶ Need to prove that for f taking values in [0,1] and $\mathbb{E}f \leq 1/2$: (*) $\mathbb{E} \frac{\varphi(h_t) \| \mathcal{H}(h_t) \|_F^2}{(1 + \| \nabla h_t \|^2)^{3/2}} \geq c(\mathbb{E}f) \Big(\mathbb{E} \big(\| \mathcal{H}(h_t) \|_F^2 \big) \Big)^4$
- For this, using the reverse log Sobolev inequality we prove that for t large enough:

$$(**) \ \|
abla h_t \| \leq 1 ext{ a.s. }, \quad \|
abla f_t \| \leq rac{\sqrt{2}e^{-t}}{\sqrt{1-e^{-2t}}} f_t \sqrt{\log rac{1}{f_t}} ext{ a.s. }$$

We then use (**), the concavity of I, the reverse-Hölder inequality, and reverse hyper-contractivity to show that

$$(***) \mathbb{E}(\varphi(h_t) \| H(h_t) \|_F^2) \ge c l^2 (\mathbb{E}f) \left(\mathbb{E} \| H(h_t) \|_F \right)^2$$

Finally using almost all of the tools before and additionally concentration of measure and Hanson-Wright inequalities we prove that for t large enough

$$(****) \ (\mathbb{E}\|H(h_t)\|_F^3)^{1/3} \leq \sqrt{\log(1/(\mathbb{E}f))}$$

$$\mathbb{E}rac{arphi(h_t)\|H(h_t)\|_F^2}{(1+\|
abla h_t\|^2)^{3/2}} \geq c\mathbb{E}ig(arphi(h_t)\|H(h_t)\|_F^2ig)$$

• By (**) for some
$$t_*$$
 and $t > t_*$:

$$\mathbb{E}rac{arphi(h_t)\|m{H}(h_t)\|_F^2}{(1+\|
abla h_t\|^2)^{3/2}} \geq c\mathbb{E}ig(arphi(h_t)\|m{H}(h_t)\|_F^2ig)$$

▶ By (***) for t > t_{*}:

 $\mathbb{E}(\varphi(h_t) \| H(h_t) \|_F^2) \geq c(\mathbb{E}f) \left(\mathbb{E} \| H(h_t) \|_F \right)^2.$

• By (**) for some
$$t_*$$
 and $t > t_*$:

$$\mathbb{E}rac{arphi(h_t)\|H(h_t)\|_F^2}{(1+\|
abla h_t\|^2)^{3/2}} \geq c\mathbb{E}ig(arphi(h_t)\|H(h_t)\|_F^2ig)$$

$$\mathbb{E}(\varphi(h_t) \| H(h_t) \|_F^2) \geq c(\mathbb{E}f) (\mathbb{E} \| H(h_t) \|_F)^2$$

Sadly - the square is outside the expectation.

• By (**) for some
$$t_*$$
 and $t > t_*$:

$$\mathbb{E}rac{arphi(h_t)\|H(h_t)\|_F^2}{(1+\|
abla h_t\|^2)^{3/2}} \geq c\mathbb{E}ig(arphi(h_t)\|H(h_t)\|_F^2ig)$$

$$\mathbb{E}\big(\varphi(h_t)\|H(h_t)\|_F^2\big) \geq c(\mathbb{E}f)\left(\mathbb{E}\|H(h_t)\|_F\right)^2$$

- Sadly the square is outside the expectation.
- However by Hölder's inequality

$$\mathbb{E}(\|H(h_t)\|_F^2) \leq (\mathbb{E}\|H(h_t)\|_F)^{1/2} (\mathbb{E}\|H(h_t)\|_F^3)^{1/2}$$

and therefore by (****) the upper bound on $\mathbb{E} \|H(h_t)\|_F$ yields an upper bound on $\mathbb{E} (\|H(h_t)\|_F^2)$.

・ロン ・回 とくほど くほどう ほう

Prove that if f = 1_A satisfies δ(f) ≤ δ then there exists a half space B such that γ_n(AΔB) ≤ Cδ^{1/2}.

- Prove that if f = 1_A satisfies δ(f) ≤ δ then there exists a half space B such that γ_n(AΔB) ≤ Cδ^{1/2}.
- Analyze equality case and robustness of isoperimetric problems for other log-concave measures.

Borell showed that if \(\gamma_n(B) = \gamma_n(A)\) and B is a half-space then
(+) \(\box[1] \Operatorname{D} = \box[1] \Operatorname{D} = \box[2] \Operatorname{D} = \box[2

 $(+) \mathbb{E}[1_A P_t 1_A] \leq \mathbb{E}[1_B P_t 1_B]$

- ▶ Borell showed that if \(\gamma_n(B) = \gamma_n(A)\) and B is a half-space then
 (+) \(\mathbb{E}[1_A P_t 1_A] < \mathbb{E}[1_B P_t 1_B]\)</p>
- Say something about the proofs.

▶ Borell showed that if $\gamma_n(B) = \gamma_n(A)$ and B is a half-space then

$$(+) \mathbb{E}[1_A P_t 1_A] \leq \mathbb{E}[1_B P_t 1_B]$$

- Say something about the proofs.
- Problem: Are half-spaces the only optimizers?

$$(+) \mathbb{E}[1_A P_t 1_A] \leq \mathbb{E}[1_B P_t 1_B]$$

- Say something about the proofs.
- Problem: Are half-spaces the only optimizers?
- Problem: Is there a robust version?

$$(+) \mathbb{E}[1_A P_t 1_A] \leq \mathbb{E}[1_B P_t 1_B]$$

イロン イロン イヨン イヨン 三日

18/18

- Say something about the proofs.
- Problem: Are half-spaces the only optimizers?
- Problem: Is there a robust version?
- ► A's: Yes, Yes (M + Neeman, 2012-3).