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Reconstructing Networks  

•  Summary of what we did so far: 

•  Reconstruction of tree models from samples. 

•  More general problem: 

•  Reconstruction of network structure from samples … 

•  Particular interest to us: Pedigrees. 

•  But: Technical, do not understand so well, uses a lot of 
the tree technology. Instead:  

•  Talk a bit more about the general problem.  



Reconstructing Networks 
 
•  Motivation: abundance of stochastic networks in biology, 

social networks, neuro-science etc. etc. 
•  Network defines a distribution as follows: 
•  G=(V,E) = Graph on [n] = {1,2,…,n} 
•  Distribution defined on AV, where A is some finite set. 
•  Too each clique C in G, associate a function  

 ψC : AC -> R+ and: 
P[σ] = ∏C ψC(σC) 

•  Called Markov Random Field, Factorized Distribution 
etc. 

•  Directed models also common.  
•  Markov Property: If S separates A from B then  

 σA and σB are conditionally independent  
 given σS 



Graphical Model reconstruction�



Markov random fields / Graphical Models �

• A common model for stochastic networks �

bounded degree graph G = (V, E) 

weight functions ψC: Σ| C | → R≥0 
for every clique C  
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Markov Random Fields / Graphical Models �

• A common model for stochastic networks �

nodes v are assigned  
values av in alphabet Σ 

Pr[σ] ~ ΠC ψC(au, u 2 C)  

bounded degree graph G = (V, E) 

distribution over states 
σ ∈ ΣV given by  

weight functions ψC: Σ| C | → R≥0  
for every edge clique C  1 
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where the product goes over all  
Cliques C 



Reconstruction task for Markov random fields �

• Suppose we can obtain independent samples 
from the Markov random field �

• Given observed data at the nodes, is it possible 
to reconstruct the model (network)? �

• Important: Do we see data at all of the nodes or 
only a subset? �



Problem: Given k independent samples of σ = (σ1,…σn) at all the nodes, 
find the graph G  

(Given activity at all the nodes, can network be reconstructed?) 

•  Restrict attention to graphs with max degree d:  
 
•  A structure estimator is a map 

Questions: 
1.  How many samples k are required (asymptotically) in order to 

reconstruct MRFs with number of nodes n, max degree d with 
probability approaching 1, I.e.  

2.  Want an efficient algorithm for reconstruction. 

Reconstruction problem no hidden nodes 



•  Tree Markov Fields can be reconstructed efficiently (even with hidden 
nodes). 

•  [Erdös,Steel,Szekely,Warnow,99], [Mossel 04; Daskalakis,Mossel,Roch,06]. 

•  PAC Setup: [Abbeel,Koller,Ng, ‘06] produce a factorized distribution that is ε 
n close in Kullback-Leibler divergence to the true distribution.  

•  No guarantee to reconstruct the correct graph  
•  Running time and sampling complexity is nO(d) 

•  More restricted problem studied by [Wainwright,Ravikumar,Lafferty, ‘06] 
•  Restricted to Ising model, sample complexity Θ(d5 log n), difficult to verify 

convergence condition – technique based on L1 regularization. Moreover 
works for graphs not for graphical models! (clique potentials not allowed).  

•  Subsequent to our results, [Santhanam,Wainwright, ‘08] determine 
information theoretic sampling complexity and 
[Wainwright,Ravikumar,Lafferty, ‘08] get Θ(d log n) sampling (restricted to 
Ising models; still no checkable guarantee for convergence).  

 

Related work 



Related work 

Method Abeel et 
al 

Wainwright et al Bresler et al. 

Generative 
model 

MRF 
General 

Collection of Edges 
Ising 

MRF 
General 

Reconstruct Dist of 
small KL 
Distance 

Graph Graph 

Additional 
conditions 

No Yes (very hard to 
check) 

No 

Running time nd n5 nd 

Sampling 
Complexity 

poly(n) d5 log n 
Later:  
d log n 

d log n 



Observation: (Bresler-M-Sly-08; Lower bound on sample 
complexity):  

•  In order to recover G of max-deg d need at least c d log n samples, for 
some constant c. 

•  Pf follows by “counting # of networks”; information theory lower bounds. 
•  More formally: Given any prior distribution which is uniform over degree 

d graphs (no restrictions on the potentials), in order to recover correct 
graph with probability  ¸ 2-n need at least c d log n samples. 

 

Reconstructing General Networks - New Results 

Theorem (Bresler-M-Sly-08; Asymptotically optimal algorithm):  
•     If distribution is “non-degenerate” c d log n samples suffice to 
reconstruct           
     the model with probability ¸ 1 – 1/n100, for some (other) constant c. 
•     Running time is nO(d) 

•     (sampling complexity tight up to a constant factor; running time – unknown) 
 



•  Observation: Knowing graph is same as knowing neighborhoods 
•  But neighborhood is determined by Markov property 
•  Same intuition behind work of Abeel et. al. 

Intuition Behind Algorithms 

“Algorithm”: 
Step 1.  

 Compute empirical probabilities for 
 small sets of vertices. These  are
 concentrated. 

 
Step 2. For each node, simply test  

 Markov property of each  
 candidate neighborhood 

Main Challenge: Show non-
degeneracy ) algorithm works 



Reconstructing Networks – A Trivial Algorithm 
•  Upper bound (Bresler-M-Sly): 
•  If distribution is “non-degenerate” c d log n samples 

suffice. 

•  Algorithm 1: 
•  For each v 2 V:  
•  Enumerate on N(v)  
•  For each w 2 V\(N(v)) check if  σv ind. of σw given σN(v). 

•  Algorithm 2: 
•  For each v 2 V: 
•  Enumerate on U = N(v)  
•  Check that for all u 2 U and all W of size at most d: 
•  8 conditioning on σW,  
•  9 a conditioning on σU – u  s.t.  
•  changing σu changes the conditional distribution at v. 
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Algorithm 1 

Condition N1: 
For each vertex v: 
 
For each incorrect neighborhood U, N(v) ⊄ U:  
 
A neighbor w∈N(v)  
has an effect on v (while conditioning on U). 
 
•    In other words, there is a witness 
for the fact that N(v) ⊄ U 

Run-time:  
 (n nodes) x (O(nd) neighborhoods) x (n nodes)  

 x (O(log n) samples) = O(nd+2 log n) 

Algorithm:  
Check each possible neighborhood U, exists witness? If not then N(v) ⊆ U. 
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v 

Algorithm 1 

Condition N1 formally: 
There exist ε,δ>0 such that  
for all v2 V, if U½ V\{v} 
With |U| · d and N(v) ⊄ U  
there exist values 
xv,xw,xw',xu1,…,xul such that  
for some w 2 V\(U[\{v\}): 
 
|P(X(v)=xv|X(U)=xU,X(w)=xw) 
   -P(X(v)=xv|X(U)=xU,X(w)=xw‘)| >ε	


and 
P(X(U)=xU,X(w)=xw) > δ, 
|P(X(U)=xU,X(w)=xw') > δ. 
 
Runtime: O(nd+2 log n ε-2 δ-4 ) 
Sampling Complexity: O(d log n ε-2 δ-4 ) 
 
 



Algorithm 2 

•     Weaker condition than N1: any nondegenerate MRF satisfies N2.  

Condition N2: 
For each vertex v: 
 
Each neighbor w ∈ N(v) has an effect on v for some 
conditioning on remaining vertices in N(v) . 

Witness: If U is not a subset of N(v), then  exists  
ui ∈ U with no effect on v while conditioning on 
remaining vertices in N(v) 
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•  Algorithm 2: 
•  For each v 2 V: 
•  Enumerate on U = N(V)  
•  Check that for all u 2 U and all W of 

size at most d: 
•  8 conditioning on σW,  
•  9 a conditioning on σU – u  s.t.  
•  changing σu changes the conditional 

distribution at v 



Algorithm 2 

•     Weaker condition than N1: any nondegenerate MRF satisfies N2.  

Condition N2: 
For each vertex v: 
 
Each neighbor w ∈ N(v) has an effect on v for some 
conditioning on remaining vertices in N(v) . 

Witness: If U is not a subset of N(v), then  exists  
ui ∈ U with no effect on v while conditioning on 
remaining vertices in N(v) 

Run-time: Check (n nodes) x (O(nd) neighborhoods) x (O(nd) neighborhoods)  
x (O(log n) samples) = O(n2d+1 log n) 

More Exact Run-time:  O(n2d+2 log n ε-2 δ-4 ) 
More Exact Sampling Complexity:  O(d log n ε-2 δ-4 ) 
 
 



Reconstructing Networks – A Trivial Algorithm 
•  Non-Degeneracy:  
•  For algorithm 2: 
•  For soft-core model on graphs suffices to have for all 

ψ= ψu,v  
•  maxa,b,c,d |ψ(c,a)-ψ(d,a)+ψ(c,b)-ψ(d,b)| > ε	


 



•  If graph has exponential decay of correlations 
 Corr(σu,σv) · exp(-c d(u,v)) 

•  And for each (u,v)∈E, Corr(σu,σv) > κ 

•  Then to find N(v) may restrict search to nodes nearby to v. 

•  Running time: O(n2 log n + n f(d)). 
 
 
 

Extensions: Decay of Correlations 



•  Noise: Algorithm is robust to small amounts of noise 
•  Larger amount of noise often leads to non-identifiability 

 
 

 

Extensions: Noise & Hidden Variables 

•     Missing nodes: Suppose G is triangle free, then a variant of the algorithm 
can find hidden nodes if they are distance 2 apart.  
•     Idea: Run the algorithm as if the node is not hidden. 



Higher Noise & Non Identifiable Example 
 
•  Bresler-M-Sly: Example of non-identifiably 
•  Consider  
•  G1 = path of length 2,  
•  G2 = triangle + Noise. 
•  Assume Ising model with random interactions and 

random noise.  
•  Then with constant probability, cannot distinguish 

between the models.  

•  Ising: P[σ] = ∏u,v 2 E exp(β σ(u) σ(v)) 

•  Intuitive reason: dimension of distribution on 
distributions is 3 in both cases. 

•  This follows from symmetry – enough to  
 know probs of (000),(001),(010),(100) 

 

= hidden nodes 

= observed nodes 



Reconstruction of MRF with Hidden nodes �
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• In many applications only some of the nodes can 

be observed�

visible nodes W ⊆ V 
 
Markov random field over 
visible nodes is  
 

σW = (σw : w ∈ W) 

• Is reconstruction still possible? �

• What does “reconstruction” even mean?�



Reconstruction versus distinguishing �

• Easy to construct many models that lead to the 
same distribution (statistical unidentifiable) �

• Assuming “this is not a problem” are there 
computational obstacles for reconstruction?�

• In particular: how hard is it to distinguish 
statistically different models? �



Distinguishing problems�

• Let M1, M2 be two models with hidden nodes �

• Can you tell if M1 and M2 are statistically close or 
far apart (on the visible nodes)? �

• Assuming M1 and M2 are statistically far apart 
and given access to samples from one of them, 
can you tell where the samples come from? �

PROBLEM 2 

PROBLEM 1 



Problems 1 and 2 are intractable (in the �
worst case) unless NP = RP 

Hardness result with hidden nodes�

• In Bogdanov-M-Vadhan-08: �

• Conversely, if NP = RP then distinguishing (and 
other forms of reconstruction) are achievable �

• RP = Random Polynomial Time  - with one sided 
error. No instance always result in no. Yes results 
in Yes with probability at least ½. �



A possible objection �

• The “hard” models M1, M2 describe distributions 
that are not efficiently samplable �

• But if nature is efficient, we never need to worry 
about such distributions! �



Two Models of a Biologist 
 

•  The Computationally Limited 
Biologist: Cannot solve hard 
computational problems, in particular 
cannot sample from a general G-
distributions. 

•  The Computationally Unlimited 
Biologist:  
 Can sample from any distribution.  

 
•  Related to the following problem:  

 Can nature solve computationally 
hard problems?   

 

From Shapiro at Weizmann 



Distinguishing problem for samplable distributions�

• If M1 and M2 are statistically far apart and given 
access to samples from one of them, can you tell 
where the samples came from, assuming M1 and 
M2 are efficiently samplable? �

• Theorem�

– We don’t know if this is tight �
–  Zero Knowledge: Given two circuits with total 

variation large �

PROBLEM 3 

Problem 3 is intractable unless 
computational zero knowledge is trivial 



Reduction to circuits �

• Markov random fields can simulate the uniform  
distribution UC over satisfying assignments of a 
boolean circuit C�

• We reduce problems 1 and 2 to questions about 
circuits:�

–  Can you tell if the distributions UC0 and UC1 �
are statistically close or far apart? �

–  If UC0 and UC1 are statistically far apart and given 
samples from one of them, can you tell which one? �



 

1/#SAT(C), if  C(x) = TRUE 
0, if  C(x) = FALSE 

prUC(x) =  { 



Reduction to circuits : Proof Idea�

• WLOG all gates have fun in at most 2.�

• Replace each gate g by a gadget where:�

• To each assignment a consistent with g add 
vertices v(g,a,1),…,v(g,a,r).�

• Define MRF taking 0,1 values s.t. σ(v(g,a,i)) = 1 
if a is the “asgmnt to the gate” and 0 otherwise. �

• Clones allow to force consistency between 
different gates, at most one value.�

• To force at least one value, play with weights.�



Reduction to circuits �

• Markov random fields can simulate the uniform  
distribution UC over satisfying assignments of a 
boolean circuit C�

• We reduce problems 1 and 2 to questions about 
circuits:�

–  Can you tell if the distributions UC0 and UC1 �
are statistically close or far apart? �

–  If UC0 and UC1 are statistically far apart and given 
samples from one of them, can you tell which one? �



 

1/#SAT(C), if  C(x) = TRUE 
0, if  C(x) = FALSE 

prUC(x) =  { 



Hardness of distinguishing circuits�

• Assume you have an algorithm A such that �

–  If the samples come from another distribution, A can 
behave arbitrarily�

• We use A to find a satisfying assignment for any 
circuit C: {0, 1}n → {0, 1} �

A 
C0, C1 

samples from Cb �
b 



A 
C0(x1), C1(x1) 

samples: 0, 0, ... �

C0(x1, x2, ..., xn) = C(x1, x2, ..., xn) 
C1(x1, x2, ..., xn) = C(x1, x2, ..., xn) 

value of x1 in some �
satisfying assignment of C�

visible inputs: x1 hidden inputs: x2,..., xn 

CLAIM 

Hardness of distinguishing circuits SZK / NP-RP �

–  Proof reminiscent of argument that NP ∩ coNP has �
NP-hard promise problems [Even-Selman-Yacobi]�



Reconstructing Networks – the Future 
 

•  To do: 

•  Still a big gap between theory an practice.  

•  Initial simulations: Phylogenetic algorithms are fastest 
and most accurate on simulated data. 

•  Need to extend to run on “bad” data and try on real 
data. 

•  In reconstructing networks many open problems both in 
theory & in practice.  
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