
This paper (which is mainly expository) sets up graphical models for causation, hav-
ing a bit less than the usual complement of hypothetical counterfactuals. Assuming
the invariance of error distributions may be essential for causal inference, but the
errors themselves need not be invariant. Graphs can be interpreted using conditional
distributions, so that we can better address connections between the mathematical
framework and causality in the world. The identification problem is posed in terms of
conditionals. As will be seen, causal relationships cannot be inferred from a data set
by running regressions unless there is substantial prior knowledge about the mech-
anisms that generated the data. There are few successful applications of graphical
models, mainly because few causal pathways can be excluded on a priori grounds.
The invariance conditions themselves remain to be assessed.
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In this paper, I review the logical basis for inferring causation from
regression equations, proceeding by example. The starting point is a simple
regression; next is a path model, and then simultaneous equations (for supply
and demand). After that come nonlinear graphical models. The key to
making a causal inference from nonexperimental data by regression is some
kind of invariance, exogeneity being a further issue. Parameters need to
be invariant to interventions: this well-known condition will be stated here
with a little more precision than is customary. Invariance is also needed for
(i) errors or (ii) error distributions, a topic that has attracted less attention.
Invariance for distributions is a weaker assumption than invariance for errors.
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I will focus on invariance of error distributions in stochastic models for
individual behavior, eliminating the need to assume sampling from an ill-
defined super-population.

With graphical models, the essential mathematical features can be for-
mulated in terms of conditional distributions (“Markov kernels”). To make
causal inferences from nonexperimental data using such techniques, the ker-
nels need to be invariant to intervention. The number of plausible examples
is at best quite limited, in part because of sampling error, in part because of
measurement error, but more fundamentally because few causal pathways
can be excluded on a priori grounds. The invariance condition itself remains
to be assessed.

Many readers will “know” that causal mechanisms can be inferred from
nonexperimental data by running regressions. I ask from such readers an
unusual boon—the suspension of belief. (Suspension of disbelief is all
too readily at hand, but that is another topic.) There is a complex chain
of assumptions and reasoning that leads from the data via regression to
causation. One objective in the present essay to is explicate this logic.
Please bear with me: what seems obvious at first may become less obvious
on closer consideration, and properly so.

1. A FIRST EXAMPLE: SIMPLE REGRESSION

Figure 1 is the easiest place to start. In order to make causal inferences
from simple regression, it is now conventional (at least for a small group of
mathematical modelers) to assume something like the setup in equation (1)
below. I will try to explain the key features in the formalism, and then
offer an alternative. As will become clear, the equation makes very strong
invariance assumptions, which cannot be tested from data on X and Y .

Yi,x = a + bx + δi . (1)

The subscript i indexes the individuals in a study, or the occasions in a
repeated-measures design, and so forth. A treatment may be applied at
various levels x. The expected response is a + bx. By assumption, this is
linear in x, with intercept a and slope b. The parameters a and b are the
same, again by assumption, for all subjects and all levels of treatment. When
treatment at level x is applied to subject i, the response Yi,x deviates from the
expected by a “random error” or “disturbance” δi . This presumably reflects
the impact of chance. For some readers, it may be more natural to think of
a + δi in (1) as a random intercept. Others may classify Yi,x as a “potential
outcome:” more about that, later.
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X −→ Y

Figure 1: Linear Regression

In this paper, as is commonplace in statistics, random variables like δi
are functions on a probability space �. Informally, chance comes in when
Nature chooses a point at random from �, which fixes the value of δi . The
choice is made once and once only: Nature does not re-randomize if x is
changed in (1). More technically, Yi,x is a function of x and δi , but δi does
not vary with x. (The formalism is compact, which has certain advantages;
on the other hand, it is easy to lose track of the ideas.)

The δi are assumed to be independent and identically distributed. The
common “error distribution” D is unknown but its mean is assumed to
be 0. Nothing in the equation is observable. To generate the data, Nature is
assumed to choose {Xi : i = 1, . . . , n} independently of {δi : i = 1, . . . , n},
showing us

(Xi, Yi),

where
Yi = Yi,Xi

= a + bXi + δi

for i = 1, . . . , n.
Notice that x in (1) could have been anything: the model features mul-

tiple parallel universes, all of which remain counterfactual hypotheticals—
because, of course, we did no intervening at all. Instead, we passively
observed Xi and Yi . (If we had done the experiment, none of these inter-
esting issues would be worth discussing.) Nature obligingly randomizes for
us. She chooses Xi at random from some distribution, independently of δi ,
and sets Yi = a + bXi + δi as required by (1).

“Exogeneity” is the assumed independence between the Xi and the
errors δi . Almost as a bookkeeping matter, your response Yi is computed
from your Xi and error term δi . Nobody else’s X and δ get into the act,
precluding interactions across subjects. According to the model, δi exists—
incorruptible and unchanging—in all the multiple unrealized counterfactual
hypothetical universes, as well as in the one real factual observed universe.
This is a remarkably strong assumption. All is flux, except a, b and δi .

An alternative setup will be presented next, more like standard regres-
sion, to weaken the invariance assumption. We start with unknown param-
eters a, b and an error distribution D . The last is unknown, but has mean
0. Nature chooses {Xi : i = 1, . . . , n} at random from some n-dimensional
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distribution. Given the X’s, the Y ’s are assumed to be conditionally inde-
pendent, and the random errors

Yi − a − bXi

are assumed have common distribution D . In other words, the Y ’s are built
up from the X’s as follows. Nature computes the linear function a + bXi ,
then adds some noise drawn at random from D to get Yi . We get to see the
pairs (Xi, Yi) for i = 1, . . . , n.

In this alternative formulation, there is a fixed error distribution D but
there are no context-free random errors. Indeed, errors may be functions of
treatment levels among other things. The alternative has both a causal and an
associational interpretation. (i) Assuming invariance of error distributions
to interventions leads to the causal interpretation. (ii) Mere insensitivity
to x when we condition on Xi = x gives the associational interpetation—
the probability distribution of Yi − a − bXi given Xi = x is the same for
all x. This can at least in principle be tested against the data. Invariance to
interventions cannot, unless interventions are part of the design.

The key difference between equation (1) and the alternative is this.
In (1), the errors themselves are invariant. In the alternative formulation,
only the error distribution is invariant. In (1), inference is to the numerical
value that Yi would have had, if Xi had been set to x. In the alternative
formulation, causal inference can only be to the probability distribution
that Yi would have had. With either setup, the inference is about specific
individuals, indexed by i. Inference at the level of individuals is possible
because—by assumption—parameters a, b are the same for all individuals.
The two formulations of invariance, with the restrictions on the X’s, express
different ideas of exogeneity. The second set of assumptions is weaker than
the first, and seems generally more plausible.

An example to consider is Hooke’s law. The stretch of a spring is pro-
portional to the load: a is length under no load and b is stretchiness. The
disturbance term would represent measurement error. We could run an ex-
periment to determine a and b. Or, we could passively observe the behavior
of springs and weights. If heavier weights are attracted to bigger errors,
there are problems. Otherwise, passive observation might give the right an-
swer. Moreover, we can with more or less power test the hypothesis that the
random errors Yi − a − bXi are independent and identically distributed. By
contrast, consider the hypothesis that Yi − a − bXi itself would have been
the same if Xi had been 7 rather 3. Even in an experiment, testing that seems
distinctly unpromising.

What happens without invariance? The answer will be obvious. If
intervention changes the intercept a, the slope b, or the mean of the error
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distribution, the impact of the intervention becomes difficult to determine.
If the variance of the error term is changed, the usual confidence intervals
lose their meaning.

How would any of this be possible? Suppose, for instance, that—
unbeknownst to the statistician—X and Y are both the effects of a common
cause operating through linear statistical laws like (1). Suppose errors are
independent and normal, while Nature randomizes the common cause to have
a normal distribution. The scatter diagram will look lovely, a regression line
is easily fitted, and the straightforward causal interpretation will be wrong.

2. CONDITIONALS

Let us assume (informally) that the regression in Figure 1 is causal.
What theYi’s would have been if we had intervened and setXi to xi—this too
isn’t quite mathematics, but does correspond to either of two formal systems.
One set of objects is generated by equation (1): the random variables Yi =
a+bxi+δi for i = 1, . . . , n. The second set of objects is this: n independent
Y ’s, the ith being distributed as a + bxi plus a random draw from the error
distribution D . One system is defined in terms of random variables; the
other, in terms of conditional distributions. There is a similar choice for the
examples presented below.

So far, I have been discussing linear statistical laws. In Figure 1, for
example, suppose we set X = x. Conditionally, Y will be distributed like
a + bx plus random noise with distribution D . Call this conditional dis-
tribution Kx(dy). On the one hand, Kx may just represent the conditional
distribution of Y given X = x, a rather dry statistical idea. On the other
hand, Kx may represent the result of a hypothetical intervention: the distri-
bution that Y would have had, if only we had intervened and set X to x. This
is the more exciting causal interpretation. Data analysis on X and Y cannot
decide whether the causal interpretation is viable. Instead, to make causal
inferences from a system of regression equations, causation is assumed from
the beginning. As Cartwright (1989) says, “No causes in, no causes out.”
This view contrasts rather sharply with rhetoric that one finds elsewhere.

Of course, solid arguments for causation have been made from ob-
servational data, but fitting regressions is only one aspect of the activity
(Freedman, 1999). Replication seems to be critical, with good study de-
signs and many different kinds of evidence. Also see Freedman (1997),
noting the difference between conditional probabilities that arise from se-
lection of subjects with X = x, and conditional probabilities arising from
an intervention that sets X to x. The data structures may look the same, but
the implications can be worlds apart.
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Figure 2: A Path Model with Three Variables.

3. TWO LINEAR REGRESSIONS

The discussion can now be extended to path diagrams, with similar
conclusions. Figure 2 involves three variables, and is a cameo version of
applied statistics. If we are interested in the effect of Y on Z, then X

confounds the relationship. Some adjustment is needed to avoid biased
estimates, and regression is often used. The diagram unpacks into two
response schedules:

Yi,x = a + bx + δi, (2a)

Zi,x,y = c + dx + ey + εi . (2b)

We assume that δ1, . . . , δn, ε1, . . . , εn are all independent. The δ’s have
a common distribution D . The ε’s have another common distribution F .
These two distributions are unknown, but are assumed to have mean 0.
Again, nothing in (2) is observable.

To generate the data, Nature chooses {Xi : i = 1, . . . , n} independently
of {δi, εi : i = 1, . . . , n}. We observe

(Xi, Yi, Zi)

for i = 1, . . . , n, where

Yi = Yi,Xi
= a + bXi + δi

Zi = Zi,Xi,Yi
= c + dXi + eYi + εi .
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Basically, this is a recursive system with two equations. The X’s are “exoge-
nous,” that is, independent of the δ’s and ε’s. According to the model, Nature
plugs the X’s into (2a) to compute the Y ’s. In turn, those very X’s and Y ’s
get plugged into (2b) to generate the Z’s. That is the recursive step. In other
words, Yi is computed as a linear function ofXi , with intercept a and slope b,
plus the error term δi . Then Zi is computed as a linear function of Xi and
Yi . The intercept is c, the coefficient on Xi is d, the coefficient on Yi is e;
at the end, the error εi is tagged on. Again, the δ’s and ε’s remain the same
no matter what x’s and y’s go into (2); so do the parameters a, b, c, d, e.
(Interactions across subjects are precluded because, for instance, subject i’s
response Yi is computed from Xi and δi rather than Xj and δj .)

The proposed alternative involves not random errors but their distribu-
tions D and F . These distributions are unknown but have mean 0. We still
have the parameters a, b, c, d, e. To generate the data, we assume that Na-
ture chooses X1, . . . , Xn at random from some n-dimensional distribution.
Given the X’s, the Y ’s are assumed to be conditionally independent: Yi is
generated by computing a + bXi , then adding some independent noise dis-
tributed according to D . Given the X’s and Y ’s, the Z’s are assumed to be
conditionally independent: Zi is generated as c+ dXi + eYi , with indepen-
dent additive noise distributed according to F . The exogeneity assumption
is the independence between the X’s and the errors.

As before, the second setup assumes less invariance than the first. It
is error distributions that are invariant, not error terms; the inference is to
distributions rather than specific numerical values. Either way, there are
unbiased estimates for the parameters a, b, c, d, e . The error distributions
D and F are identifiable; parameters and error distributions are constant
in both formulations. As before, the second setup may be used to describe
conditional distributions of random variables. If those conditional distribu-
tions admit a causal interpretation, then causal inferences can made from
observational data. In other words, regression succeeds in determining the
effect of Y on Z if we know (i) X is the confounder and (ii) the statistical
relationships are linear and causal.

What can go wrong? Omitted variables are a problem, as discussed
before. Assuming the wrong causal order is another issue. For example,
suppose equation (2) is correct; the errors are independent and normally dis-
tributed; moreover, the exogenous variable X has been randomized to have a
normal distribution. However, the unfortunate statistician regresses (i) Y on
Z, then (ii) X on Y and Z. Diagnostics will indicate success: the distribution
of residuals will not depend on the explanatory variables. But causal infer-
ences will be all wrong. The list of problem areas can easily be extended to
include functional form, stochastic specification, measurement. . . .
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The issue boils down to this. Does the conditional distribution of Y

given X represent mere association, or does it represent the distribution Y

would have had if we had intervened and set the values of X? There is
similar question for the distribution of Z given X and Y . These questions
cannot be answered just by fitting the equations and doing data analysis
on X, Y, and Z. Additional information is needed. From this perspective,
the equations are “structural” if the conditional distributions inferred from
the equations tell us the likely impact of interventions, thereby allowing a
causal rather than an associational interpretation. The take-home message
will be clear: you cannot infer a causal relationship from a data set by
running regressions—unless there is substantial prior knowledge about the
mechanisms that generated the data.

4. SIMULTANEOUS EQUATIONS

Similar considerations apply to models with simultaneous equations.
The invariance assumptions will be familiar to many readers. Changing
pace, I will discuss hypothetical supply and demand equations for butter
in the state of Wisconsin. The endogenous variables are Q and P , the
quantity and price of butter. The exogenous variables in the supply equation
are the agricultural wage rate W and the price H of hay. The exogenous
variables in the demand equation are the prices M of margarine and B of
bread (substitutes and complements). For the moment, “exogeneity” just
means “externally determined.” Annual data for the previous twenty years
are available on the exogeneous variables, and on the quantity of Wisconsin
butter sold each year as well as its price. Linearity is assumed, with the usual
stochastics.

The model can be set up formally with two linear equations in two
unknowns, Q and P :

Q = a0 + a1P + a2W + a3H + δt , Supply (3a)

Q = b0 + b1P + b2M + b3B + εt . Demand (3b)

On the right hand side, there are parameters (the a’s and b’s). There are
also error terms (δt , εt ) which are assumed to be independent and identi-
cally distributed for t = 1, . . . , 20. The common two-dimensional “error
distribution” C for (δt , εt ) is unknown, but is assumed to have mean 0.

Each equation describes a thought experiment. In the first, we set
P,W,H,M,B and observe how much butter comes to market. By as-
sumption, M and B have no effect on supply, while P,W,H have additive
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linear effects. In the second we set P,W,H,M,B and observe how much
butter is sold: W and H have no effect on demand, while P,M,B have ad-
ditive linear effects. In short, we have linear supply and demand schedules.
Again, the error terms themselves are invariant to all interventions, as are
the parameters. Since this is a hypothetical, there is no need to worry about
the EEC, NAFTA, or the economics.

A third gedanken experiment is described by taking equations (3a)
and (3b) together. Any values of the exogenous variables W,H,M,B —
perhaps within certain ranges—can be substituted in on the right, and the
two equations solved together for the two unknowns Q and P , giving us the
transacted quantity and price in a free market, denoted

QW,H,M,B and PW,H,M,B. (4)

Since δ and ε turn up in the formulas for both Q and P , the random variables
in (4) are correlated—barring some rare parameter combinations—with the
error terms. The correlation is “simultaneity.”

So far, we have three thought experiments expressing various assump-
tions, but no data: nothing in the equations is observable. We assume that
Nature generates data for us by choosing Wt,Ht ,Mt , Bt for t = 1, . . . , 20,
at random from some high-dimensional distribution, independently of the
δ’s and ε’s. This independence is the exogeneity assumption, which gives
the concept a more technical shape. For each t , we get to see the values of
the exogenous variables

Wt, Ht , Mt , Bt ,

and the corresponding endogenous variables computed by solving (3ab)
together, namely,

Qt = QWt,Ht ,Mt ,Bt and Pt = PWt ,Ht ,Mt ,Bt .

Of course, we do not get to see the parameters or the disturbance terms. A
regression of Qt on Pt and the exogenous variables leads to “simultaneity
bias,” because Pt is correlated with the error term; hence two-stage least
squares and related techniques. With such estimators, enough data, and the
assumptions detailed above, we can (almost) recover the supply and demand
schedules (3ab) from the free market data—using the exogenous variables
supplied by Nature.

The other approach, sketched above for Figures 2 and 3, suggests that
we start from the parameters and the error distribution C. If we were to set
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P,W,H,M,B, then Nature would be assumed to choose the errors in (3)
from C: farmers would respond according to the supply equation (3a), and
consumers according to the demand equation (3b). If we were to set only
W,H,M,B and allow the free market to operate, then quantity and price
would in this parable be computed by solving the pair of equations (3ab).

The notation for the error terms in (3) is a bit simplistic now, since these
terms may be functions of W,H,M,B. Allowing the errors to be functions
of P may make sense if (3a) and (3b) are considered in isolation; but if the
two equations are considered together, this extra generality would lead to a
morass. We therefore allow errors to be functions of W,H,M,B but not P .
To generate data, we assume that Nature chooses the exogenous variables
at random from some multidimensional distribution. The market quantities
and prices are still computed by solving the pair of equations (3ab) for Q

and P , with independent additive errors for each period drawn from C; the
usual statistical computations can still be carried out.

In this setup, it is not the error terms that are invariant, but their dis-
tribution. Of course, parameters are taken to be invariant. The exogeneity
assumption is the independence of {Wt,Ht ,Mt , Bt : t = 1, 2 . . .} and the
error terms. The inference is for instance to the probability distribution of
butter supply, if we were to intervene in the market by setting price as well
as the exogenous variables. By contrast, with assumed invariance for the
error terms themselves, the inference is to the numerical quantity of butter
that would be supplied.

I have presented the second approach with a causal interpretation. An
associational interpretation is also possible, although less interesting. The
exposition may seem heavy-handed, because I have tried to underline the
critical invariance assumptions that need to be made in order to draw causal
conclusions from nonexperimental data: parameters are invariant to inter-
ventions, and so are errors or their distributions. Exogeneity is another con-
cern. In a real example, as opposed to a butter hypothetical, real questions
would have to be asked about these assumptions. Why are the equations
“structural,” in the sense that the required invariance assumptions hold true?

Obviously, there is some tension here. We want to use regression to
draw causal inferences from nonexperimental data. To do that, we need to
know that certain parameters and certain distributions would remain invariant
if we were to intervene. That invariance can seldom if ever be demonstrated
by intervention. What then is the source of the knowledge? “Economic
theory” seems like a natural answer, but an incomplete one. Theory has to
be anchored in reality. Sooner or later, invariance needs empirical demon-
stration, which is easier said than done.
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5. NONLINEAR MODELS: FIGURE 1 REVISITED

Graphical models can be set up with nonlinear versions of equation (1),
as in Pearl (1995, 2000). The specification would be something like Yi,x =
f (x, δi), where f is a fairly general (unknown) function. The interpretation
is this: if the treatment level were set to x, the response by subject i would
be Yi,x . The same questions about interventions and counterfactual hypo-
theticals would then have to be considered. Instead of rehashing such isues,
I will indicate how to formulate the models using conditional distributions
(“Markov kernels”), so that the graphs can be interpreted either distribution-
ally or causally. In the nonlinear case, Kx—the conditional distribution of
Y given that X = x—depends on x in some fashion more complicated than
linearity with additive noise. For example, if X, Y are discrete, then K can
be visualized as the matrix of conditional probabilities P(Y = y|X = x).
For any particular x, Kx is a row in this matrix.

Inferences will be to conditional distributions, rather than specific nu-
merical values. There will be some interesting new questions about iden-
tifiability. And the plausibility of causal interpretations can be assessed
separately, as will be shown later. I will organize most of the discussion
around two examples used by Pearl (1995); also see Pearl (2000, 66–68 and
83–85). But first, consider Figure 1. In the nonlinear case, the exogenous
variables have to be assumed independent and identically distributed in order
to make sense out of the mathematics; otherwise, there are substantial extra
complications, or we have to impose additional smoothness conditions on
the kernel.

Assume now that (Xi, Yi) are independent and distributed like (X, Y )

for i = 1, . . . , n; the conditional distribution of Yi given Xi = x is Kx ,
where K is an unknown Markov kernel. With a large-enough sample, the
joint distribution of (X, Y ) can be estimated reasonably well; so can Kx , at
least for x’s that are likely to turn up in the data. If K is only a conditional
probability, that is what we obtain from data analysis. If K admits a causal
interpretation—by prior knowledge or assumption, not by data analysis on
the X’s and Y ’s—then we can make a causal inference: What would the
distribution of Yi have been, if we had intervened and set Xi to x? (The
answer is Kx .)

6. TECHNICAL NOTES

The conditional distribution of Y given X tells you the conditional
probability that Y is in one set C or another, given that X = x. A Markov
kernel K assigns a number Kx(C) to pairs (x, C); the first element x of the
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pair is a point; the second, C, is a set. With x fixed, Kx is a probability. With
C fixed, the function that sends x to Kx(C) should satisfy some minimal
regularity condition. Below, I will write Kx(dy) as shorthand for the kernel
whose value at (x, C) is Kx(C), where C is any reasonable set of values for
Y . Matters will be arranged so that Kx(C) is the conditional probability that
Y ∈ C given X = x and perhaps additional information. Thus, Kx(C) =
P(Y ∈ C|X = x . . .).

Without further restrictions, graphical models are nonparametric, be-
cause kernels are infinite-dimensional “parameters.” Our ability to estimate
such things depends on the degree of regularity that is assumed. With min-
imal assumptions, you may get minimal performance—but that is a topic
for another day. Even in the linear case, some of the fine points about es-
timation have been glossed over. To estimate the model in Figure 1, we
would need some variation in X and δ. To get standard errors, we would
assume finite variances for the error terms. Conditions for identifiability in
the simultaneous-equations setup do not need to be rehearsed here, and I
have assumed a unique solution for (3). Two-stage least squares will have
surprising behavior unless variances are assumed for the errors; some degree
of correlation between the exogenous and endogenous variables would also
be needed.

More general specifications can be assumed for the errors. For exam-
ple, in (1), the δi may be assumed to be independent, with common variances
and uniformly bounded fourth moments; then the hypothesis of a common
distribution can be dropped. In (3), an ARIMA model may be assumed. And
so forth. The big picture does not change, because (i) questions about in-
variance remain, and (ii) even an ARIMA model requires some justification.

7. MORE COMPLICATED EXAMPLES

The story behind Figure 3 will be explained below. For the moment, it
is an abstract piece of mathematical art. The diagram corresponds to three
kernels: Kx(dy), Ly(dz), and Mx,z(dw). These kernels describe the joint
distribution of the random variables shown in the diagram (X, Y, Z,W).
The conditional distribution of Y given X = x is Kx . The conditional
distribution of Z given X = x and Y = y is Ly : there is no subscript x on
L because—by assumption—there is no arrow from X to Z in the diagram.
The conditional distribution of W given X = x, Y = y, Z = z is Mx,z:
there is no subscript y on M because—again by assumption—there is no
arrow leading directly from Y to W in the diagram.
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Y Z W
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(Unobserved)

Figure 3: A Graphical Model with Four Variables; Three Are Observed.

You can think of building up the variables X, Y,Z,W from the kernels
and a base distribution µ for X, in a series of steps:

(i) Chose X at random according to µ(dx).

(ii) Given the value of X from step (i), say X = x, choose Y at random
from Kx(dy).

(iii) Given X = x and Y = y, choose Z at random from Ly(dz).

(iv) Given X = x, Y = y, and Z = z, choose W at random from
Mx,z(dw).

The recipe is equivalent to the graph.

By assumption, the four-tuples (Xi, Yi, Zi,Wi) are independent and
distributed like (X, Y, Z,W) for i = 1, . . . , n. There is one more wrinkle:
the circle marked “X” in the diagram is open, meaning thatX is not observed.
In other words, Nature hides X1, . . . , Xn but shows us

Y1, . . . , Yn, Z1, . . . , Zn, W1, . . . ,Wn.

That is our data set.
The base distribution µ and the kernels K,L,M are unknown. How-

ever, with many observations on independent and identically distributed
triplets (Yi, Zi,Wi), we can estimate their joint distribution reasonably well.
Moreover—and this should be a little surprising—we can compute Ly from
that joint distribution, as well as

Mz(dw) =
∫
Mx,z(dw)µ(dx), (5a)
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where µ is the distribution of the unobserved confounder X. Hence we can
also compute

Ly(dw) =
∫

Mz(dw)Ly(dz). (5b)

Here is the idea: L is computable because the relationship between Y

and Z is not confounded by X. Conditional on Y , the relationship between
Z and W is not confounded, so Mz in (5a) is computable. Then (5b) follows.

More specifically, with “P ” for probability, the identity

P(Z ∈ C|Y = y) = P(Z ∈ C|X = x, Y = y) = Ly(C)

can be used to recover L from the joint distribution of Y,Z.
Likewise, we can recover M in (5a) from the joint distribution of

Y,Z,W , although the calculation is a little more intricate. Let Px,y,z =
P( • |X = x, Y = y, Z = z) be a regular conditional probability given
X, Y,Z. Then

P(W ∈ D|Y = y, Z = z) =
∫
Px,y,z(W ∈ D)P (X ∈ dx|Y = y, Z = z)

=
∫
Mx,z(D)P (X ∈ dx|Y = y),

because Px,y,z(W ∈ D) = Mx,z(D) by construction, and X is independent
of Z given Y by a side-calculation.

We have recovered
∫
Mx,z(D)P (X∈ dx|Y = y) from the joint distri-

bution of Y,Z,W . Hence we can recover

∫ ∫
Mx,z(D)P (X ∈ dx|Y = y)P (Y ∈ dy) =

∫
Mx,z(D)µ(dx)

= Mz(D),

although the distributionµ ofX remains unknown, and so does the kernelM .
These may all just be facts about conditional distributions, in which

case (5) is little more than a curiosity. On the other hand, if K,L,M have
causal interpretations, then Mz in (5a) tells you the effect of setting Z = z

on W , averaged over the possible X’s in the population. Similarly, Ly in
(5b) tells you the effect of Y on W . If you intervene and set Y to y, then
the distribution of W will be Ly , on the average over all X and Z in the
population. (There may be exceptional null sets, which are being ignored.)
How to estimate M and L in a finite sample is another question, which will
not be discussed here.
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Figure 4: A Graphical Model with Seven Variables; Five Are Observed.

The next example (Figure 4) is a little more complicated. (Again, the
story behind the figure is deferred.) There are two unobserved variables, A
and B. The setup involves six kernels, which characterize the joint distribu-
tion of the random variables (A,B,U,X, V,W, Y ) in the diagram:

Ka(db) = P(B ∈ db|A = a),

La(du) = P(U ∈ du|A = a),

Ma(dx) = P(X ∈ dx|A = a),

Nu,x(dv) = P(V ∈ dv|A = a, B = b,U = u,X = x),

Qb,v(dw) = P(W ∈ dw|A = a, B = b,U = u,X = x, V = v),

Rx,v,w(dy) = P(Y ∈ dy|A = a, B = b,U = u,X = x, V = v,W = w).

Here, P represents “probability”; it seemed more tasteful not to have kernels
labeled O or P . There is no a, b, u among the subscripts on R because there
are no arrows going directly from A, B, U to Y in the diagram; similarly
for the other kernels. The issue is to determine the effect of X on Y , in-
tegrating over the unobserved confounders A,B. This is feasible, because
conditional on the observed U,V,W, the relationship between X and Y is
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not confounded. (If the kernels have causal interpretations, “effect” is meant
literally; if not, figuratively.)

To fix ideas, we can go through the construction of the random vari-
ables. There is a base probability µ for A. First, choose A at random from
µ. Given A, choose B,U,X independently at random from KA,LA,MA,
respectively. Given A,B,U,X, choose V at random from NU,X. Given
A,B,U,X, V , choose W at random from QB,V . Finally, given A,B,U,X,

V,W , choose Y at random from RX,V,W . The data set consists of n inde-
pendent septuples Ai, Bi, Ui, Xi, Vi, Wi, Yi . Each septuple is distributed
as A,B,U,X, V,W, Y . The kicker is that the A’s and B’s are hidden. The
“parameters” are µ and the six kernels. Calculations proceed as for Figure 3.
Again, the graph and the description in terms of kernels are equivalent. De-
tails are (mercifully?) omitted.

8. PARAMETRIC NONLINEAR MODELS

Similar considerations apply to parametric nonlinear models. Take the
logit specification, for example. Let Xi be a p-dimensional random vector,
with typical value xi ; the random variable Yi is 0 or 1. Let β be a p-
dimensional vector of parameters. For the p-dimensional data vector x, let
Kx assign mass

eβx
/(

1 + eβx
)

to 1, and the remaining mass to 0. Given X1, . . . , Xn, each being a p-vector,
suppose the Yi are conditionally independent, and

P(Yi = 1|X1 = x1, . . . , Xn = xn) = Kxi . (6)

On the right hand side of (6), the subscript on K is xi : the conditional distri-
bution of Y for a subject depends only on that subject’s x. If the x1, . . . , xn
are reasonably spread out, we can estimate β by maximum likelihood. (With
a smooth, finite-dimensional parametrization, we do not need the Xi to be
independent and identically distributed.)

Of course, this model could be set up in a more strongly invariant form,
like (1). Let Ui be independent (unobservable) random variables with a
common logistic distribution: P(Ui < u) = eu/(1 + eu). Then

Yi,x = 1 ⇐⇒ Ui < βx. (7)

The exogeneity assumption would make the X’s independent of the U ’s, and
the observable Yi would be Yi,Xi

. That is, Yi = 1 if Ui < βXi , else Yi = 0.
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This is all familiar territory, except perhaps for (7); so familiar that
the critical question may get lost. Does Kx merely represent the conditional
probability thatP(Yi = 1|Xi = x), as in (6)? Or doesKx tell us what the law
of Yi would have been, if we had intervened and set Xi to x? Where would
the Ui come from, and why would they be invariant if we were to intervene
and manipulate x? Nothing in the mysteries of Euclidean geometry and
likelihood statistics can possibly answer this sort of question. Other kinds
of information are needed.

9. CONCOMITANTS

Some variables are potentially manipulable; others (“concomitants”)
are not. For example, education and income may be manipulable; age,
sex, race, personality, . . . , are concomitants. So far, we have ignored this
distinction, which is less problematic for kernels, but a difficulty for the kind
of strong invariance in equation (1). If Y depends on a manipulable X and
a concomitant W through a linear causal law with additive error, we can
rewrite (1) as

Yi,x = a + bx + cWi + δi . (8)

In addition to the usual assumptions on the δ’s, we would have to assume
independence between the δ’s and the W ’s. Similar comments apply when
there are several manipulable variables, or logits, probits, and so forth. In
applications, defining and isolating the intervention may not be so easy, but
that is a topic for another day. Also see Robins (1986, 1987).

10. THE STORY BEHIND FIGURES 3 AND 4

When some variables are unobserved, Pearl (1995) develops an interest-
ing calculus to define confounding and decide which kernels or composites—
see (5) for example—can be recovered from the joint distribution of the ob-
served variables. That is a solution to the identification problem for such
diagrams. He uses Figure 3 to illustrate his “front-door criterion.” The un-
observed variable X is genotype; the observed variables Y,Z,W represent
smoking, tar deposits in the lung, and lung cancer, respectively (Figure 5).
The objective is to determine the effect of smoking on lung cancer, via (5).
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Figure 5: A Graphical Model for Smoking and Lung Cancer.

Data in this example would consist of a long series of independent
triplets (Yi, Zi,Wi), each distributed like (Y, Z,W). Pearl interprets the
graph causally. The timeworn idea that subjects in a study form a random
sample from some hypothetical super-population still deserves a moment of
respectful silence. Moreover, there are three special assumptions in Figure 5:

(i) Genotype has no direct effect on tar deposits.

(ii) Smoking has no direct effect on lung cancer.

(iii) Tar deposits can be measured with reasonable accuracy.

There is no support for these ideas in the literature. (i) The lung has a
mechanism—“the mucociliary escalator”—for eliminating foreign matter,
including tar. This mechanism seems to be under genetic control. (Of
course, clearance mechanisms can be overwhelmed by smoking.) The for-
bidden arrow from genotype to tar deposits may have a more solid empirical
basis than the permitted arrows from genotype to smoking and lung cancer.
Assumption (ii) is just that—an assumption. And (iii) is clearly wrong. The
consequences are severe: if arrows are permitted from genotype to tar de-
posits or from smoking to lung cancer, or if measurements of tar are subject
to error, then formula (5) does not apply. Graphical models cannot solve the
problem created by an unmeasured confounder without introducing strong
and artificial assumptions.

The intellectual history is worth mentioning. Fisher’s “constitutional
hypothesis” explained the association between smoking and disease on the
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basis of a gene that caused both. This idea is refuted not by making as-
sumptions but by doing some empirical work. For example, Kaprio and
Koskenvuo (1989) present data from their twin study. The idea is to find
pairs of identical twins where one smokes and one does not. That sets up a
race: who will die first, the smoker or the non-smoker? The smokers win
hands down, for total mortality or death from heart disease. The genetic
hypothesis is incompatible with these data.

For lung cancer, the smokers win two out of the two races that have
been run. (Why only two? Smoking-discordant twin pairs are unusual, lung
cancer is a rare disease, and the population of Scandinavia is small.) Carmelli
and Page (1996) have a similar analysis with a larger cohort of twins. Do not
bet on Fisher. International Agency for Research on Cancer (1986) reviews
the health effects of smoking and indicates the difficulties in measuring
tar deposits (pp.179–98). Nakachi et al. (1993) and Shields et al. (1993)
illustrate conflicts on the genetics of smoking and lung cancer. Also see
Miller et al. (2003). The lesson: finding the mathematical consequences
of assumptions matters, but connecting assumptions to reality matters even
more.

Pearl uses Figure 4 to illustrate his “back-door criterion,” calling the
figure a “classical example due to Cochran,” with a cite to Wainer (1989).
Pearl’s vision is that soil fumigants X are used to kill eelworms and improve
crop yields Y for oats. The decision to apply fumigants is affected by the
worm population A before the study begins, hence the arrow from A to X.
The worm population is measured at baseline, after fumigation, and later
in the season: the three measurements are U,V,W . The unobserved B

represents “birds and other predators.”
This vision is whimsical. The example originates with Cochran (1957,

266) who had several fumigants applied under experimental control, with
measurements of worm cysts and crop yield. Pearl converts this to an obser-
vational study with birds, bees, and so forth—entertaining, a teaching tool,
but unreal. It might be rude to ask too many questions about Figure 4, but
surely crops attract predators? Don’t birds eat oat seeds? If early birds get
the worms, what stops them from eating worms at baseline? In short, where
have all the arrows gone?

11. MODELS AND KERNELS REVISITED

Graphical models may lead to some interesting mathematical devel-
opments. The number of successful applications, however, is at best quite
limited. The examples discussed here are not atypical. Given that the ar-
rows and kernels represent causation, while variables are independent and
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identically distributed, we can use Pearl’s framework to determine from the
diagram which effects are estimable. This is a step forward. However, we
cannot use the framework to answer the more basic question: Does the dia-
gram represent the causal structure? As everyone knows, there are no formal
algorithmic procedures for inferring causation from association; everyone
is right.

Pearl (1995) considers only models with a causal interpretation, the
latter being partly formalized; and there is new terminology that some readers
may find discouraging. On the other hand, he draws a clear distinction
between averaging Y ’s when the corresponding X is

• set to x, and
• observed to be x in the data.

That is a great advantage of his formalism.
The approach sketched here would divide the identification problem in

two: (i) reconstructing kernels, viewed as ordinary conditional distributions,
from partial information about joint distributions; and (ii) deciding whether
these kernels bear a causal interpretation. Problem (i) can be handled entirely
within the conventional probability calculus. Problem (ii) is one of the
basic problems in applied statistics. Of course, kernels—especially mixtures
like (5)—may not be interesting without a causal interpretation.

In sum, graphical models can be formulated using conditional distribu-
tions (“Markov kernels”), without invariance assumptions. Thus, the graphs
can be interpreted either distributionally or causally. The theory governing
recovery of kernels and their mixtures can be pushed through with just the
distributional interpretation. That frees us to consider whether or not the
kernels admit a causal interpretation.

So far, the graphical modelers have few if any examples where the causal
interpretation can be defended. Pearl generally agrees with this discussion:

Causal analysis with graphical models does not deal with defending
modeling assumptions, in much the same way that differential calcu-
lus does not deal with defending the physical validity of a differential
equation that a physicist chooses to use. In fact no analysis void of ex-
perimental data can possibly defend modeling assumptions. Instead,
causal analysis deals with the conclusions that logically follow from
the combination of data and a given set of assumptions, just in case
one is prepared to accept the latter. Thus, all causal inferences are
necessarily conditional. These limitations are not unique to graphical
models. In complex fields like the social sciences and epidemiology,
there are only few (if any) real life situations where we can make
enough compelling assumptions that would lead to identification of
causal effects [Pearl, private communication].
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12. LITERATURE REVIEW

The model in (1) was proposed by Neyman (1923). It has been redis-
covered many times since; see, for instance, Hodges and Lehmann (1964,
section 9.4). The setup is often called “Rubin’s model,” but this simply
mistakes the history. See Dabrowska and Speed (1990), with a comment by
Rubin. Compare Rubin (1974) and Holland (1986). Holland (1986, 1988)
explains the setup with a super-population model to account for the ran-
domness, rather than individualized error terms. These error terms are often
described as the overall effects of factors omitted from the equation. But this
description introduces difficulties of its own, as shown by Pratt and Schlaifer
(1984, 1988). Stone (1993) presents a clear super-population model with
some observed covariates and some unobserved.

Dawid (2000) objects to counterfactual inference. Counterfactual dis-
tributions may be essential to any account of causal inference by regression
methods. On the other hand, as the present paper tries to show, invariant
counterfactual random variables—like δi in equation (1)—are dispensable.
In particular, with kernels, there is no need to specify the joint distribution
of random variables across inconsistent hypotheticals.

There is by now an extended critical literature on statistical modeling,
starting perhaps with the exchange between Keynes (1939, 1940) and Tin-
bergen (1940). Other familiar citations in the economics literature include
Liu (1960), Lucas (1976), and Sims (1980). Manski (1995) returns to the
under-identification problem that was posed so sharply by Liu and Sims. In
brief, a priori exclusion of variables from causal equations can seldom be
justified, so there will typically be more parameters than data. Manski sug-
gests methods for bounding quantities that cannot be estimated. Sims’ idea
was to use simple, low-dimensional models for policy analysis, instead of
complex-high dimensional ones. Leamer (1978) discusses the issues created
by inferring the specification from the data, as does Hendry (2000). Engle,
Hendry, and Richard (1983) distinguish several kinds of exogeneity, with
different implications for causal inference.

Heckman (2000) traces the development of econometric thought from
Haavelmo and Frisch onwards, stressing the role of “structural” or “invari-
ant” parameters, and “potential outcomes”; also see Heckman (2001ab).
According to Heckman (2000), the enduring contributions are the insights
that—

. . . . causality is a property of a model, that many models may explain
the same data and that assumptions must be made to identify causal
or structural models . . . . recognizing the possibility of interrelation-
ships among causes . . . . [clarifying] the conditional nature of causal
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knowledge and the impossibility of a purely empirical approach to
analyzing causal questions . . . . The information in any body of data
is usually too weak to eliminate competing causal explanations of the
same phenomenon. There is no mechanical algorithm for producing
a set of “assumption free” facts or causal estimates based on those
facts. [pp. 89–91]

For another discussion of causal models from an econometric perspective,
see Angrist (2001), or Angrist, Imbens and Rubin (1996). Angrist and
Krueger (2001) provide a nice introduction to instrumental variables; an
early application of the technique was to fit supply and demand curves for
butter (Wright, 1928, 316).

One of the drivers for modeling in economics and cognate fields is
rational choice theory. Therefore, any discussion of empirical foundations
must take into account a remarkable series of papers, initiated by Kahneman
and Tversky (1974), that explores the limits of rational choice theory. These
papers are collected in Kahneman, Slovic, and Tversky (1982), and in Kah-
neman and Tversky (2000). The heuristics and biases program has attracted
its own critics (Gigerenzer, 1996). That critique is interesting and has some
merit. In the end, however, the experimental evidence demonstrates severe
limits to the descriptive power of choice theory (Kahneman and Tversky,
1996).

If people are trying to maximize expected utility, they don’t do it very
well. Errors are large and repetitive, go in predictable directions, and fall into
recognizable categories: these are biases, not random errors. Rather than
making decisions by optimization—or bounded rationality, or satisficing—
people seem to use plausible heuristics that can be identified. If so, rational
choice theory is generally not a good basis for justifying empirical models of
behavior. Sen (2002) makes a far-reaching critique of rational choice theory,
based in part on the work of Kahneman and Tversky.

Recently, modeling issues have been much canvassed in sociology.
Berk (2003) is skeptical about the possibility of inferring causation by mod-
eling, absent a strong theoretical base. Abbott (1997) finds that variables
(like income and education) are too abstract to have much explanatory power;
also see Abbott (1998). Clogg and Haritou (1997) review various difficul-
ties with regression, noting in particular that you can all too easily include
endogenous variables as regressors.

Goldthorpe (1998, 2001) describes several ideas of causation and cor-
responding methods of statistical proof, with different strengths and weak-
nesses; he finds rational choice theory to be promising. Hedström and Swed-
berg (1998) edited a lively collection of essays by a number of sociologists,
who turn out to be quite skeptical about regression models; rational choice
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theory takes its share of criticism. Nı́ Bhrolcháin (2001) has some partic-
ularly forceful examples to illustrate the limits of regression. There is an
influential book by Lieberson (1985), with a followup by Lieberson and
Lynn (2002). The latest in a series of informative papers is Sobel (2000).

Meehl (1978) reports the views of an empirical psychologist; also
see Meehl (1954), with data showing the advantage of using regression to
make predictions—rather than experts. Meehl and Waller (2002) discuss the
choice between similar path models, viewed as reasonable approximations
to some underlying causal structure, but do not reach the critical question—
how to assess the adequacy of the approximation. Steiger (2001) has a
critical review.

There are well-known books by Cook and Campbell (1979) and by
Shadish, Cook, and Campbell (2002). In political science, Brady and Col-
lier (2004) compare regression methods with case studies; invariance is
discussed under the rubric of causal homogeneity. Cites from other perspec-
tives include Freedman, Rothenberg, and Sutch (1983), Oakes (1986), as
well as Freedman (1985, 1987, 1991, 1995, 1999).

There is an extended literature on graphical models for causation.
Greenland, Pearl and Robins (1999) give a clear account in the context
of epidemiology. Lauritzen (1996, 2001) has a careful treatment of the
mathematics. These authors do not recognize the difficulties in applying the
methods to real problems.

Equation (5) is a special case of the “g-computation algorithm” due to
Robins (1986, 1987); also see Gill and Robins (2004), Pearl (1995, 2000),
or Spirtes, Glymour and Scheines (1993). Robins (1995) explains—all too
briefly—how to state Pearl’s results as theorems about conditionals.

For critical reviews of graphical models (with responses and further
citations) see Freedman (1997), Humphreys (1997), Humphreys and Freed-
man (1996, 1999): among other things, these papers discuss various appli-
cations proposed by the modelers. Woodward (1997, 1999) stresses the role
of invariance.

Freedman and Stark (1999) show that different models for the correla-
tion of outcomes across counterfactual scenarios can have markedly differ-
ent consequences in the legal context. Scharfstein, Rotnitzky, and Robins
(1999) demonstrate a large range of uncertainty in estimates, due to incom-
plete specifications; also see Robins (1999).
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