Correlation Based Testing

Elchanan Mossel Per Austrin

UC Berkeley + Weizmann U. Toronto

August 13, 2011

Elchanan Mossel Per Austrin Correlation Based Testing

- **→** → **→**

Testing predicates and PCPs

Tests are key in proving hardness of approximation

Long code analysis

Predicate Q

Joint distribution over inputs X_1, \ldots, X_k

Which functions $f_1, ..., f_k$ satisfy $Q(f_1(X_1), ..., f_k(X_k))$ with good probability?

Algebraic tests

Test additive (or algebraic) properties over finite fields

Closely related to additive combinatorics

Often invariant under the linear group

Algebraic tests

Test additive (or algebraic) properties over finite fields

Closely related to additive combinatorics

Often invariant under the linear group

Geometric tests

Often relate to \mathbb{R} -geometric questions

Not invariant under coordinate systems

Algebraic tests

Test additive (or algebraic) properties over finite fields

Closely related to additive combinatorics

Often invariant under the linear group

Geometric tests

Often relate to \mathbb{R} -geometric questions

Not invariant under coordinate systems

Motivation

What is the relation between the two types of tests?

Is there a unified framework to study both?

3.5

Algebraic test 1: BLR test / Roth Theorem (93 / 53)

Q: Is $f : \{-1,1\}^n \to \{-1,1\}^n$ linear over F_2 ?

Distribution:
$$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} X_1^1 & \dots & X_1^j & \dots & X_1^n \\ X_2^1 & \dots & X_2^j & \dots & X_2^n \\ X_3^1 & \dots & X_3^j & \dots & X_3^n \end{pmatrix}$$

Independent columns

$$(X_1^j,X_2^j,X_3^j)\in\{-1,1\}^3$$
 uniform with $X_1^jX_2^j=X_3^j$

Test: $f(X_1)f(X_2)f(X_3)$ (parity predicate)

э

Algebraic test 1: BLR test / Roth Theorem (93 / 53)

Q: Is $f : \{-1,1\}^n \to \{-1,1\}^n$ linear over F_2 ?

Distribution:
$$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} X_1^1 & \dots & X_1^1 & \dots & X_1^n \\ X_2^1 & \dots & X_2^j & \dots & X_2^n \\ X_2^1 & \dots & X_3^j & \dots & X_3^n \end{pmatrix}$$

Independent columns

$$(X_1^j,X_2^j,X_3^j)\in\{-1,1\}^3$$
 uniform with $X_1^jX_2^j=X_3^j$

Test: $f(X_1)f(X_2)f(X_3)$ (parity predicate)

Equivalent formulation

 μ uniform over $(X_1, X_2, X_3) \in \{-1, 1\}^3$ with $X_1X_2 = X_3$

Sample: (X_1, X_2, X_3) from μ^n and test: $f(X_1)f(X_2)f(X_3)$

Algebraic test 1: BLR/Roth test and Fourier Analysis

BLR test / Roth Theorem

Q: Is
$$f : \{-1,1\}^n \rightarrow \{-1,1\}$$
 linear over F₂ ?

Distribution: μ uniform over $(X_1, X_2, X_3) \in \{-1, 1\}^3$ with $X_1X_2 = X_3$

Sample: (X_1, X_2, X_3) from μ^n

Test: $f(X_1)f(X_2)f(X_3)$ (the parity predicate)

Analysis

$$\mathbb{E}[f(X_1)f(X_2)f(X_3)] = \sum_{S} \hat{f}^3(S) = 1 \text{ if } f \text{ linear}$$
$$\|\mathbb{E}[f(X_1)f(X_2)f(X_3)]\| = |\sum_{S} \hat{f}^3(S)| \le \max_{S} |\hat{f}(S)|$$

Conclusion

 ϵ bias in passing $\implies \epsilon$ -correlation with an affine function

Gowers test Q: Do f_1, \ldots, f_k distinguish arithmetic progressions from the uniform measure ? Distribution: μ uniform over arithmetic progressions $(X_1, \ldots, X_k) \in Z_p$ Sample: (X_1, \ldots, X_k) from μ^n Test: $\mathbb{E}[\prod_{i=1}^k f_i]$

Algebraic test 2: Gowers norm tests)

Gowers test

Q: Do f_1, \ldots, f_k distinguish arithmetic progressions from the uniform measure ?

Distribution: μ uniform over arithmetic progressions $(X_1, \ldots, X_k) \in Z_p$

Sample: (X_1, \ldots, X_k) from μ^n

Test: $\mathbb{E}[\prod_{i=1}^{k} f_i]$

Analysis (Gowers, 01):

$$|\mathbb{E}[\prod_{i=1}^{k} f_i]| \le \min_{i=1}^{k} ||f_i||_{U^{k-1}}$$

Conclusion

Functions with low Gowers norms cannot distinguish arithmetic progressions

Khot's test

Q: Is $\max_i I_i(f)$ large?

Distribution: μ satisfies $\mu[X_1X_2] = \rho$ over $\{-1, 1\}^2$

Sample: (X_1, X_2) from μ^n

Test: $f(X_1)f(X_2)$ (the (in)equality predicate)

Geometric test 1: Khot's Gaussian test

Khot's test

Q: Is $\max_i I_i(f)$ large?

Distribution: μ satisfies $\mu[X_1X_2] = \rho$ over $\{-1, 1\}^2$

Sample: (X_1, X_2) from μ^n

Test: $f(X_1)f(X_2)$ (the (in)equality predicate)

Analysis - "Majority is Stablest" (KKMO-04; MOO-05) Let $g : \mathbb{R} \to \{-1, 1\}$ with $\mathbb{E}[g] = \mathbb{E}[f]$ and g is increasing Let $(N_1, N_2) \sim N(0, 1)$ with $\mathbb{E}[N_1N_2] = \rho$ If $\mathbb{E}[f(X_1)f(X_2)] > \mathbb{E}[g(N_1)g(N_2)]$ then max_i $l_i(f)$ large

Geometric test 2: M's Gaussian test

Analysis - "Gaussian bounds" M-08

Let
$$g_1, \ldots, g_k : \mathbb{R}^n \to \{-1, 1\}$$
 with $\mathbb{E}[g_i] = \mathbb{E}[f_i]$

Let (N_1^i, \ldots, N_k^i) have the same first and second moments as μ If $\mathbb{E}[P(f(X_1), \ldots, f(X_k))] > \max_g \mathbb{E}[P(g_1(N_1), \ldots, g_k(N_k))]$ then max $f_j(i)$ large

Distributions

Arithmetic tests: small support uniform on arithmetic structures

Geometric tests: general product distributions with full support

Conclusions

Arithmetic tests: correlation with arithmetic structure

Geometric tests: high influence variables

Common setup of two approaches

Distributions

Arithmetic tests: small support uniform on arithmetic structures

Geometric tests: general product distributions with full support

Conclusions

Arithmetic tests: correlation with arithmetic structure

Geometric tests: high influence variables

Common setup?

Pairwise independent distributions

w / w.o. full support

Question

What do the two approaches gives?

Håstad's Fourier test

The best of all worlds: Håstad's test (97)

 μ : satisfies $\mu[x_1x_2x_3] = \rho$

Sample: (X_1, X_2, X_3) from μ^n

Test: $f(X_1)f(X_2)f(X_3)$ (the parity predicate)

Analysis

$$\mathbb{E}[f(X_1)f(X_2)f(X_3)] - \prod_{i=1}^{3} \mathbb{E}[f_i] = \sum_{S \neq \emptyset} \rho^{|S|} \hat{f}^3(S)$$

If large then correlated with a function of a small number of variables!

Very useful in PCP proof

An algebraic extension of Håstad's test

Samorodnitsky and Trevisan

$$\mu: X_{S} = \prod_{i \in S} Y_{i} \text{ for } S \subset [k] \text{ where } (Y_{1}, \dots, Y_{k}) \sim_{\mathsf{Unif}} \{-1, 1\}^{k}.$$
Sample: $(X_{S} : S \subset [k]) \text{ from } \mu^{n}$
Test: $\mathbb{E}[\prod_{S \subset [k]} f_{S}(x_{S})] - \prod_{S \subset [k]} \mathbb{E}[f_{S}]$

ST Analysis (via Gowers norms, 05)

$$\mathbb{E}\left[\prod_{S \subset [k]} f_{S}(x_{S})\right] - \prod_{S \subset [k]} \mathbb{E}[f_{S}] \le O\left(\sqrt{\max_{S \subset [k]} \max_{1 \le j \le n} I_{j}(f_{S})}\right)$$

Note

Weaker than Håstad's test conclusion

Gives UCG hardness approximation resistance of predicate above

A geometric extension of Håstad's test

M-08

 $\mu:$ A general pairwise independent distribution with full support

Sample: X_1, \ldots, X_k from μ^n

Test:
$$\mathbb{E}[\prod_{i=1}^{k} f_i(X_i)] - \prod_{i=1}^{k} \mathbb{E}[f_i]$$

Analysis (via Gaussian bounds)

$$\mathbb{E}[\prod_{i=1}^k f_i(X_i)] - \prod_{i=1}^k \mathbb{E}[f_i] o 0$$
 as $\max_{i,j} I_j(f_i) o 0.$

Note

Still only influences

Used in Austrin-M-09: pairwise independent predicates are approximation resistant (Also M-Håstad-10)

Tests - What we can hope for?

 μ : A general pairwise independent distribution (with full support?)

Sample: X_1, \ldots, X_k from μ^n

Test:
$$\mathbb{E}[\prod_{i=1}^{k} f_i(X_i)] - \prod_{i=1}^{k} \mathbb{E}[f_i]$$

If pass the test then one of f_i is correlated with a function of a small number of variables

Hardness - What can we hope for?

NP-hardness of all predicates whose support supports a pairwise independent distribution

Thm: Bounded degree polynomials

If $\boldsymbol{\mu}$ is a general pairwise independent distribution

If f_i are degree d polynomials:

$$|\mathbb{E}[\prod_{i=1}^k f_i(X_i)]| \leq C^d \|\widehat{f}_1\|_{\infty} \prod_{i=2}^k \|f_i\|_2$$

Corollary (Hatami): Noisy additive predicates

 μ is given by k distinct noisy linear forms X_1, \ldots, X_k

If f_i are all bounded by 1:

$$|\mathbb{E}[\prod_{i=1}^k f_i(X_i)]| \leq H(\|\widehat{f_1}\|_\infty), \quad \lim_{x \to 0} H(x) = 0.$$

Example

Take μ to be the standard pairwise independent construction

$$(x_{\mathcal{S}} = \prod_{i \in \mathcal{S}} y_i : \emptyset \neq \mathcal{S} \subset [k], y \in \{-1, 1\}^r)$$

 ν - take μ and flip each bit independently with probability ϵ or

 ν - take μ and with probability ϵ flip all bits to a uniform random string

Challenge

Use result to prove approximation resistance of predicate

Proof of Hatami's corollary

Corollary (Hatami): Noisy additive predicates

 μ is given by k distinct noisy linear forms X_1, \ldots, X_k ; f_i bdd by 1

$$|\mathbb{E}[\prod_{i=1}^k f_i(X_i)]| \leq H(\|\widehat{f}_1\|_{\infty}), \quad \lim_{x \to 0} H(x) = 0.$$

Proof Sketch

Since predicate is noisy, may assume exists d so that $\|f_1^{>d}\|_2 < \epsilon/2$

By CS:
$$\mathbb{E}[f_1^{>d}f_2\cdots f_k] \le \|f_1^{>d}\|_2 \le \epsilon/2$$

By Gowers-CS $\mathbb{E}[f_1^{\le d}f_2\cdots f_k] \le \|f_1^{\le d}\|_{U(k-1)}$
By Theorem $\|f_1^{\le d}\|_{U(k-1)} \to 0$ as $\|\widehat{f_1}\|_{\infty} \to 0$

Thm: Bounded degree polynomials

If $\boldsymbol{\mu}$ is a general pairwise independent distribution

If the sum of degree of f_i is at most D then

$$|\mathbb{E}[\prod_{i=1}^k f_i(X_i)]| \le C^D \|\widehat{f}_1\|_{\infty} \prod_{i=2}^k \|f_i\|_2$$

Proof idea

Prove by induction on the number of variables

Use pairwise independence to show "second order terms" vanish

case n = 0 is fine

Induction step sketch

Write $f_i = X_1^i g_i + h_i$ where g_i, h_i functions of n - 1 variables:

$$\mathbb{E}[\prod_i f_i] = \sum_{\mathcal{T}} \mathbb{E}[\prod_{i \in \mathcal{T}} X_1^i] \mathbb{E}[\prod_{i \in \mathcal{T}} g_i] \mathbb{E}[\prod_{i \notin \mathcal{T}} h_i]$$

→ < ∃→

э

Induction step sketch

Write $f_i = X_1^i g_i + h_i$ where g_i, h_i functions of n - 1 variables: $\mathbb{E}[\prod f_i] = \sum \mathbb{E}[\prod Y_i] \mathbb{E}[\prod g_i] \mathbb{E}[\prod h_i]$

$$\mathbb{E}[\prod_{i} f_{i}] = \sum_{T} \mathbb{E}[\prod_{i \in T} X_{1}^{\prime}] \mathbb{E}[\prod_{i \in T} g_{i}] \mathbb{E}[\prod_{i \notin T} h_{i}]$$

Pairwise ind. implies terms with |T| = 1 or |T| = 2 vanish:

$$|\mathbb{E}[\prod_{i} f_{i}]| \leq C^{d} \delta \prod_{i=2}^{k} \|h_{i}\|_{2} + 2^{k} C^{d-3} \delta \max_{|\mathcal{T}| \geq 3} \prod_{1 \neq i \in \mathcal{T}} \|g_{i}\|_{2} \prod_{1 \neq i \notin \mathcal{T}} \|h_{i}\|_{2}$$

♬▶ ◀ ☱ ▶ ◀

Induction step sketch

Write $f_i = X_1^i g_i + h_i$ where g_i, h_i functions of n - 1 variables:

$$\mathbb{E}[\prod_{i} f_{i}] = \sum_{T} \mathbb{E}[\prod_{i \in T} X_{1}^{i}] \mathbb{E}[\prod_{i \in T} g_{i}] \mathbb{E}[\prod_{i \notin T} h_{i}]$$

Pairwise ind. implies terms with |T| = 1 or |T| = 2 vanish:

$$|\mathbb{E}[\prod_{i} f_{i}]| \leq C^{d} \delta \prod_{i=2}^{k} \|h_{i}\|_{2} + 2^{k} C^{d-3} \delta \max_{|\mathcal{T}| \geq 3} \prod_{1 \neq i \in \mathcal{T}} \|g_{i}\|_{2} \prod_{1 \neq i \notin \mathcal{T}} \|h_{i}\|_{2}$$

Suffices to show that for every $T \subset \{2, ..., k\}$ of size at least 2:

$$\prod_{i \in T} \|g_i\|_2 + 2^k C^{-3} \prod_{i \notin T} \|h_i\|_2 \le \prod_{i \in T} \|f_i\|_2$$

▲ 同 ▶ → 三 ▶

-

Proof of Theorem concluded

Suffices to show that for every $T \subset \{2, ..., k\}$ of size at least 2:

$$\prod_{i \in T} \|g_i\|_2 + 2^k C^{-3} \prod_{i \in T} \|h_i\|_2 \le \prod_{i \notin T} \|f_i\|_2$$

Calculus: If $r \ge 2, \exists \epsilon(r)$ s.t. for all $a_i \ge 0, b_i \ge 0, 1 \le i \le r$:

$$\prod_{i=1}^{r} a_i + \epsilon \prod_{i=1}^{r} b_i \leq \prod_{i=1}^{r} \sqrt{a_i^2 + b_i^2}$$

A simpler calculus exercise

If $r \ge 2, \exists \epsilon(r)$ s.t. for all $x_i \ge 0, 1 \le i \le r$ it holds that:

$$1 + \epsilon \prod_{i=1}^r x_i \le \prod_{i=1}^r \sqrt{1 + x_i^2}$$

Question

Suppose f has all small coefficients and is of small degree.

Is
$$D(f(X_1),\ldots,f(X_k)) \sim \prod D(f(X_i))?$$

No!

Example

$$f(x) = (x_1 + 1) \frac{1}{n^{1/2}} \sum_{i=2}^{n+1} x_i, \quad X_3^i X_2^i X_1^i = -1$$

 $(f(X_1), f(X_2), f(X_3))$ has 0 in at least one coordinate.

This is not true for product distribution.

Hardness of Approximation

Prove NP-approximation resistance of pairwise independent predicates

problem

For which distributions the maximum of the Gaussian test is obtained in finite dimensions?

Vector linearity

Testing if $f : F_2^n \to F_2^n$ is linear Pick X_1, X_2 with $X_3 = X_1 \oplus X_2$ Test if $f(X_1)f(X_2) = f(X_3)$

problem

If f passes the test with probability ϵ how correlated is it with linear functions?

Best results due to Sanders (almost polynomial in ϵ)

/⊒ > < ∃ >

Elchanan Mossel Per Austrin Correlation Based Testing

・ロン ・部 と ・ ヨ と ・ ヨ と …

Ξ.

Thank you!

Any questions?

Elchanan Mossel Per Austrin Correlation Based Testing

æ

▲ 同 ▶ → 三 ▶

Elchanan Mossel Per Austrin Correlation Based Testing

・ロン ・部 と ・ ヨ と ・ ヨ と …

Ξ.