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The Learning on Networks Challenge

I The big question: Is learning / inference possible where
agents communicate over a network?

I We consider models from economics where agents on some
network observe the opinions and actions of their neighbors.

I Agents are Bayesian, their opinions are governed solely by
what information they have observed. This is the most
“rational” opinion to have.

I A communications protocol is given through which agents
receive information from their neighbors.

I Question: Do agents in this decentralized model aggregate
their information effectively?
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Basic Assumptions of the Model

I The world is a probability space.

I An unknown “state of the world” S ∈ {−1, 1}.
For example:

I Which is the better purchase?
iGadget or Gadgetoid?

I Is there a bubble in the tulip market?
Yes or no?

I Who would make a better president?
Gin-g-rich or Rich?

I S takes the value ±1 with probability 1/2.
I n agents. Each is given a private signal ωi with

distribution
I F− if S = −1
I F+ if S = 1

I Conditioned on S , private signals are
independent.

1

0.5

1.0

1.5 dF 0

dF 1
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Assumption & Questions

I Class of models
I A group of Bayesian agents.
I The agents need to make a decision.
I The agents have private information sources and learn from

each other.

I Two main models
I Revealed beliefs: In each time step agent i tells her

neighbors her posterior probability Xi (t) = P [S = 1 | Fi (t)].

I Revealed actions: In each time step agent i tells her
neighbors her preferred “action”
Ai (t) = argmaxa∈{−1,1} P [S = a | Fi (t)].

I Two Major Questions
I When do the agents reach consensus?

I Generally well understood ( Aumann (1976), Sebenius and
Geanakoplos (1983), Parikh and Krasucki (1990), Rosenberg,
Solan and Vieille (2009); Sebenius and Geanakoplos (1983),
Ménager (2006)

I When do the agents learn from each other efficiently?
I Generally poorly understood.
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Example: Revealed Beliefs Model

I Let V = {1, 2},E = {(1, 2)}.

I Assume signal in [0, 1] with dF+ = 2xdx , dF− = (2− 2x)dx .

I Suppose X1(0) = 0.4 and X2(0) = 0.7.

I X1(1) = X2(1) = P [S = + | 0.4, 0.7].

I
P [0.4, 0.7 | S = +]

P [0.4, 0.7 | S = −]
=

0.8 ∗ 1.4

1.2 ∗ 0.6
=

14

9
.

I Challenge: G = {0, 1}3 with signals
0.11, 0.22, 0.33, 0.44, 0.55, 0.66, 0.77, 0.88.

I Explicitly calculate the dynamics and what it converges to.

I Does it converge in a finite number of iterations?
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The Revealed Beliefs Model

I Model Specification:
I The agents lie on a connected undirected graph.
I At time 0 each agents receive her own signal X0(t).

I Interaction Protocol:
I In each time step t agent i tells her neighbors her posterior

probability Xi (t) = P [S = 1 | Fi (t)].
I Fi (t + 1) is generated by (Xi (s),Xj(s) : s ≤ t, j ∼ i)

I Claim: Eventually all agents agree: Xi (t)→ X (∞) a.s.

I Proof: Exercise! (Aumann 76 etc.). Pf Sketch:
I Xi (t)→ Xi (∞) a.s. as a bounded martingale.
I If i ∼ j then Xi (∞) ∈ Fj(∞) and Xj(∞) ∈ Fi (∞).
I If Xi (∞) 6= Xj(∞) then

Var

[
Xi (∞) + Xj(∞)

2
− S

]
< max

k=i,j
(Var [Xk(∞)− S ])

Contradiction!
I Note: Proof doesn’t require independent signals.
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Example: Revealed Actions Model

I Let V = {1, 2},E = {(1, 2)}.

I Assume signal in [0, 1] with dF+ = 2xdx , dF− = (2− 2x)dx .
I Suppose X1(0) = 0.4 and X2(0) = 0.7.
I A1(0) = −,A2(0) = +.
I X1(1) = P [S = + | 0.4,≥ 0.5].
I

P [0.4,≥ 0.5 | S = +]

P [0.4,≥ 0.5 | S = −]
=

0.8 ∗ 3/4

1.2 ∗ 1/4
= 2 =⇒ A1(1) = +.

P [0.7,≤ 0.5 | S = +]

P [0.7,≤ 0.5 | S = −]
=

1.4 ∗ 1/4

0.6 ∗ 3/4
=

7

9
=⇒ A2(1) = −.

I etc.
I Challenge: V = {1, 2, 3, 4},E = {(1, 2), (2, 3), (3, 4)} with

signals 0.15, 0.41, 0.6, 0.87.
I Explicitly calculate the dynamics and what it converges to.
I Does it converge in a finite number of iterations?
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The Revealed Actions Model

I Model Specification:
I The agents lie on a connected undirected graph.
I At time 0 each agents receive her own signal X0(t).

I The revealed actions model:
I In each time step t agent i tells her neighbors her preferred

actionAi (t) = argmaxa∈{−1,1} P [S = a | Fi (t)].
I Fi (t + 1) is generated by (Xi (0),Aj(s) : s ≤ t, j ∼ i)

I Imitation principle (Gale and Kariv): If i ∼ j and
limAi (t) 6= limAj(t) then Xi (∞) = Xj(∞) = 1/2.

I Stronger version (M-Sly-Tamuz-12): Under the non-atomic
beliefs three possible limiting actions are possible

1. For all i , Ai (t)→ 1 and Xi (∞) > 1
2 .

2. For all i , Ai (t)→ −1 and Xi (∞) < 1
2 .

3. For all i , Ai (t) does not converge and Xi (∞) = 1
2 .

8 / 25



The Revealed Actions Model

I Model Specification:
I The agents lie on a connected undirected graph.
I At time 0 each agents receive her own signal X0(t).

I The revealed actions model:
I In each time step t agent i tells her neighbors her preferred

actionAi (t) = argmaxa∈{−1,1} P [S = a | Fi (t)].
I Fi (t + 1) is generated by (Xi (0),Aj(s) : s ≤ t, j ∼ i)

I Imitation principle (Gale and Kariv): If i ∼ j and
limAi (t) 6= limAj(t) then Xi (∞) = Xj(∞) = 1/2.

I Stronger version (M-Sly-Tamuz-12): Under the non-atomic
beliefs three possible limiting actions are possible

1. For all i , Ai (t)→ 1 and Xi (∞) > 1
2 .

2. For all i , Ai (t)→ −1 and Xi (∞) < 1
2 .

3. For all i , Ai (t) does not converge and Xi (∞) = 1
2 .

8 / 25



The Revealed Actions Model

I Model Specification:
I The agents lie on a connected undirected graph.
I At time 0 each agents receive her own signal X0(t).

I The revealed actions model:
I In each time step t agent i tells her neighbors her preferred

actionAi (t) = argmaxa∈{−1,1} P [S = a | Fi (t)].
I Fi (t + 1) is generated by (Xi (0),Aj(s) : s ≤ t, j ∼ i)

I Imitation principle (Gale and Kariv): If i ∼ j and
limAi (t) 6= limAj(t) then Xi (∞) = Xj(∞) = 1/2.

I Stronger version (M-Sly-Tamuz-12): Under the non-atomic
beliefs three possible limiting actions are possible

1. For all i , Ai (t)→ 1 and Xi (∞) > 1
2 .

2. For all i , Ai (t)→ −1 and Xi (∞) < 1
2 .

3. For all i , Ai (t) does not converge and Xi (∞) = 1
2 .

8 / 25



The Revealed Actions Model

I Model Specification:
I The agents lie on a connected undirected graph.
I At time 0 each agents receive her own signal X0(t).

I The revealed actions model:
I In each time step t agent i tells her neighbors her preferred

actionAi (t) = argmaxa∈{−1,1} P [S = a | Fi (t)].
I Fi (t + 1) is generated by (Xi (0),Aj(s) : s ≤ t, j ∼ i)

I Imitation principle (Gale and Kariv): If i ∼ j and
limAi (t) 6= limAj(t) then Xi (∞) = Xj(∞) = 1/2.

I Stronger version (M-Sly-Tamuz-12): Under the non-atomic
beliefs three possible limiting actions are possible

1. For all i , Ai (t)→ 1 and Xi (∞) > 1
2 .

2. For all i , Ai (t)→ −1 and Xi (∞) < 1
2 .

3. For all i , Ai (t) does not converge and Xi (∞) = 1
2 .

8 / 25



Why do Economists care?

I A basic premise of economics is that good markets learn the
state of the world. Is it true for (idealized) networked markets?

I Aumann’s original motivation: Bayesian Economics doesn’t
make sense. Doesn’t allow to ”agree to disagree”.
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Challenges - wasn’t asymptotic learning studied before?

I Central problem in learning, i.e. Gale and Kariv ask: ”
whether the common action chosen asymptotically is optimal,
in the sense that the same action would be chosen if all the
signals were public information... there is no reason why this
should be the case”

I Instead simpler models are studied where either each agents
acts only once, or agents are not truly rational.

I ”different motivation is simply technical expediency” (Ellison
and Fundenberg)

I ”to keep the model mathematically tractable... this possibility
[fully Bayesian agents] is precluded in our model... simplifying
the belief revision process considerably” (Bala and Goyal)
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Agreeing on beliefs implies optimal learning

I Belief Learning Theorem (M., Sly and Tamuz (2012))
In the revealed beliefs model the limit X = limt→∞Xi (t)
satisfies:

X = P [S = 1 | ω1, . . . , ωn] ,

In particular there exist c > 0,

P [S = A] ≥ 1− e−cn.

I Agents aggregate their information optimally without
necessarily learning all the signals.

I As Aumann noted, the theorem is in fact much more general -
it applies to any Bayesian model where all agents have same
posterior.

I Independence of signals is needed. Example: S = S1 ⊕ S2.
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The Action Learning Theorem

I Recall that in the revealed actions model:
Ai (t) = argmaxa∈{−1,1} P [a = S |Fi (t)] is announced to the
neighbors at time t.

I Technical Assumption: “non-atomic beliefs”: The belief
P [S = 1 | ω1] is non-atomic which avoids ties.

I Action Learning Theorem (M., Sly and Tamuz (2012))

I In the revealed actions model with non-atomic beliefs and
F+ 6= F− there exists a sequence q(n,F+,F−)→ 1 such for all
connected graphs G of size n

P [Learning] ≥ q(n).

I I.e., asymptotic learning on general graphs.

I False: without non-atomic assumption, on directed graphs,
w.o independence.
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Prior work - some tractable models

I In the revealed actions model when the social network is the
complete graph then Bayesian updates are tractable
(Mossel and Tamuz (2010)).

I Convergence to the same action.
I As the number of agents goes to infinity the chance of

converging to the correct action goes to 1.

I In the revealed beliefs model when private signal are
Gaussian in the revealed beliefs model then Bayesian updates
are tractable for any social network (DeMarzo, D. Vayanos,
and J. Zwiebel. 2003 Mossel and Tamuz 2009).

I Perfectly efficient learning is achieved.
I Converge in time ≤ size × diameter.

I When calculations are tractable then they are also easier to
analyze.
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Learning with the revealed actions model

Action Learning Theorem (M., Sly and Tamuz (2012))
In the revealed actions model with non-atomic beliefs there exists a
sequence q(n)→ 1 such for all connected graphs G of size n

P [Learning] ≥ q(n).

I.e., asymptotic learning on general graphs.

False in general without non-atomic assumption and on directed
graphs, independence is also needed.
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Abstract Proof Approach

I Dynamics are very complicated. Abstract approach needed:
Assume by contradiction there is a sequence Gn = (Vn,En) of
graphs with |Vn| → ∞ and lim supP [ Learning in Gn] < 1.

I Let pi (t) := P [Ai (t) = S ] be the ”correctness probability”.

I Increasing: pi (t + 1) ≥ pi (t).

I Locally defined: pi (t) depends only on Bi (t).

I Imitation principle: If i ∼ j then pi (t + 1) ≥ pj(t).

I =⇒ For G connected there exists p(G ) = suptpi (t) which
does not depend on i .

I First round: For some c > 0, pi (2) ≥ 1− e−cdeg(i)

I =⇒ Gn are bounded degree.
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Local limits of graphs and Agreement Probabilities

I Definition (local convergence): (Gn, in)
L→ (G , i) if for each

t > 0, for large enough n the neighbourhoods BGn
in

(t) and

BG
i (t) are isomorphic.

I Claim: If (Gn, in)
L→ (G , i) then

p(G ) ≤ lim inf p(Gn).

I Proof: pt(i) = limn→∞pt(in) ≤ lim inf p(Gn)

I Fact: Bounded degree graphs are sequentially compact under
local limits.

I Conclusion: To prove the theorem it suffices to show that
p(G ) = 1 for all infinite connected graphs G .

I Let
p∗ = inf

G infinite
p(G ).
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Limiting Actions and Transitive Graphs

I Recall Claim: Under the non-atomic beliefs three possible
limiting actions are possible

1. For all i , Ai (t)→ 1 and Xi (∞) > 1
2 .

2. For all i , Ai (t)→ −1 and Xi (∞) < 1
2 .

3. For all i , Ai (t) does not converge and Xi (∞) = 1
2 .

I Let A∗ ∈ {1,−1, ∗} denote the limiting action.

I Note: On transitive graphs a 0–1 law implies
P [A∗ = S |S = ±] ∈ {0, 1}.

I But P [A∗ = S ] ≥ P [A1(t) = S ] > 0.5 so P [A∗ = S ] = 1.

I More work needed for general graphs.
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Informative times

I The proof proceeds by using induction to find a vertex i and
times t1 < . . . < tk such that P [Ai (t`) = S ] ≈ p∗ and the
Ai (t`) are almost independent.

I Inductive Hypothesis: On any infinite graph G for any
k, ε > 0 there exists a vertex i such by some time t there exist
Fi (t) measureable random variables Y1, . . . ,Yk taking values
in {−1, 1} such that

I For each `, P [Y` = S ] ≥ p∗ − ε.
I The variables Y1, . . . ,Yk are ε close to conditionally

independent random variables, given S , in total variation
distance.

I Note that the case k = 1 follows from the definition of p∗.

I The induction claim implies the theorem by taking the
majority of the Y`. This identifies S with probability better
than p∗ unless p∗ = 1.
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Proof Sketch of Main Induction Step

I Note for any i and any ε′ > 0, there exists t ′ and an

Ft′-measurable Ã∗ such that P
[
A∗ = Ã∗

]
≥ 1− ε′.

I By passing to a subsequence choose i1, i2, . . . so that

d(i , i`)→∞ and (G , i`)
L→ (H, i∗). By induction we can find

j∗ ∈ H with k informative times by time t∗.
I =⇒ ∃j ∈ G with

I d(i , j) > t ′ + t∗

I j has k informative times by time t∗

These are conditionally independent of Ã∗ given S and hence
approximately conditionally independent of A∗.

I But eventually agent j will learn A∗ too giving j another
informative time. This completes the induction.
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Remarks about the proof

I Finite to infinite principle.

I Like many finite to infinite proofs, no rate.
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Agreeing on beliefs implies learning - proof

Belief Learning Theorem (M. Sly and Tamuz (2012))
If there exists a random variable X such that
X = Xi := E [S | Fi (∞)] for all i then all agents learned optimally:

X = P [S = 1 | ω1, . . . , ωn] .
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Proof Sketch

I

Zi := log
P [S = 1 | ωi ]

P [S = 0 | ωi ]
= log

P [ωi | S = 1]

P [ωi | S = 0]
, Z =

∑
i

Zi

so
P [S = 1 | ω1, . . . , ωn] = L(Z )

where L(x) = ex/(ex + e−x).

I Since X is Fi measurable

X = E [L(Z ) | Fi ] = E [L(Z ) | X ] .

I Hence since Zi is Fi measurable

E [Zi · L(Z ) | X ] = E [E [Zi · L(Z ) | Fi ] | X ]

= E [Zi · X | X ]

= E [Zi | X ]E [L(Z ) | X ]
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Proof concluded

E [Zi · L(Z ) | X ] = E [Zi | X ]E [L(Z ) | X ]

I Summing over i we get that

E [Z · L(Z ) | X ] = E [Z | X ]E [L(Z ) | X ]

I Since L(x) is strictly increasing this implies that Z is constant
conditional on X , i.e. Z is X measurable so

X = E [L(Z ) | X ] = E [L(Z ) | Z ] = L(Z )

I So the agreed value X equal to the optimal estimator L(Z ) as
needed.
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Open Problems

I Both models: Rate of convergence? Dependence on graph?

I Actions Learning: how does the probability of learning change
with the graph?

I What if the agents aren’t truthful but act strategically (in a
game theoretic manner)?
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Thanks for listening

Questions?
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