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Clustering Analysis of SAGE Transcription Profiles
Using a Poisson Approach

Haiyan Huang, Li Cai, and Wing H. Wong

Summary

To gain insights into the biological function and relevance of genes using serial analysis of
gene expression (SAGE) transcription profiles, one essential method is to perform clustering
analysis on a group genes with similar expression patterns. A successful clustering analysis
depends on the use of effective distance or similarity measures. For this purpose, by considering
the specific properties of SAGE technology, we modeled the SAGE data by Poisson statistics
and developed two Poisson-based measures to assess similarity of gene expression profiles. By
employing these two distances into a K-means clustering procedure, we further developed a
software package to perform clustering analysis on SAGE data. The software implementing our
Poisson-based algorithms can be downloaded from http://genome.dfci.harvard.edu/sager. Our
algorithm is guaranteed to converge to a local maximum when Poisson likelihood-based measure
is used. The results from simulation and experimental mouse retina data demonstrate that the
Poisson-based distances are more appropriate and reliable for analyzing SAGE data compared
to other commonly used distances or similarity measures.

Key Words: Clustering analysis; (Dis)similarity measures; Poisson statistics; K-means
clustering procedure; SAGE data.

1. Introduction

Serial analysis of gene expression (SAGE), an effective technique for
comprehensive gene expression profiling, has been employed in studies of a
wide range of biological systems (I-5). Previous efforts to develop SAGE
analysis methods have been focused primarily on extracting SAGE tags and

From: Methods in Molecular Biology, vol. 387: Serial Analysis of Gene Expression: Digital Gene Expression Profiling
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186 Huang, Cai, and Wong

identifying differences in mRNA levels between two libraries (2,3,6-11). To
gain additional insights into the biological function and relevance of genes
from expression data, an established strategy is to perform clustering analysis,
which is to search for patterns and group transcripts with similar expression
profiles. This strategy has led to the fundamental question of how to measure
the (dis)similarity of gene expression across multiple SAGE libraries. An
effective distance or similarity measure (12), which takes into account the
underlying biology and the nature of data, would be the basis for a successful
clustering analysis. Commonly used distances or similarity measures include
the Pearson correlation coefficient and Euclidean distance. Pearson correlation
is used to detect the shape coherence of expression curves; Euclidian distance
can be used when the data are normally distributed and the magnitude of
expression matters. Other measures of relationships include likelihood-based
approaches for measuring the probabilities of clusters of genes in Gaussian
mixture modeling (13-15), etc. These measures have been proven useful in
microarray expression data analysis. However, SAGE data are governed by
different statistics; they are generated by sampling, which results in “counts.”
In this regard, clustering analysis of SAGE data should involve appropriate
statistical methods that consider the specific properties of SAGE data.

In one of our previous studies (16), we assumed that the tag counts follow a
Poisson distribution. This is a natural assumption considering that SAGE data
are generated through a random sampling technique. Based on this assumption,
two Poisson-based measures were developed to assess the similarity of tag
count profiles across multiple SAGE libraries (16). One measure was defined
based on Chi-square statistic, which evaluates the deviation of observed tag
counts from expected counts in each cluster. This method was called PoissonC.
The other measure was based on the log-likelihood of observed tag counts,
which determines the cluster membership of a transcript by its observed
counts’ joint probability under the expected Poisson model in each cluster. This
method was called PoissonL. A packaged clustering program with a modified
K-means procedure and with the two measures implemented is available at
http://genome.dfci.harvard.edu/sager.

In this chapter, we will introduce this Poisson-based SAGE clustering method
and evaluate its performance by applying it to a simulation dataset and an exper-
imental mouse retinal SAGE dataset. These additional applications to those
described in Cai et al. (16) further demonstrate the advantages of the Poisson-
based measures over Pearson correlation and Euclidean distance in terms of
producing clusters of more biological relevance. We also verify that the Poisson



Book_Nielsen_1588296768_Proof1_February 6, 2007

01
02
03
04
05
06
07
08

09

20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39

SAGE Analysis Using a Poisson Approach 187

likelihood-based clustering algorithm PoissonL is guaranteed to converge to a
local maximum of the Poisson likelihood function for observed data.

2. Materials

1. Software: online web application website as well as a Linux and Microsoft Windows
software are available at http://genome.dfci.harvard.edu/sager.

2. License agreement: the program is copyrighted by Li Cai, Haiyan Huang, and other
contributors, and is free for nonprofit academic use. It can be redistributed under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or any later version. This program is
distributed in the hope that it will be useful for research purpose, but without any
warranty.

3. Data: the file format is a classical expression matrix, with each row representing
the counts for a single tag over multiple SAGE libraries and with each column
representing the counts for all tags in a single library. The packaged program prefers
tab-delimited format. The specific extensions supported by the packaged program
are txt, xlIs, wkl1, wk3, wk4, mdb, fp5, 123, and dat.

4. Minimum computer hardware requirements: the computer used to run this program
should meet at least the following requirements: (1) at least 256 MB of RAM;
(2) an at least 1-GHz CPU; (3) a hard drive with at least 500 MB of free
disk space; (4) Microsoft Windows 9x/NT/ME/2000/XP or any Linux operating
system.

3. Methods

In the following sections, we rationalize the Poisson assumption on SAGE
data and provide a detailed description on the Poisson probability model, by
which two Poisson-based similarity measures were defined (see Note 1). We
also verify that the introduced clustering algorithm with the likelihood-based
similarity measure is guaranteed to converge to a local maximum of the Poisson
likelihood function. Finally, we present the application of the Poisson-based
method to a simulation dataset and a real dataset.

3.1. Poisson Assumption

In an SAGE experiment, the tag extraction is performed on a set of transcripts
that are sampled from a cell or tissue. As discussed in Man et al. (10), this
sampling process is approximately equivalent to randomly taking a bag of
colored balls from a big box. This randomness leads to an approximate multi-
nomial distribution for the number of transcripts of different types for tag
extraction (17). Moreover, as a result of the vast amount and numerous varied
types of transcripts in a cell or tissue, the selection probability of a particular
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type of transcript at each draw should be very small, which suggests that the
tag counts of sampled transcripts of each type can be approximately Poisson
distributed.

3.2. Probability Model

The above arguments suggest a Poisson-based probability model, which can
be specified by the following two assumptions.

3.2.1. Assumption 1

Y (1), the count of tag i in library ¢, are independent Poisson variables with
parameters \,(7)0;, where 6, is the expected sum of counts of tag i over all
libraries (unrelated to 7), \;(¢) is the contribution of tag i in library ¢ to the sum
(6,) expressed in percentage, and the sum of ,(¢) over all libraries equals to 1.

Assumption 1 forms the basis of the probability model. By definition,
0, reflects the gene general expression level, \,(¢) describes the expression
changes across libraries, and \,(7)6, re-distributes the tag counts according to the
expression profile [\,(¢)] with the sum of counts across libraries kept constant.
The tags with similar \,(¢) over ¢ (libraries) will be grouped together, because
an established strategy for finding functionally related genes is to group genes
with similar expression patterns (18). This motivates Assumption 2.

3.2.2. Assumption 2

The tags in the same cluster share a common profile of \,(¢) over 7. The
common profile is denoted by N =[\(1), N(2),..., N(T)], where T is the total
number of libraries considered. A then represents the cluster profile.

Now, let Y, =[Y;(1),..., Yi(T)] denote the vector of counts of tag i across
T libraries. Then, under the above two assumptions, for a cluster consisting of
tags 1, 2,..., m, the joint likelihood function for Y,, ¥,,..., Y, is

m

MmmnaﬂnwwmuﬁwnﬁwzﬁﬁﬂM%qumWW{

i=1t=1

(1)
The maximum likelihood estimates (MLEs) of \ and 0,,..., 0,, are

b=Y 1. mdh =Y 70 /¥ = r0 /Y Y0, @

i=1 t
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SAGE Analysis Using a Poisson Approach 189

3.3. Two New Similarity Measures for Clustering Tags With Similar
Expression Profiles

Given a cluster consisting of tags 1,..., m, the MLEs of parameters A and
0, in eq. 2 provide the expected Poisson distributions for the tag counts in
each cluster. This forms the basis of the definitions of the following two new
measures, which evaluate how well a particular tag (gene) fits in each of the
clusters.

3.3.1. Likelihood-Based Measure

It is natural to use the log-likelihood function log to evaluate how well the
observed counts (Y;|A,0,) fit the expected Poisson distributions. The larger the
log-likelihood is, the more likely the observed counts are to be generated from
the expected model. For a cluster consisting of tags 1, 2,..., m, the dispersion
is defined as

L=—logf(Y;,....Y, | A 0)=Y" 3" (A(1)8,~ Y,(1)log(A(1)8,) +log(Y,(1)!)).
3

The optimal partition of the genes into k distinct clusters can be obtained by
minimizing the cluster dispersion L, +L,+...+L,.

3.3.2. Chi-Square Statistic-Based Measure

The Chi-square statistic can evaluate the deviation of observed counts from
expected counts in each cluster. For a cluster consisting of tags 1, 2,..., m, the
dispersion can be defined as

p=%" YL ((0-A08) [ A®)8). )

The smaller D is, the tighter the cluster is. The optimal partition of the genes
into k distinct clusters can be obtained by minimizing the cluster dispersion
D,+D,+...+D,. Using the Chi-square statistic as a similarity measure, the
penalty for deviation from large expected count is smaller than that for small
expected count. This is consistent with the above likelihood-based measure
because the variance of a Poisson variable equals its mean.

3.4. Clustering Procedure

Using the above two measures, Cai et al. (16) modified the K-means
clustering algorithm to group tags with similar count profiles. The K-means
clustering procedure (19) generates clusters by specifying a desired number
of clusters, say, K, and then assigns each object to one of K clusters so as to
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minimize a measure of dispersion within the clusters (see Note 2). We outline
the algorithm from Cai et al. (16) as follows:

1. All SAGE tags are assigned at random to K sets. Estimate initial parameters 050)
and /\,({0) = ()\,(CO)(l), ..., A{(T)) for each tag and each cluster by eq. 2.

2. In the (b+1)th iteration, assign each tag i to the cluster with minimum deviation
from the expected model. The deviation is measured by either Lf}’k) = —log f(Y; |

2
A6 or o =, (10 - AP 0") [ ol

3. Set new cluster centers /\,((bﬂ) by eq. 2.
4. Repeat step 2 until convergence.

Let c(i) denote the index of the cluster that tag i is assigned to. The above
algorithm aims to minimizes the within-cluster dispersion » _; L; ., or 3, D; ;).
The algorithm using the likelihood-based measure L was called PoissonL, and
the algorithm using the Chi-square based measure D was called PoissonC. We
want to point out that PoissonL is guaranteed to converge to a local maximum of
the joint likelihood function for the observed data under the assumed probability
model. We present the proof below.

3.4.1. lemma 3.4.1.

Each iteration in the PoissonL algorithm is guaranteed to increase the
likelihood for the observed data under the assumed probability model, and thus
the algorithm is guaranteed to converge to a local maximum of the likelihood
function.

3.4.2. Proof of Lemma 3.4.1.

Under the Poisson model described under Subheading 3.2., the tag count
profiles Y, Y,,..., Yy are assumed to be independently generated from K
different joint Poisson distributions, whereas the information on which and
what model generates each tag count profile is unknown. Let y, be the cluster
label for tag i, and ® = (A, ..., Ag, 0,, ..., 0y) be the model parameters with
Ax and 0, defined as under Subheading 3.2. Then, the objective is to find the
® and y,; that maximize

L©]X) =T, /(¥1©) =TT, [T,_, /(A 0, (5)
where I(y; = k) equals 1 when y, =k and 0 otherwise.

In the (b+1)th iteration of PoissonL, for i=1, .., N and k=1, .., K,
we estimate
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SAGE Analysis Using a Poisson Approach 191
yfbH) = argmin L, , = argmax f(l/i|A,Eb), ng)) (by step 2 of the algorithm), and (6)
k k

(b+1) _
O = arg max l_[jv_l H:—1 f(Y, A, Oi)l("’{b ’=b (by step 3 of the algorithm). (7)
o ==

(

Then,  L(O) | X) =TL, T,/ (¥; [ A", 67) =0
(b+1)_
(by (7)) =TI, TTeey AY; | A,((”),()[_(”))I(yi,) i) @®)
(by (6)) =TIV, 15, £(¥; | AL, 6P)10" =k = L(@® | X),

which means that each iteration in PoissonL is guaranteed to increase the
likelihood for the observed data, and thus the algorithm is guaranteed to
converge to a local maximum.

PoissonC and PoissonL differs at the step of updating yfbH). In

: . . (b+1)_
PoissonC, y"*" = argmin D"}, under which f(¥, | \{", 8")'0:i""=b > f(v, |
k

1

A, Hfb))'(yt(b):k) and therefore L(®®*D | X) > L(O®® | X) may not hold
because D, is not always monotone relative to the likelihood function. The
nonmonotone domain is, however, vastly small. In practice, the nonmonotone
domain is often sufficiently small and negligible for the considered dataset such
that PoissonC agrees with PoissonL and converges to a local maximum. One
big advantage of PoissonC compared to PoissonL is that it runs much faster
based on the current version of program (see Note 3).

PoissonL is actually a specific version of Classification EM algorithm (CEM)
(20). The objective likelihood function of CEM under the mixture Poisson
model is

Leen(© 1X) = [T TTE, (AY, | ©)0 f(y, = k | ©)), ©)

which is equivalent to eq. S when the prior conditional probability of y, given
O is uniform (see Note 4).

3.5. Implementation

Poissonl. and PoissonC are implemented in both C++ and Java. The
implementation in C+4+ is based on the open source code of the C
clustering Library provided by de Hoon et al. (21) (http://bonsai.ims.u-tokyo.
ac.jp/~mdehoon/software/cluster/software.htm) (see Note 5). We developed
a web-based application as well as Microsoft Windows and Linux versions
of software to perform the clustering analysis. The software is available at
http://genome.dfci.harvard.edu/sager.
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192 Huang, Cai, and Wong

3.6. Examples

Two examples are presented here to demonstrate the advantages of Poisson-
based measures over other commonly used distance or similarity measures in
analyzing SAGE or Poisson-like data. Because these examples are independent
of the ones shown in Cai et al. (16), they can serve as an additional validation
of the Poisson-based measures.

3.6.1. Example I: Clustering Results of Simulation Data

Data. The distributions used to generate the simulation dataset are described
in Table 1. The simulation dataset consists of 46 vectors of dimension 5
with components independently generated from different Normal distributions.
The mean (w) and variance (o) parameters of the normal distributions are
constrained by 2 = 3 . This application evaluates the performance of our method
on data with Poisson-like properties: variance increases with mean. Success
in this dataset would shed light on more broad applications of our method.

In our simulation dataset, the 46 vectors belong to six groups (named A, B, C,
D, E, and F) according to the Normal distributions from which they are generated.
The six groups are of size 3, 6, 6, 9, 7, and 15, respectively. For comparison,
we applied PoissonC together with Eucli (classical K-means clustering algorithm

Table 1
5-Dim Simulation Dataset With Normal Distributions o> =3u
Group ID Mean parameters of the normal distributions (u)
Group A al ~a3 1 1 1 15 150
Group B bl ~b6 15 1 1 1 150
Group C cl~c4 10 30 30 60 10
c5~cb 100 300 300 600 100
Group D dl ~d7 200 70 70 10 10
d8~d9 2000 700 700 100 100
Group E el ~e5 210 120 10 10 10
eb6~e7 2100 1200 100 100 100
Group F fl ~1f3 5 50 5 5 5
f4 ~ 16 5 75 5 5 5
f7~19 5 100 5 5 5
f10 ~f11 50 500 50 50 50
f12 ~ 113 50 750 50 50 50

f14 ~£15 50 1000 50 50 50
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SAGE Analysis Using a Poisson Approach 193

using Euclidian distance) and PearsonC (K-means clustering procedure using
Pearson correlation as similarity measure) to the simulated data. The clustering
results from different methods are shown in Fig. 1. The simulation datais available
at http://www.stat.berkeley.edu/users/hhuang/S AGE.html.

Results. In Fig. 1, only PoissonC has clustered the vectors perfectly into
six groups. All of the other methods fail to correctly separate the vectors from
Group A and Group B. Eucli works the worst when it is applied to unnormalized
data. It fails to identify any of the six clusters. This is because Euclidian
distance can be overly sensitive to the magnitude of changes. To reduce the
magnitude effects, we further apply Eucli to the rescaled data. The rescaling
is performed so that the sum of the components within each vector is set the
same. The clustering result of Eucli on rescaled data is clearly better than the

(ol B | ¢ | p | E | F |
T T

T

A PoissonC

Cluster
= NWHhOIO

B PearsonC

Cluster
= NWhOIO

C Eucli

un-normalized
data

Cluster
= NWhHhOIO

D Eucli

un-normalized
data

Cluster
= NWHhOTO®O

Gene Index

Fig. 1. Graphs of clustering results for simulation data. Horizontal axis represents
the index of the 46 vectors, which belong to six groups (named A, B, C, D, E, and F)
that are marked at the top of the figure. Vertical axis represents the index of the cluster
that each vector has been assigned to by each algorithm.
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result on unnormalized data. Groups C, D, and E have been correctly identified
(see Note 6).

We perform an additional 100 replications of the above simulation. PoissonC
correctly clusters 34 of the 100 replicate datasets. Eucli, on rescaled data,
correctly clusters 2 of the 100 datasets whereas PearsonC or Eucli, on unnor-
malized data, never generates correct clusters.

We also want to point out that there is a small error in the simulation results
presented in Table 1 and Fig. 1 of Cai et al. (16). For the data in Table 1, Fig. 1
reported a perfect clustering result by PoissonC, which is not correct. But the
conclusion made from that example that PoissonC is superior to other methods
is still valid because PoissonC has only wrongly clustered one tag.

3.6.2. Example II: Clustering Results of Experimental SAGE Data

For further validation, we apply PoissonC, PearsonC, and Eucli to a set of
mouse retinal SAGE libraries.

Data. The raw mouse retinal data consists of 10 SAGE libraries (38,818
unique tags with tag counts >2) from developing retina taken at 2-d intervals,
ranging from embryonic to postnatal and adult (16,22). One thousand four
hundred sixty-seven of the 38,818 tags with counts >20 in at least one of the
10 libraries are selected (see Note 7). To effectively compare the clustering
algorithms, a subset of 153 SAGE tags with known biological functions are
further selected (see Note 8). These 153 tags fall into five clusters based on
their biological function(s) (see Table 2a). One hundred twenty-five of these
genes are developmental genes, which can be further grouped into four clusters
by their expressions at different developmental stages. The other 28 genes
are unrelated to the mouse retina development. This dataset is available at
http://www stat.berkeley.edu/users/hhuang/SAGE.html.

Results. PoissonC, PearsonC, and Eucli are applied to group these 153 tags
into five clusters. Results show that the performance of PoissonC is superior
to other methods (see Table 2b). We should also note that PoissonC is only

Table 2a
Functional Categorization of the 153 Mouse Retinal Tags
(125 Developmental Genes; 28 Nondevelopmental Genes)

Function Groups
Early I Early I Latel LateIl Non-dev. Total

Number of tags 32 34 32 27 28 153
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SAGE Analysis Using a Poisson Approach 195
Table 2b
Comparison of Algorithms on 153 Tags

# of tags in incorrect % of tags in incorrect

Algorithm clusters clusters
PoissonC 22 14.4
Eucli on normalized data 36 235
PearsonC 26 17.0
Eucli NA NA

Clusters generated by Eucli were too messy.

slightly better than PearsonC in this application because the shapes of the
gene expression curves are quite different from each other among these five
clusters and the Pearson correlation can powerfully detect the shape coherence
of curves.
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Notes

1. The main advantage of the described method is that the newly designed measures
consider both the magnitude and shape when comparing the expression patterns
(A represents the shape and 6 represents the magnitude in our model), whereas
Euclidian distance is focused only on the magnitude of changes and Pearson
correlation is overly sensitive to the shape of the curve.

2. Anunsolved issue in K-means clustering analysis is the estimation of K, the number
of clusters. If K is unknown, starting with arbitrary, random K is a relatively poor
method. Hartigan proposed a stage-wise method to determine the K value (19).
However, when sporadic points are present in the dataset, Hartigan’s method may
fail. A recently introduced method, TightCluster (23), partially solves this problem
by using a resampling scheme to sequentially attain tight and stable clusters in the
order of decreasing stability. The Poisson based measures can be implemented in
the TightCluster program to apply the TightCluster method to SAGE data.

3. We performed PoissonL and PoissonC similarly when applying them to many
small simulation and experimental data sets. For large datasets, PoissonC should
be more practical at this moment, as the current version of PoissonL (installed
in the software package) is too slow. There is still much room for improving the
PoissonL algorithm.
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. We can also derive an EM algorithm for fitting the mixture Poisson model. The

associated objective likelihood is
N N K
Lew(OD) = [T, /¥1©) =TT, (X, fXIO)f(=K®)).  (10)

The E-step and M-step of the algorithm can be described as follows:

E-step: with the estimated @®) = ()t(lb), e, A%’), Oﬁh), .8 0,((,’)), compute
0(0, 0")
= Ey ity (08 f(Y s Y1,y |O)] o

= Zyl,...,yN (log va:1 f(Yi|®))f()’1’ o ynlY L Yy, G(b))
= Zyl,“.,yN (10g H:\;l (lec(:l fY0)f(y;, = k|®))) (l_[zN:l filY,, Q(b)))

M-step: find @YY = argmax Q(0, V).

Clearly, in the above EM g)lgorithm, the objective likelihood function and therefore
the optimal clustering results depend on the prior conditional probability of y;
given 0. Preliminary simulation comparisons among PoissonL, PoissonC, and the
EM algorithm show that they perform similarly. Further comparisons of these
algorithms are ongoing.

. The new measures were employed into a K-means clustering procedure to perform

the analysis. The algorithm used for iteratively updating cluster assignments is
an algorithm implemented in the C clustering library, which is publicly available
(21). The algorithm terminates when no further reassignments take place. Because
the convergent results of this algorithm are quite sensitive to the initial cluster
assignments, usually, the algorithm should be run on many different initials to
obtain an optimal result. The within-cluster dispersion should better be recorded
to compare the results.

. When the users are not confident about whether the data are Poisson-like or not,

a good choice could be Eucli (K-means algorithm using Euclidian distance). Our
experience tells that Eucli is quite stable and reliable when it is applied to data that
are appropriately postnormalized according to the clustering purpose, i.e., the data
can be rescaled to reduce the effects of magnitude if only the shape of expression
pattern determines the clustering. Good measurement methods should consider
both magnitude and shape of the expression patterns.

. For clustering analysis, tags with only one count are usually excluded from analysis

due to sequencing error problem. To select the potential most biologically relevant
genes, tags with less than 2-10 counts can be excluded depending on how large
the SAGE libraries are and how many total number of tags is intended to analyze.

. Annotation of SAGE tags is through SAGEtag to UniGene mapping (24). The

mapping is based on “SAGEmap_tag_ug-rel.Z” provided by the National center
for Biotechnology Information (ftp://ftp.ncbi.nlm.nih.gov/pub/sage/map/), which
contains all annotated SAGE tags mapping to UniGene clusters. However, there
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SAGE Analysis Using a Poisson Approach 197

are many ambiguities on the SAGE tag annotation. There are tag sequencing errors
(25), and also the mapping between tags and genes can be nonunique. In one
planned project, we propose to reduce this error by inferring the real expression
level of genes from “weighted” counts of all mapped tags, where the weights can
be determined by the available mapping quality information. An EM algorithm is
feasible for this task.
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