Asymptotic Learning on Social Networks

Elchanan Mossel Joint work with: Allan Sly (UC Berkeley) Omer Tamuz (Weizmann)

February 23, 2012

イロン イロン イヨン イヨン 三日

1/25

The big question: Is learning / inference possible where agents communicate over a network?

- The big question: Is learning / inference possible where agents communicate over a network?
- We consider models from economics where agents on some network observe the opinions and actions of their neighbors.

- The big question: Is learning / inference possible where agents communicate over a network?
- We consider models from economics where agents on some network observe the opinions and actions of their neighbors.
 - Agents are Bayesian, their opinions are governed solely by what information they have observed. This is the most "rational" opinion to have.

- The big question: Is learning / inference possible where agents communicate over a network?
- We consider models from economics where agents on some network observe the opinions and actions of their neighbors.
 - Agents are Bayesian, their opinions are governed solely by what information they have observed. This is the most "rational" opinion to have.
 - ► A *communications* protocol is given through which agents receive information from their neighbors.

- The big question: Is learning / inference possible where agents communicate over a network?
- We consider models from economics where agents on some network observe the opinions and actions of their neighbors.
 - Agents are Bayesian, their opinions are governed solely by what information they have observed. This is the most "rational" opinion to have.
 - ► A *communications* protocol is given through which agents receive information from their neighbors.
- Question: Do agents in this decentralized model aggregate their information effectively?

• The world is a probability space.

- The world is a probability space.
- An unknown "state of the world" S ∈ {−1,1}. For example:
 - Which is the better purchase? iGadget or Gadgetoid?
 - Is there a bubble in the tulip market? Yes or no?
 - Who would make a better president? Gin-g-rich or Rich?

- The world is a probability space.
- An unknown "state of the world" S ∈ {−1,1}. For example:
 - Which is the better purchase? iGadget or Gadgetoid?
 - Is there a bubble in the tulip market? Yes or no?
 - Who would make a better president? Gin-g-rich or Rich?
- S takes the value ± 1 with probability 1/2.

3/25

- The world is a probability space.
- An unknown "state of the world" S ∈ {−1,1}. For example:
 - Which is the better purchase? iGadget or Gadgetoid?
 - Is there a bubble in the tulip market? Yes or no?
 - Who would make a better president? Gin-g-rich or Rich?
- S takes the value ± 1 with probability 1/2.
- *n* agents. Each is given a **private signal** ω_i with distribution

► *F*⁺ if *S* = 1

3/25

・ロト ・四ト ・ヨト ・ヨト

- The world is a probability space.
- An unknown "state of the world" S ∈ {−1,1}. For example:
 - Which is the better purchase? iGadget or Gadgetoid?
 - Is there a bubble in the tulip market? Yes or no?
 - Who would make a better president? Gin-g-rich or Rich?
- S takes the value ± 1 with probability 1/2.
- n agents. Each is given a private signal ω_i with distribution
 - ▶ F⁻ if S = −1
 - ► *F*⁺ if *S* = 1
- Conditioned on S, private signals are independent.

3/25

イロト イポト イヨト イヨト

- Class of models
 - A group of **Bayesian** agents.
 - The agents need to make a **decision**.
 - The agents have private information sources and learn from each other.

- Class of models
 - A group of **Bayesian** agents.
 - The agents need to make a **decision**.
 - The agents have private information sources and learn from each other.
- Two main models
 - ► Revealed beliefs: In each time step agent *i* tells her neighbors her posterior probability X_i(t) = P[S = 1 | F_i(t)].

4/25

- Class of models
 - A group of **Bayesian** agents.
 - The agents need to make a **decision**.
 - The agents have private information sources and learn from each other.
- Two main models
 - ► Revealed beliefs: In each time step agent *i* tells her neighbors her posterior probability X_i(t) = P[S = 1 | F_i(t)].

4/25

Revealed actions: In each time step agent *i* tells her neighbors her preferred "action"

$$A_i(t) = \operatorname{argmax}_{a \in \{-1,1\}} \mathbb{P}[S = a \mid \mathcal{F}_i(t)].$$

- Class of models
 - A group of **Bayesian** agents.
 - The agents need to make a **decision**.
 - The agents have private information sources and learn from each other.
- Two main models
 - ► Revealed beliefs: In each time step agent *i* tells her neighbors her posterior probability X_i(t) = P[S = 1 | F_i(t)].
 - Revealed actions: In each time step agent *i* tells her neighbors her preferred "action"

 $A_i(t) = \operatorname{argmax}_{a \in \{-1,1\}} \mathbb{P}[S = a \mid \mathcal{F}_i(t)].$

- Two Major Questions
 - When do the agents reach consensus?
 - Generally well understood (Aumann (1976), Sebenius and Geanakoplos (1983), Parikh and Krasucki (1990), Rosenberg, Solan and Vieille (2009); Sebenius and Geanakoplos (1983), Ménager (2006)

- Class of models
 - A group of **Bayesian** agents.
 - The agents need to make a **decision**.
 - The agents have private information sources and learn from each other.
- Two main models
 - ► Revealed beliefs: In each time step agent *i* tells her neighbors her posterior probability X_i(t) = P[S = 1 | F_i(t)].
 - Revealed actions: In each time step agent *i* tells her neighbors her preferred "action"

 $A_i(t) = \operatorname{argmax}_{a \in \{-1,1\}} \mathbb{P}[S = a \mid \mathcal{F}_i(t)].$

- Two Major Questions
 - When do the agents reach consensus?
 - Generally well understood (Aumann (1976), Sebenius and Geanakoplos (1983), Parikh and Krasucki (1990), Rosenberg, Solan and Vieille (2009); Sebenius and Geanakoplos (1983), Ménager (2006)
 - When do the agents learn from each other efficiently?
 - Generally poorly understood.

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

• Assume signal in [0, 1] with $dF_+ = 2xdx$, $dF_- = (2 - 2x)dx$.

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

• Assume signal in [0, 1] with $dF_+ = 2xdx$, $dF_- = (2 - 2x)dx$.

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

• Assume signal in [0,1] with $dF_+ = 2xdx$, $dF_- = (2-2x)dx$.

•
$$X_1(1) = X_2(1) = \mathbb{P}[S = + | 0.4, 0.7].$$

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

►

• Assume signal in [0, 1] with $dF_+ = 2xdx$, $dF_- = (2 - 2x)dx$.

•
$$X_1(1) = X_2(1) = \mathbb{P}[S = + | 0.4, 0.7].$$

$$\frac{\mathbb{P}\left[0.4, 0.7 \mid S = +\right]}{\mathbb{P}\left[0.4, 0.7 \mid S = -\right]} = \frac{0.8 * 1.4}{1.2 * 0.6} = \frac{14}{9}.$$

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

►

• Assume signal in [0,1] with $dF_+ = 2xdx$, $dF_- = (2-2x)dx$.

•
$$X_1(1) = X_2(1) = \mathbb{P}[S = + | 0.4, 0.7].$$

$$\frac{\mathbb{P}\left[0.4, 0.7 \mid S = +\right]}{\mathbb{P}\left[0.4, 0.7 \mid S = -\right]} = \frac{0.8 * 1.4}{1.2 * 0.6} = \frac{14}{9}.$$

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

• Assume signal in [0,1] with $dF_+ = 2xdx$, $dF_- = (2-2x)dx$.

•
$$X_1(1) = X_2(1) = \mathbb{P}[S = + | 0.4, 0.7].$$

$$\frac{\mathbb{P}\left[0.4, 0.7 \mid S = +\right]}{\mathbb{P}\left[0.4, 0.7 \mid S = -\right]} = \frac{0.8 * 1.4}{1.2 * 0.6} = \frac{14}{9}.$$

- ► Challenge: G = {0,1}³ with signals 0.11, 0.22, 0.33, 0.44, 0.55, 0.66, 0.77, 0.88.
- Explicitly calculate the dynamics and what it converges to.

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

• Assume signal in [0,1] with $dF_+ = 2xdx$, $dF_- = (2-2x)dx$.

•
$$X_1(1) = X_2(1) = \mathbb{P}[S = + | 0.4, 0.7].$$

$$\frac{\mathbb{P}\left[0.4, 0.7 \mid S = +\right]}{\mathbb{P}\left[0.4, 0.7 \mid S = -\right]} = \frac{0.8 * 1.4}{1.2 * 0.6} = \frac{14}{9}.$$

- ► Challenge: G = {0,1}³ with signals 0.11, 0.22, 0.33, 0.44, 0.55, 0.66, 0.77, 0.88.
- Explicitly calculate the dynamics and what it converges to.
- Does it converge in a finite number of iterations?

- Model Specification:
 - The agents lie on a connected undirected graph.
 - At time 0 each agents receive her own signal $X_0(t)$.

- Model Specification:
 - The agents lie on a connected undirected graph.
 - At time 0 each agents receive her own signal $X_0(t)$.
- Interaction Protocol:
 - In each time step t agent i tells her neighbors her posterior probability X_i(t) = ℙ[S = 1 | F_i(t)].

イロン イロン イヨン イヨン 三日

6/25

▶ $\mathcal{F}_i(t+1)$ is generated by $(X_i(s), X_j(s) : s \leq t, j \sim i)$

- Model Specification:
 - The agents lie on a connected undirected graph.
 - At time 0 each agents receive her own signal $X_0(t)$.
- Interaction Protocol:
 - In each time step t agent i tells her neighbors her posterior probability X_i(t) = ℙ[S = 1 | F_i(t)].
 - $\mathcal{F}_i(t+1)$ is generated by $(X_i(s), X_j(s) : s \le t, j \sim i)$
- Claim: Eventually all agents agree: $X_i(t) \to X(\infty)$ a.s.

- Model Specification:
 - The agents lie on a connected undirected graph.
 - At time 0 each agents receive her own signal $X_0(t)$.
- Interaction Protocol:
 - In each time step t agent i tells her neighbors her posterior probability X_i(t) = ℙ[S = 1 | F_i(t)].
 - $\mathcal{F}_i(t+1)$ is generated by $(X_i(s), X_j(s) : s \le t, j \sim i)$
- Claim: Eventually all agents agree: $X_i(t) \to X(\infty)$ a.s.
 - Proof: Exercise! (Aumann 76 etc.). Pf Sketch:

- Model Specification:
 - The agents lie on a connected undirected graph.
 - At time 0 each agents receive her own signal $X_0(t)$.
- Interaction Protocol:
 - In each time step t agent i tells her neighbors her posterior probability X_i(t) = ℙ[S = 1 | F_i(t)].

6/25

- $\mathcal{F}_i(t+1)$ is generated by $(X_i(s), X_j(s) : s \le t, j \sim i)$
- Claim: Eventually all agents agree: $X_i(t) \to X(\infty)$ a.s.
 - Proof: Exercise! (Aumann 76 etc.). Pf Sketch:
 - $X_i(t) \to X_i(\infty)$ a.s. as a bounded martingale.

- Model Specification:
 - The agents lie on a connected undirected graph.
 - At time 0 each agents receive her own signal $X_0(t)$.
- Interaction Protocol:
 - In each time step t agent i tells her neighbors her posterior probability X_i(t) = ℙ[S = 1 | F_i(t)].

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

6/25

- $\mathcal{F}_i(t+1)$ is generated by $(X_i(s), X_j(s) : s \le t, j \sim i)$
- Claim: Eventually all agents agree: $X_i(t) \to X(\infty)$ a.s.
 - Proof: Exercise! (Aumann 76 etc.). Pf Sketch:
 - $X_i(t) \rightarrow X_i(\infty)$ a.s. as a bounded martingale.
 - If $i \sim j$ then $X_i(\infty) \in \mathcal{F}_j(\infty)$ and $X_j(\infty) \in \mathcal{F}_i(\infty)$.

- Model Specification:
 - The agents lie on a connected undirected graph.
 - At time 0 each agents receive her own signal $X_0(t)$.
- Interaction Protocol:
 - In each time step t agent i tells her neighbors her posterior probability X_i(t) = ℙ[S = 1 | F_i(t)].
 - $\mathcal{F}_i(t+1)$ is generated by $(X_i(s), X_j(s) : s \le t, j \sim i)$
- Claim: Eventually all agents agree: $X_i(t) \to X(\infty)$ a.s.
 - Proof: Exercise! (Aumann 76 etc.). Pf Sketch:
 - $X_i(t) \to X_i(\infty)$ a.s. as a bounded martingale.
 - If $i \sim j$ then $X_i(\infty) \in \mathcal{F}_j(\infty)$ and $X_j(\infty) \in \mathcal{F}_i(\infty)$.
 - If $X_i(\infty) \neq X_j(\infty)$ then

$$\operatorname{Var}\left[rac{X_i(\infty)+X_j(\infty)}{2}-S
ight]<\max_{k=i,j}(\operatorname{Var}\left[X_k(\infty)-S
ight])$$

Contradiction!

- Model Specification:
 - The agents lie on a connected undirected graph.
 - At time 0 each agents receive her own signal $X_0(t)$.
- Interaction Protocol:
 - In each time step t agent i tells her neighbors her posterior probability X_i(t) = ℙ[S = 1 | F_i(t)].
 - $\mathcal{F}_i(t+1)$ is generated by $(X_i(s), X_j(s) : s \le t, j \sim i)$
- Claim: Eventually all agents agree: $X_i(t) \to X(\infty)$ a.s.
 - Proof: Exercise! (Aumann 76 etc.). Pf Sketch:
 - $X_i(t) \rightarrow X_i(\infty)$ a.s. as a bounded martingale.
 - If $i \sim j$ then $X_i(\infty) \in \mathcal{F}_j(\infty)$ and $X_j(\infty) \in \mathcal{F}_i(\infty)$.
 - If $X_i(\infty) \neq X_j(\infty)$ then

$$\operatorname{Var}\left[rac{X_i(\infty)+X_j(\infty)}{2}-S
ight]<\max_{k=i,j}(\operatorname{Var}\left[X_k(\infty)-S
ight])$$

Contradiction!

► Note: Proof doesn't require independent signals.

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

• Assume signal in [0, 1] with $dF_+ = 2xdx$, $dF_- = (2 - 2x)dx$.

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

- Assume signal in [0,1] with $dF_+ = 2xdx$, $dF_- = (2-2x)dx$.
- Suppose $X_1(0) = 0.4$ and $X_2(0) = 0.7$.

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

- Assume signal in [0,1] with $dF_+ = 2xdx$, $dF_- = (2-2x)dx$.
- Suppose $X_1(0) = 0.4$ and $X_2(0) = 0.7$.

•
$$A_1(0) = -, A_2(0) = +.$$
• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

- Assume signal in [0,1] with $dF_+ = 2xdx$, $dF_- = (2-2x)dx$.
- Suppose $X_1(0) = 0.4$ and $X_2(0) = 0.7$.

•
$$A_1(0) = -, A_2(0) = +$$

•
$$X_1(1) = \mathbb{P}[S = + | 0.4, \ge 0.5].$$

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

- Assume signal in [0,1] with $dF_+ = 2xdx$, $dF_- = (2-2x)dx$.
- Suppose $X_1(0) = 0.4$ and $X_2(0) = 0.7$.

•
$$A_1(0) = -, A_2(0) = +.$$

• $X_1(1) = \mathbb{P}[S = + | 0.4, \ge 0.5].$

$$\frac{\mathbb{P}\left[0.4, \ge 0.5 \mid S = +\right]}{\mathbb{P}\left[0.4, \ge 0.5 \mid S = -\right]} = \frac{0.8 * 3/4}{1.2 * 1/4} = 2 \implies A_1(1) = +.$$
$$\frac{\mathbb{P}\left[0.7, \le 0.5 \mid S = +\right]}{\mathbb{P}\left[0.7, \le 0.5 \mid S = -\right]} = \frac{1.4 * 1/4}{0.6 * 3/4} = \frac{7}{9} \implies A_2(1) = -.$$

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

- Assume signal in [0,1] with $dF_+ = 2xdx$, $dF_- = (2-2x)dx$.
- Suppose $X_1(0) = 0.4$ and $X_2(0) = 0.7$.

•
$$A_1(0) = -, A_2(0) = +.$$

• $X_1(1) = \mathbb{P}[S = + | 0.4, \ge 0.5].$

$$\frac{\mathbb{P}\left[0.4, \ge 0.5 \mid S = +\right]}{\mathbb{P}\left[0.4, \ge 0.5 \mid S = -\right]} = \frac{0.8 * 3/4}{1.2 * 1/4} = 2 \implies A_1(1) = +.$$
$$\frac{\mathbb{P}\left[0.7, \le 0.5 \mid S = +\right]}{\mathbb{P}\left[0.7, \le 0.5 \mid S = -\right]} = \frac{1.4 * 1/4}{0.6 * 3/4} = \frac{7}{9} \implies A_2(1) = -.$$

etc.

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

- Assume signal in [0,1] with $dF_+ = 2xdx$, $dF_- = (2-2x)dx$.
- Suppose $X_1(0) = 0.4$ and $X_2(0) = 0.7$.

•
$$A_1(0) = -, A_2(0) = +.$$

• $X_1(1) = \mathbb{P}[S = + | 0.4, \ge 0.5].$

$$\frac{\mathbb{P}\left[0.4, \ge 0.5 \mid S = +\right]}{\mathbb{P}\left[0.4, \ge 0.5 \mid S = -\right]} = \frac{0.8 * 3/4}{1.2 * 1/4} = 2 \implies A_1(1) = +.$$

$$\frac{\mathbb{P}\left[0.7, \le 0.5 \mid S = +\right]}{\mathbb{P}\left[0.7, \le 0.5 \mid S = -\right]} = \frac{1.4 * 1/4}{0.6 * 3/4} = \frac{7}{9} \implies A_2(1) = -.$$

etc.

► Challenge: V = {1,2,3,4}, E = {(1,2), (2,3), (3,4)} with signals 0.15, 0.41, 0.6, 0.87.

• Let
$$V = \{1, 2\}, E = \{(1, 2)\}.$$

- Assume signal in [0,1] with $dF_+ = 2xdx$, $dF_- = (2-2x)dx$.
- Suppose $X_1(0) = 0.4$ and $X_2(0) = 0.7$.

•
$$A_1(0) = -, A_2(0) = +.$$

• $X_1(1) = \mathbb{P}[S = + | 0.4, \ge 0.5].$

$$\frac{\mathbb{P}\left[0.4, \ge 0.5 \mid S = +\right]}{\mathbb{P}\left[0.4, \ge 0.5 \mid S = -\right]} = \frac{0.8 * 3/4}{1.2 * 1/4} = 2 \implies A_1(1) = +.$$
$$\frac{\mathbb{P}\left[0.7, \le 0.5 \mid S = +\right]}{\mathbb{P}\left[0.7, \le 0.5 \mid S = -\right]} = \frac{1.4 * 1/4}{0.6 * 3/4} = \frac{7}{9} \implies A_2(1) = -.$$

etc.

- ► Challenge: V = {1,2,3,4}, E = {(1,2), (2,3), (3,4)} with signals 0.15, 0.41, 0.6, 0.87.
- Explicitly calculate the dynamics and what it converges to.
- ► Does it converge in a finite number of iterations?

The Revealed Actions Model

- Model Specification:
 - The agents lie on a connected undirected graph.
 - At time 0 each agents receive her own signal $X_0(t)$.

The Revealed Actions Model

- Model Specification:
 - The agents lie on a connected undirected graph.
 - At time 0 each agents receive her own signal $X_0(t)$.
- The revealed actions model:
 - In each time step t agent i tells her neighbors her preferred actionA_i(t) = argmax_{a∈{-1,1}} ℙ [S = a | F_i(t)].
 - $\mathcal{F}_i(t+1)$ is generated by $(X_i(0), A_j(s) : s \le t, j \sim i)$

The Revealed Actions Model

- Model Specification:
 - The agents lie on a connected undirected graph.
 - At time 0 each agents receive her own signal X₀(t).
- The revealed actions model:
 - In each time step t agent i tells her neighbors her preferred actionA_i(t) = argmax_{a∈{-1,1}} ℙ [S = a | F_i(t)].
 - $\mathcal{F}_i(t+1)$ is generated by $(X_i(0), A_j(s) : s \le t, j \sim i)$
- Imitation principle (Gale and Kariv): If i ~ j and lim A_i(t) ≠ lim A_j(t) then X_i(∞) = X_j(∞) = 1/2.

- Model Specification:
 - The agents lie on a connected undirected graph.
 - At time 0 each agents receive her own signal $X_0(t)$.
- The revealed actions model:
 - In each time step t agent i tells her neighbors her preferred actionA_i(t) = argmax_{a∈{-1,1}} ℙ [S = a | F_i(t)].
 - $\mathcal{F}_i(t+1)$ is generated by $(X_i(0), A_j(s) : s \le t, j \sim i)$
- Imitation principle (Gale and Kariv): If i ~ j and lim A_i(t) ≠ lim A_j(t) then X_i(∞) = X_j(∞) = 1/2.
- Stronger version (M-Sly-Tamuz-12): Under the non-atomic beliefs three possible limiting actions are possible

1. For all
$$i$$
, $A_i(t) \rightarrow 1$ and $X_i(\infty) > \frac{1}{2}$.

- 2. For all i, $A_i(t) \rightarrow -1$ and $X_i(\infty) < \frac{1}{2}$.
- 3. For all *i*, $A_i(t)$ does not converge and $X_i(\infty) = \frac{1}{2}$.

A basic premise of economics is that good markets learn the state of the world. Is it true for (idealized) networked markets?

- A basic premise of economics is that good markets learn the state of the world. Is it true for (idealized) networked markets?
- Aumann's original motivation: Bayesian Economics doesn't make sense. Doesn't allow to "agree to disagree".

Central problem in learning, i.e. Gale and Kariv ask: " whether the common action chosen asymptotically is optimal, in the sense that the same action would be chosen if all the signals were public information... there is no reason why this should be the case"

- Central problem in learning, i.e. Gale and Kariv ask: " whether the common action chosen asymptotically is optimal, in the sense that the same action would be chosen if all the signals were public information... there is no reason why this should be the case"
- Instead simpler models are studied where either each agents acts only once, or agents are not truly rational.

- Central problem in learning, i.e. Gale and Kariv ask: " whether the common action chosen asymptotically is optimal, in the sense that the same action would be chosen if all the signals were public information... there is no reason why this should be the case"
- Instead simpler models are studied where either each agents acts only once, or agents are not truly rational.
 - "different motivation is simply technical expediency" (Ellison and Fundenberg)

- Central problem in learning, i.e. Gale and Kariv ask: " whether the common action chosen asymptotically is optimal, in the sense that the same action would be chosen if all the signals were public information... there is no reason why this should be the case"
- Instead simpler models are studied where either each agents acts only once, or agents are not truly rational.
 - "different motivation is simply technical expediency" (Ellison and Fundenberg)
 - "to keep the model mathematically tractable... this possibility [fully Bayesian agents] is precluded in our model... simplifying the belief revision process considerably" (Bala and Goyal)

Belief Learning Theorem (M., Sly and Tamuz (2012)) In the revealed beliefs model the limit $X = \lim_{t\to\infty} X_i(t)$ satisfies:

$$X = \mathbb{P}\left[S = 1 \mid \omega_1, \ldots, \omega_n\right],$$

In particular there exist c > 0,

$$\mathbb{P}\left[S=A\right]\geq 1-e^{-cn}.$$

Belief Learning Theorem (M., Sly and Tamuz (2012)) In the revealed beliefs model the limit $X = \lim_{t\to\infty} X_i(t)$ satisfies:

$$X = \mathbb{P}\left[S = 1 \mid \omega_1, \ldots, \omega_n\right],$$

In particular there exist c > 0,

$$\mathbb{P}\left[S=A\right]\geq 1-e^{-cn}.$$

 Agents aggregate their information optimally without necessarily learning all the signals.

Belief Learning Theorem (M., Sly and Tamuz (2012)) In the revealed beliefs model the limit $X = lim_{t\to\infty}X_i(t)$ satisfies:

$$X = \mathbb{P}\left[S = 1 \mid \omega_1, \ldots, \omega_n\right],$$

In particular there exist c > 0,

$$\mathbb{P}\left[S=A\right]\geq 1-e^{-cn}.$$

- Agents aggregate their information optimally without necessarily learning all the signals.
- As Aumann noted, the theorem is in fact much more general it applies to any Bayesian model where all agents have same posterior.

Belief Learning Theorem (M., Sly and Tamuz (2012)) In the revealed beliefs model the limit $X = \lim_{t\to\infty} X_i(t)$ satisfies:

$$X = \mathbb{P}\left[S = 1 \mid \omega_1, \ldots, \omega_n\right],$$

In particular there exist c > 0,

$$\mathbb{P}\left[S=A\right]\geq 1-e^{-cn}.$$

- Agents aggregate their information optimally without necessarily learning all the signals.
- As Aumann noted, the theorem is in fact much more general it applies to any Bayesian model where all agents have same posterior.
- Independence of signals is needed. Example: $S = S_1 \oplus S_2$.

► Recall that in the revealed actions model: $A_i(t) = \operatorname{argmax}_{a \in \{-1,1\}} \mathbb{P}\left[a = S | \mathcal{F}_i(t)\right] \text{ is announced to the neighbors at time } t.$

- ► Recall that in the revealed actions model:
 A_i(t) = argmax_{a∈{-1,1}} ℙ [a = S|F_i(t)] is announced to the neighbors at time t.
- ► Technical Assumption: "non-atomic beliefs": The belief $\mathbb{P}[S = 1 \mid \omega_1]$ is non-atomic which **avoids ties**.

- ► Recall that in the revealed actions model:
 A_i(t) = argmax_{a∈{-1,1}} ℙ [a = S|F_i(t)] is announced to the neighbors at time t.
- ► Technical Assumption: "non-atomic beliefs": The belief $\mathbb{P}[S = 1 \mid \omega_1]$ is non-atomic which **avoids ties**.
- Action Learning Theorem (M., Sly and Tamuz (2012))

- ► Recall that in the revealed actions model:
 A_i(t) = argmax_{a∈{-1,1}} ℙ [a = S|F_i(t)] is announced to the neighbors at time t.
- ► Technical Assumption: "non-atomic beliefs": The belief $\mathbb{P}[S = 1 \mid \omega_1]$ is non-atomic which **avoids ties**.
- Action Learning Theorem (M., Sly and Tamuz (2012))
- In the revealed actions model with non-atomic beliefs and F₊ ≠ F₋ there exists a sequence q(n, F₊, F₋) → 1 such for all connected graphs G of size n

 $\mathbb{P}[\text{Learning}] \geq q(n).$

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

12/25

- ► Recall that in the revealed actions model:
 A_i(t) = argmax_{a∈{-1,1}} ℙ [a = S|F_i(t)] is announced to the neighbors at time t.
- ► Technical Assumption: "non-atomic beliefs": The belief $\mathbb{P}[S = 1 \mid \omega_1]$ is non-atomic which **avoids ties**.
- Action Learning Theorem (M., Sly and Tamuz (2012))
- In the revealed actions model with non-atomic beliefs and F₊ ≠ F₋ there exists a sequence q(n, F₊, F₋) → 1 such for all connected graphs G of size n

 $\mathbb{P}[\text{Learning}] \geq q(n).$

I.e., asymptotic learning on general graphs.

- ► Recall that in the revealed actions model:
 A_i(t) = argmax_{a∈{-1,1}} ℙ [a = S|F_i(t)] is announced to the neighbors at time t.
- ► Technical Assumption: "non-atomic beliefs": The belief $\mathbb{P}[S = 1 \mid \omega_1]$ is non-atomic which **avoids ties**.
- Action Learning Theorem (M., Sly and Tamuz (2012))
- In the revealed actions model with non-atomic beliefs and F₊ ≠ F₋ there exists a sequence q(n, F₊, F₋) → 1 such for all connected graphs G of size n

 $\mathbb{P}[\text{Learning}] \geq q(n).$

- ► I.e., asymptotic learning on general graphs.
- False: without non-atomic assumption, on directed graphs, w.o independence.

Prior work - some tractable models

- In the revealed actions model when the social network is the complete graph then Bayesian updates are tractable (Mossel and Tamuz (2010)).
 - Convergence to the same action.
 - As the number of agents goes to infinity the chance of converging to the correct action goes to 1.

Prior work - some tractable models

- In the revealed actions model when the social network is the complete graph then Bayesian updates are tractable (Mossel and Tamuz (2010)).
 - Convergence to the same action.
 - As the number of agents goes to infinity the chance of converging to the correct action goes to 1.
- In the revealed beliefs model when private signal are Gaussian in the revealed beliefs model then Bayesian updates are tractable for any social network (DeMarzo, D. Vayanos, and J. Zwiebel. 2003 Mossel and Tamuz 2009).
 - Perfectly efficient learning is achieved.
 - Converge in time \leq size \times diameter.

Prior work - some tractable models

- In the revealed actions model when the social network is the complete graph then Bayesian updates are tractable (Mossel and Tamuz (2010)).
 - Convergence to the same action.
 - As the number of agents goes to infinity the chance of converging to the correct action goes to 1.
- In the revealed beliefs model when private signal are Gaussian in the revealed beliefs model then Bayesian updates are tractable for any social network (DeMarzo, D. Vayanos, and J. Zwiebel. 2003 Mossel and Tamuz 2009).
 - Perfectly efficient learning is achieved.
 - Converge in time \leq size \times diameter.
- When calculations are tractable then they are also easier to analyze.

Action Learning Theorem (M., Sly and Tamuz (2012)) In the revealed actions model with non-atomic beliefs there exists a sequence $q(n) \rightarrow 1$ such for all connected graphs G of size n

 $\mathbb{P}[\text{Learning}] \ge q(n).$

I.e., asymptotic learning on general graphs.

Action Learning Theorem (M., Sly and Tamuz (2012)) In the revealed actions model with non-atomic beliefs there exists a sequence $q(n) \rightarrow 1$ such for all connected graphs G of size n

 $\mathbb{P}[\text{Learning}] \ge q(n).$

I.e., asymptotic learning on general graphs.

False in general without non-atomic assumption and on directed graphs, independence is also needed.

Dynamics are very complicated. Abstract approach needed: Assume by contradiction there is a sequence G_n = (V_n, E_n) of graphs with |V_n| → ∞ and lim sup P [Learning in G_n] < 1.</p>

- Dynamics are very complicated. Abstract approach needed: Assume by contradiction there is a sequence G_n = (V_n, E_n) of graphs with |V_n| → ∞ and lim sup P [Learning in G_n] < 1.</p>
- Let $p_i(t) := \mathbb{P}[A_i(t) = S]$ be the "correctness probability".

- Dynamics are very complicated. Abstract approach needed: Assume by contradiction there is a sequence G_n = (V_n, E_n) of graphs with |V_n| → ∞ and lim sup P [Learning in G_n] < 1.</p>
- Let $p_i(t) := \mathbb{P}[A_i(t) = S]$ be the "correctness probability".
- Increasing: $p_i(t+1) \ge p_i(t)$.

- Dynamics are very complicated. Abstract approach needed: Assume by contradiction there is a sequence G_n = (V_n, E_n) of graphs with |V_n| → ∞ and lim sup P [Learning in G_n] < 1.</p>
- Let $p_i(t) := \mathbb{P}[A_i(t) = S]$ be the "correctness probability".

• Increasing:
$$p_i(t+1) \ge p_i(t)$$
.

• Locally defined: $p_i(t)$ depends only on $B_i(t)$.

- Dynamics are very complicated. Abstract approach needed: Assume by contradiction there is a sequence G_n = (V_n, E_n) of graphs with |V_n| → ∞ and lim sup P [Learning in G_n] < 1.</p>
- Let $p_i(t) := \mathbb{P}[A_i(t) = S]$ be the "correctness probability".

• Increasing:
$$p_i(t+1) \ge p_i(t)$$
.

- Locally defined: $p_i(t)$ depends only on $B_i(t)$.
- Imitation principle: If $i \sim j$ then $p_i(t+1) \geq p_j(t)$.

- Dynamics are very complicated. Abstract approach needed: Assume by contradiction there is a sequence G_n = (V_n, E_n) of graphs with |V_n| → ∞ and lim sup P [Learning in G_n] < 1.</p>
- Let $p_i(t) := \mathbb{P}[A_i(t) = S]$ be the "correctness probability".

• Increasing:
$$p_i(t+1) \ge p_i(t)$$
.

- Locally defined: $p_i(t)$ depends only on $B_i(t)$.
- Imitation principle: If $i \sim j$ then $p_i(t+1) \geq p_j(t)$.
- For G connected there exists $p(G) = sup_t p_i(t)$ which does not depend on *i*.
Abstract Proof Approach

- Dynamics are very complicated. Abstract approach needed: Assume by contradiction there is a sequence G_n = (V_n, E_n) of graphs with |V_n| → ∞ and lim sup P [Learning in G_n] < 1.</p>
- Let $p_i(t) := \mathbb{P}[A_i(t) = S]$ be the "correctness probability".

• Increasing:
$$p_i(t+1) \ge p_i(t)$$
.

- Locally defined: $p_i(t)$ depends only on $B_i(t)$.
- Imitation principle: If $i \sim j$ then $p_i(t+1) \geq p_j(t)$.
- For G connected there exists p(G) = sup_tp_i(t) which does not depend on *i*.
- First round: For some c > 0, $p_i(2) \ge 1 e^{-c \operatorname{deg}(i)}$

Abstract Proof Approach

- Dynamics are very complicated. Abstract approach needed: Assume by contradiction there is a sequence G_n = (V_n, E_n) of graphs with |V_n| → ∞ and lim sup P [Learning in G_n] < 1.</p>
- Let $p_i(t) := \mathbb{P}[A_i(t) = S]$ be the "correctness probability".

• Increasing:
$$p_i(t+1) \ge p_i(t)$$
.

- Locally defined: $p_i(t)$ depends only on $B_i(t)$.
- Imitation principle: If $i \sim j$ then $p_i(t+1) \geq p_j(t)$.
- For G connected there exists p(G) = sup_tp_i(t) which does not depend on i.
- First round: For some c > 0, $p_i(2) \ge 1 e^{-c \operatorname{deg}(i)}$
- $\blacktriangleright \implies G_n$ are bounded degree.

• Definition (local convergence): $(G_n, i_n) \xrightarrow{L} (G, i)$ if for each t > 0, for large enough *n* the neighbourhoods $B_{i_n}^{G_n}(t)$ and $B_i^G(t)$ are isomorphic.

- Definition (local convergence): $(G_n, i_n) \xrightarrow{L} (G, i)$ if for each t > 0, for large enough *n* the neighbourhoods $B_{i_n}^{G_n}(t)$ and $B_i^G(t)$ are isomorphic.
- Claim: If $(G_n, i_n) \xrightarrow{L} (G, i)$ then

 $p(G) \leq \liminf p(G_n).$

- Definition (local convergence): $(G_n, i_n) \xrightarrow{L} (G, i)$ if for each t > 0, for large enough *n* the neighbourhoods $B_{i_n}^{G_n}(t)$ and $B_i^G(t)$ are isomorphic.
- Claim: If $(G_n, i_n) \xrightarrow{L} (G, i)$ then

 $p(G) \leq \liminf p(G_n).$

• Proof: $p_t(i) = \lim_{n \to \infty} p_t(i_n) \leq \liminf p(G_n)$

- Definition (local convergence): $(G_n, i_n) \xrightarrow{L} (G, i)$ if for each t > 0, for large enough *n* the neighbourhoods $B_{i_n}^{G_n}(t)$ and $B_i^G(t)$ are isomorphic.
- Claim: If $(G_n, i_n) \xrightarrow{L} (G, i)$ then

 $p(G) \leq \liminf p(G_n).$

- Proof: $p_t(i) = \lim_{n \to \infty} p_t(i_n) \leq \liminf p(G_n)$
- Fact: Bounded degree graphs are sequentially compact under local limits.

- Definition (local convergence): $(G_n, i_n) \xrightarrow{L} (G, i)$ if for each t > 0, for large enough *n* the neighbourhoods $B_{i_n}^{G_n}(t)$ and $B_i^G(t)$ are isomorphic.
- Claim: If $(G_n, i_n) \xrightarrow{L} (G, i)$ then

 $p(G) \leq \liminf p(G_n).$

- Proof: $p_t(i) = \lim_{n \to \infty} p_t(i_n) \leq \liminf p(G_n)$
- Fact: Bounded degree graphs are sequentially compact under local limits.
- ► Conclusion: To prove the theorem it suffices to show that p(G) = 1 for all infinite connected graphs G.

- Definition (local convergence): $(G_n, i_n) \xrightarrow{L} (G, i)$ if for each t > 0, for large enough *n* the neighbourhoods $B_{i_n}^{G_n}(t)$ and $B_i^G(t)$ are isomorphic.
- Claim: If $(G_n, i_n) \xrightarrow{L} (G, i)$ then

 $p(G) \leq \liminf p(G_n).$

- Proof: $p_t(i) = \lim_{n \to \infty} p_t(i_n) \leq \liminf p(G_n)$
- Fact: Bounded degree graphs are sequentially compact under local limits.
- ► Conclusion: To prove the theorem it suffices to show that p(G) = 1 for all infinite connected graphs G.
- Let

$$p^* = \inf_{G \text{ infinite}} p(G).$$

・ロト ・ 戸 ・ ・ ヨト ・ ヨト ・ クタウ

- Recall Claim: Under the non-atomic beliefs three possible limiting actions are possible
 - 1. For all i, $A_i(t) \rightarrow 1$ and $X_i(\infty) > \frac{1}{2}$.
 - 2. For all i, $A_i(t) \rightarrow -1$ and $X_i(\infty) < \frac{1}{2}$.
 - 3. For all *i*, $A_i(t)$ does not converge and $X_i(\infty) = \frac{1}{2}$.

- Recall Claim: Under the non-atomic beliefs three possible limiting actions are possible
 - 1. For all i, $A_i(t) \to 1$ and $X_i(\infty) > \frac{1}{2}$.
 - 2. For all i, $A_i(t) \rightarrow -1$ and $X_i(\infty) < \frac{1}{2}$.
 - 3. For all *i*, $A_i(t)$ does not converge and $X_i(\infty) = \frac{1}{2}$.
- Let $A^* \in \{1, -1, *\}$ denote the limiting action.

- Recall Claim: Under the non-atomic beliefs three possible limiting actions are possible
 - 1. For all i, $A_i(t) \to 1$ and $X_i(\infty) > \frac{1}{2}$.
 - 2. For all i, $A_i(t) \rightarrow -1$ and $X_i(\infty) < \frac{1}{2}$.
 - 3. For all *i*, $A_i(t)$ does not converge and $X_i(\infty) = \frac{1}{2}$.
- Let $A^* \in \{1, -1, *\}$ denote the limiting action.
- Note: On transitive graphs a 0−1 law implies P[A* = S|S = ±] ∈ {0,1}.

- Recall Claim: Under the non-atomic beliefs three possible limiting actions are possible
 - 1. For all i, $A_i(t) \to 1$ and $X_i(\infty) > \frac{1}{2}$.
 - 2. For all i, $A_i(t) \rightarrow -1$ and $X_i(\infty) < \frac{1}{2}$.
 - 3. For all *i*, $A_i(t)$ does not converge and $X_i(\infty) = \frac{1}{2}$.
- Let $A^* \in \{1, -1, *\}$ denote the limiting action.
- ▶ Note: On transitive graphs a 0–1 law implies $\mathbb{P}[A^* = S | S = \pm] \in \{0, 1\}.$
- But $\mathbb{P}[A^* = S] \ge \mathbb{P}[A_1(t) = S] > 0.5$ so $\mathbb{P}[A^* = S] = 1$.

- Recall Claim: Under the non-atomic beliefs three possible limiting actions are possible
 - 1. For all i, $A_i(t) \to 1$ and $X_i(\infty) > \frac{1}{2}$.
 - 2. For all i, $A_i(t) \rightarrow -1$ and $X_i(\infty) < \frac{1}{2}$.
 - 3. For all *i*, $A_i(t)$ does not converge and $X_i(\infty) = \frac{1}{2}$.
- Let $A^* \in \{1, -1, *\}$ denote the limiting action.
- ▶ Note: On transitive graphs a 0–1 law implies $\mathbb{P}[A^* = S | S = \pm] \in \{0, 1\}.$
- But $\mathbb{P}[A^* = S] \ge \mathbb{P}[A_1(t) = S] > 0.5$ so $\mathbb{P}[A^* = S] = 1$.
- More work needed for general graphs.

The proof proceeds by using induction to find a vertex *i* and times t₁ < ... < t_k such that ℙ[A_i(t_ℓ) = S] ≈ p* and the A_i(t_ℓ) are almost independent.

- ▶ The proof proceeds by using induction to find a vertex *i* and times $t_1 < ... < t_k$ such that $\mathbb{P}[A_i(t_\ell) = S] \approx p^*$ and the $A_i(t_\ell)$ are almost independent.
- Inductive Hypothesis: On any infinite graph G for any k, € > 0 there exists a vertex i such by some time t there exist F_i(t) measureable random variables Y₁,..., Y_k taking values in {−1,1} such that
 - For each ℓ , $\mathbb{P}[Y_{\ell} = S] \ge p^* \epsilon$.
 - ► The variables Y₁,..., Y_k are ε close to conditionally independent random variables, given S, in total variation distance.

- ▶ The proof proceeds by using induction to find a vertex *i* and times $t_1 < ... < t_k$ such that $\mathbb{P}[A_i(t_\ell) = S] \approx p^*$ and the $A_i(t_\ell)$ are almost independent.
- Inductive Hypothesis: On any infinite graph G for any k, € > 0 there exists a vertex i such by some time t there exist F_i(t) measureable random variables Y₁,..., Y_k taking values in {−1,1} such that
 - For each ℓ , $\mathbb{P}[Y_{\ell} = S] \ge p^* \epsilon$.
 - ► The variables Y₁,..., Y_k are ε close to conditionally independent random variables, given S, in total variation distance.
- Note that the case k = 1 follows from the definition of p^* .

- ▶ The proof proceeds by using induction to find a vertex *i* and times $t_1 < ... < t_k$ such that $\mathbb{P}[A_i(t_\ell) = S] \approx p^*$ and the $A_i(t_\ell)$ are almost independent.
- Inductive Hypothesis: On any infinite graph G for any k, € > 0 there exists a vertex i such by some time t there exist F_i(t) measureable random variables Y₁,..., Y_k taking values in {−1,1} such that
 - For each ℓ , $\mathbb{P}[Y_{\ell} = S] \ge p^* \epsilon$.
 - ► The variables Y₁,..., Y_k are ε close to conditionally independent random variables, given S, in total variation distance.
- Note that the case k = 1 follows from the definition of p^* .
- ► The induction claim implies the theorem by taking the majority of the Y_ℓ. This identifies S with probability better than p^{*} unless p^{*} = 1.

▶ Note for any *i* and any $\epsilon' > 0$, there exists t' and an $\mathcal{F}_{t'}$ -measurable $\tilde{A^*}$ such that $\mathbb{P}\left[A^* = \tilde{A^*}\right] \ge 1 - \epsilon'$.

- ▶ Note for any *i* and any $\epsilon' > 0$, there exists t' and an $\mathcal{F}_{t'}$ -measurable $\tilde{\mathcal{A}^*}$ such that $\mathbb{P}\left[\mathcal{A}^* = \tilde{\mathcal{A}^*}\right] \ge 1 \epsilon'$.
- ▶ By passing to a subsequence choose $i_1, i_2, ...$ so that $d(i, i_\ell) \to \infty$ and $(G, i_\ell) \xrightarrow{L} (H, i^*)$. By induction we can find $j^* \in H$ with k informative times by time t^* .

- ▶ Note for any *i* and any $\epsilon' > 0$, there exists *t'* and an $\mathcal{F}_{t'}$ -measurable $\tilde{A^*}$ such that $\mathbb{P}\left[A^* = \tilde{A^*}\right] \ge 1 \epsilon'$.
- ▶ By passing to a subsequence choose $i_1, i_2, ...$ so that $d(i, i_\ell) \to \infty$ and $(G, i_\ell) \xrightarrow{L} (H, i^*)$. By induction we can find $j^* \in H$ with k informative times by time t^* .
- ▶ \implies $\exists j \in G$ with
 - $d(i,j) > t' + t^*$
 - j has k informative times by time t*

These are conditionally independent of $\tilde{A^*}$ given S and hence approximately conditionally independent of A^* .

- ▶ Note for any *i* and any $\epsilon' > 0$, there exists t' and an $\mathcal{F}_{t'}$ -measurable $\tilde{A^*}$ such that $\mathbb{P}\left[A^* = \tilde{A^*}\right] \ge 1 \epsilon'$.
- ▶ By passing to a subsequence choose $i_1, i_2, ...$ so that $d(i, i_\ell) \to \infty$ and $(G, i_\ell) \xrightarrow{L} (H, i^*)$. By induction we can find $j^* \in H$ with k informative times by time t^* .
- ▶ \implies $\exists j \in G$ with
 - $d(i,j) > t' + t^*$
 - j has k informative times by time t*

These are conditionally independent of $\tilde{A^*}$ given S and hence approximately conditionally independent of A^* .

But eventually agent j will learn A* too giving j another informative time. This completes the induction. ► Finite to infinite principle.

- Finite to infinite principle.
- Like many finite to infinite proofs, no rate.

Belief Learning Theorem (M. Sly and Tamuz (2012)) If there exists a random variable X such that $X = X_i := \mathbb{E} [S \mid \mathcal{F}_i(\infty)]$ for all *i* then all agents learned optimally:

$$X = \mathbb{P}\left[S = 1 \mid \omega_1, \ldots, \omega_n\right].$$

Proof Sketch

$$Z_i := \log \frac{\mathbb{P}\left[S = 1 \mid \omega_i\right]}{\mathbb{P}\left[S = 0 \mid \omega_i\right]} = \log \frac{\mathbb{P}\left[\omega_i \mid S = 1\right]}{\mathbb{P}\left[\omega_i \mid S = 0\right]}, \quad Z = \sum_i Z_i$$

SO

$$\mathbb{P}\left[S=1\mid\omega_{1},\ldots,\omega_{n}\right]=L(Z)$$
 where $L(x)=e^{x}/(e^{x}+e^{-x}).$

Proof Sketch

$$Z_i := \log \frac{\mathbb{P}\left[S = 1 \mid \omega_i\right]}{\mathbb{P}\left[S = 0 \mid \omega_i\right]} = \log \frac{\mathbb{P}\left[\omega_i \mid S = 1\right]}{\mathbb{P}\left[\omega_i \mid S = 0\right]}, \quad Z = \sum_i Z_i$$

SO

$$\mathbb{P}\left[S=1\mid\omega_1,\ldots,\omega_n
ight]=L(Z)$$
 where $L(x)=e^x/(e^x+e^{-x}).$

• Since X is \mathcal{F}_i measurable

$$X = \mathbb{E}\left[L(Z) \mid \mathcal{F}_i\right] = \mathbb{E}\left[L(Z) \mid X\right].$$

Proof Sketch

$$Z_i := \log \frac{\mathbb{P}\left[S = 1 \mid \omega_i\right]}{\mathbb{P}\left[S = 0 \mid \omega_i\right]} = \log \frac{\mathbb{P}\left[\omega_i \mid S = 1\right]}{\mathbb{P}\left[\omega_i \mid S = 0\right]}, \quad Z = \sum_i Z_i$$

SO

$$\mathbb{P}\left[S=1 \mid \omega_1, \dots, \omega_n\right] = L(Z)$$

where $L(x) = e^x / (e^x + e^{-x})$.
Since X is \mathcal{F}_i measurable

$$X = \mathbb{E}\left[L(Z) \mid \mathcal{F}_i\right] = \mathbb{E}\left[L(Z) \mid X\right].$$

• Hence since Z_i is \mathcal{F}_i measurable

$$\mathbb{E} \left[Z_i \cdot L(Z) \mid X \right] = \mathbb{E} \left[\mathbb{E} \left[Z_i \cdot L(Z) \mid \mathcal{F}_i \right] \mid X \right]$$
$$= \mathbb{E} \left[Z_i \cdot X \mid X \right]$$
$$= \mathbb{E} \left[Z_i \mid X \right] \mathbb{E} \left[L(Z) \mid X \right]$$

22 / 25

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

$\mathbb{E}\left[Z_i \cdot L(Z) \mid X\right] = \mathbb{E}\left[Z_i \mid X\right] \mathbb{E}\left[L(Z) \mid X\right]$

Summing over i we get that

$\mathbb{E}\left[Z \cdot L(Z) \mid X\right] = \mathbb{E}\left[Z \mid X\right] \mathbb{E}\left[L(Z) \mid X\right]$

$\mathbb{E}\left[Z_i \cdot L(Z) \mid X\right] = \mathbb{E}\left[Z_i \mid X\right] \mathbb{E}\left[L(Z) \mid X\right]$

Summing over i we get that

$$\mathbb{E}\left[Z \cdot L(Z) \mid X\right] = \mathbb{E}\left[Z \mid X\right] \mathbb{E}\left[L(Z) \mid X\right]$$

Since L(x) is strictly increasing this implies that Z is constant conditional on X, i.e. Z is X measurable so

$$X = \mathbb{E}\left[L(Z) \mid X\right] = \mathbb{E}\left[L(Z) \mid Z\right] = L(Z)$$

・ロト ・屈 ト ・ 三 ト ・ 三 ・ つくの

23/25

$\mathbb{E}\left[Z_i \cdot L(Z) \mid X\right] = \mathbb{E}\left[Z_i \mid X\right] \mathbb{E}\left[L(Z) \mid X\right]$

Summing over i we get that

$$\mathbb{E}\left[Z \cdot L(Z) \mid X\right] = \mathbb{E}\left[Z \mid X\right] \mathbb{E}\left[L(Z) \mid X\right]$$

Since L(x) is strictly increasing this implies that Z is constant conditional on X, i.e. Z is X measurable so

$$X = \mathbb{E}\left[L(Z) \mid X\right] = \mathbb{E}\left[L(Z) \mid Z\right] = L(Z)$$

So the agreed value X equal to the optimal estimator L(Z) as needed.

Both models: Rate of convergence? Dependence on graph?

- ▶ Both models: Rate of convergence? Dependence on graph?
- Actions Learning: how does the probability of learning change with the graph?

- ▶ Both models: Rate of convergence? Dependence on graph?
- Actions Learning: how does the probability of learning change with the graph?
- What if the agents aren't truthful but act strategically (in a game theoretic manner)?

Questions?