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1. The short answer

After a sketch of likelihood theory, this paper will answer the question in the
title. In brief, suppose we use Rao’s score test, normalized by observed information
rather than expected information. Furthermore, we compute observed information
at θ̂S , the parameter value maximizing the log likelihood over the null hypothesis.
This is a restricted maximum. At a restricted maximum, observed information can
generate negative variance estimates—which makes inconsistency possible.

At the unrestricted maximum, observed information will typically be positive
definite. Thus, if observed information is computed at the unrestricted MLE, con-
sistency should be restored. The “estimated expected” information is also a good
option, when it can be obtained in closed form. (Similar considerations apply to
the Wald test.) However, the score test may have limited power if the “expected
likelihood equation” has spurious roots: details are in section 8 below.

The discussion provides some context for the example in Morgan, Palmer, and
Ridout (2007), and may clarify some of the inferential issues. Tedious complications
are avoided by requiring “suitable regularity conditions” throughout: in essence,
densities are positive, smooth functions that decay rapidly at infinity, and with some
degree of uniformity. Mathematical depths can be fathomed another day.

David A. Freedman is Professor, Department of Statistics, University of California
Berkeley, CA 94720-3860 (E-mail: freedman@stat.berkeley.edu). Peter Westfall
(Texas Tech) made many helpful comments, as did Morgan, Palmer, and Ridout.
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2. Fisher information

Let i index observations whose values are xi . Let θ be a parameter vector. Let
x → fθ (x) be a positive density. If x takes only the values 0, 1, 2, . . . which is the
chief case of interest here, then fθ (j) > 0 and

∑
j fθ (j) = 1. Many applications

involve real- or vector-valued x, and the notation is set up in terms of integrals
rather than sums. With respect to the probability Pθ , let Xi be independent random
variables for i = 1, . . . , n, having common probability density fθ .

For any smooth function θ → φ(θ), we view

φ′(θ) = ∂

∂θ
φ(θ)

as a column vector, while

φ′′(θ) = ∂2

∂θ2 φ(θ)

is a matrix. In short, primes mean differentiation with respect to θ . For example,
f ′
θ (x) = ∂fθ (x)/∂θ .

The Fisher information matrix, aka expected information, is

I (θ) = −Eθ
{ ∂2

∂θ2 log fθ (Xi)
}

= Eθ

{[f ′
θ (Xi)

fθ (Xi)

]T [f ′
θ (Xi)

fθ (Xi)

]}
, (1)

where the superscript T means transpose and Eθ is expectation with respect to the
probability Pθ . The last equality in (1) holds because

∫
fθ (x) dx = 1, so∫

f ′
θ (x) dx =

∫
f ′′
θ (x) dx = 0. (2)

3. The likelihood function

Recall that Pθ makes X1, X2, . . . , Xn independent, with common density fθ .
The log likelihood function is

L(θ) =
n∑
i=1

log fθ (Xi). (3)

The first derivative of the log likelihood function is

L′(θ) =
n∑
i=1

∂

∂θ
log fθ (Xi). (4)
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This column vector is the score function. The second derivative of the log likelihood
function is

L′′(θ) =
n∑
i=1

∂2

∂θ2 log fθ (Xi). (5)

This is a matrix.
To avoid cumbersome notation in what follows, let

g(θ, x) = f ′
θ (x)/fθ (x), h(θ, x) = f ′′

θ (x)/fθ (x), (6)

with g a column vector and h a matrix; again, the primes mean differentiation with
respect to θ . Then

L′(θ) =
n∑
i=1

g(θ,Xi),

L′′(θ) =
n∑
i=1

[
h(θ,Xi)− g(θ,Xi)

T g(θ,Xi)
]
. (7)

4. The MLE and observed information

The MLE θ̂ maximizes the log likelihood function, and the average observed
information is

O(θ̂) = −L′′(θ̂)/n; (8)

averaging may not be standard, but puts O on the same scale as I .
With large samples, the covariance matrix of θ̂ is approximately I (θT )−1/n,

where I is the Fisher information matrix and θT is the parameter value that governs
data generation. Of course, θT is usually unknown, and is replaced by θ̂ . In
applications, the Fisher information matrix itself usually has to be approximated
by the average observed information O, which is fine because the sample size n is
big.

For testing, we can restrict θ to lie in the subspace of parameters corresponding
to the null hypothesis: θ̂S is the θ that maximizes the log likelihood subject to this
restriction. (The subscript S is for “subspace.”) The corresponding idea of observed
information is O(θ̂S). When the null hypothesis is true, O(θ̂S) → I (θT ). When
the null hypothesis is false, the story is more complicated, as explained below.

5. Asymptotics

Recall that θT is the (unknown) true value of θ . As a subscript, T means “true”;
as a superscript, “transpose.” Under suitable conditions, as the sample size grows,
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θ̂ → θT and θ̂S → θS with θT -probability 1, where θS satisfies the null hypothesis;
moreover, if θn → θ with probability 1, then

L′(θn)
n

→ EθT
{
g(θ,Xi)

}
, (9)

−L
′′(θn)
n

→ A− B, (10)

where

A = EθT
{
g(θ,Xi)

T g(θ,Xi)
}
,

B = EθT
{
h(θ,Xi)

}
,

while g and h were defined in (6). Thus,

−L
′′(θ̂S)
n

→ EθT
{
g(θS,Xi)

T g(θS,Xi)− h(θS,Xi)
}

= ψ(θT , θS), (11)

−L
′′(θ̂)
n

→ EθT
{
g(θT ,Xi)

T g(θT ,Xi)− h(θT ,Xi)
}

= I (θT ). (12)

If the null hypothesis holds, the right side of (11) is Fisher information, be-
cause θT = θS and Eθ

{
h(θ,Xi)

} = 0: see (1) and (2). Under the alternative
hypothesis, the right side of (11) is a new function ψ of θT and θS . Although
EθT

{
g(θ,Xi)

T g(θ,Xi)
}

is positive definite for any θ , the matrix ψ(θT , θS) is am-
biguous due to the h-term; some of its eigenvalues may be positive, and some
negative.

Observed information at the unrestricted MLE is covered by (12), which shows
that O(θ̂) converges to Fisher information and is positive definite when the sample
is large. As before, (1) and (2) can be used to prove the last equality in (12).

6. The score test

We turn now to the score test, and consider three test statistics, normalized by
three flavors of the information matrix:

Sn = L′(θ̂S)T I (θ̂S)−1L′(θ̂S)/n, (13)

Tn = L′(θ̂S)T O(θ̂S)−1L′(θ̂S)/n, (14)

Un = L′(θ̂S)T O(θ̂)−1L′(θ̂S)/n. (15)

Version (13) is based on “estimated expected” information at the restricted MLE
satisfying the null hypothesis. This is the conventional textbook version, governed
by conventional asymptotic theory.
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In practice, however, I (θ) usually cannot be obtained in closed form, so applied
workers may turn to version (14)—with expected information replaced by average
observed information at the restricted MLE: see (8). Option (15) takes average
observed information at the unrestricted MLE, and is not widely used for the score
test.

Under the null hypothesis, all three statistics should have the right asymptotic
distribution—χ2 with d degrees of freedom, if the null hypothesis restricts θ to a
linear subspace with codimension d. Power calculations for alternatives that are
close to the null at the 1/

√
n scale are likely fine as well. (Such alternatives must

change with n.)
At any fixed alternative θT—which does not change with n—it gets more

interesting. Equations (9–12) imply that with θT -probability 1,

Sn/n → q(θT , θS)
T I (θS)

−1q(θT , θS), (16)

Tn/n → q(θT , θS)
T ψ(θT , θS)

−1q(θT , θS), (17)

Un/n → q(θT , θS)
T I (θT )

−1q(θT , θS), (18)

where

q(θT , θS) = EθT
{
g(θS,Xi)

}
, (19)

g(θ, x) = f ′
θ (x)/fθ (x).

Thereby hangs our tale. Since I (θ) is positive definite, the limit of Sn/n
should be positive, i.e., Sn tends to +∞ with n. So the score test defined by (13)
is consistent (rejects with high probability when the alternative is true). However,
since ψ is ambiguous, the limit of Tn can be −∞. Then the test defined by (14),
with observed information computed from the null hypothesis, will be inconsistent.

The test defined by (15), with observed information taken at the unrestricted
MLE, behaves like (13). This option may be less efficient at alternatives close to
the null. However, it is consistent, and therefore more robust. Perhaps it should be
used more widely.

Since L′(θ) = ∑n
i=1 g(θ,Xi), normalizing the score test by the empirical

covariance matrix of the summands g(θ̂S, Xi) is another option to consider.
Initially, the different scales in (13–18) may be puzzling. In (13–15), the scale

is adapted to the null hypothesis. If θT does indeed satisfy the null, then L′(θ̂S)/
√
n

is asymptotically normal, with mean 0 and covariance I (θT ): see (1) and (4). In
(16–18), the scale is adapted to the alternative: then L′(θS)/n converges to a limit
by (9).

7. The rabbit data

Morgan, Palmer, and Ridout provide an example. They consider a mixture
distribution on the non-negative integers, with parameters (w, λ). There is mass w
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at 0. The remaining mass 1 − w is distributed as Poisson with parameter λ > 0.
The null hypothesis is w = 0. The model is estimated on data for the size of rabbit
litters. (We restrict w so 0 ≤ w ≤ 1; Morgan, Palmer, and Ridout allow a wider
range of w’s, and write ω for w.)

Along the slicew = 0, the log likelihood function is concave, with a maximum
at λ̂0, the MLE for λ under the restriction w = 0. Plainly, λ̂0 is the sample mean,
which is about .46. However, as a function of w and λ, the log likelihood has a
saddle point at the point w = 0, λ = .46: the observed information matrix has one
positive eigenvalue and one that is negative.

What happens if the sample size grows? Suppose for instance that w = .8 and
λ = 2. The mean of this mixture distribution is (1 − w)λ = .4. So λ̂0 → .4 and
n0/n → .8+ .2e−2 .= .83, where n0 is the number of 0’s in the data. (For the rabbit
data, the fraction of 0s is .78; numerical results are rounded to two decimal places.)

The observed information matrix, evaluated at the restricted MLE and normal-
ized by n, converges to (+0.39 −1.23

−1.23 +2.50

)
; (20)

this is immediate from the formulas in Morgan, Palmer, and Ridout. The inverse is(−4.64 −2.29
−2.29 −0.73

)
. (21)

These matrices have one positive eigenvalue and one that is negative. With negative
entries on the diagonal, (21) is a sorry excuse for an asymptotic covariance matrix.

We reject the null hypothesis that w = 0 when the score statistic is large—
referred to a χ2

1 distribution in this application. However, the score function, evalu-
ated at the restricted MLE and divided by n, converges to the column vector (.23, 0).
In view of (21), the score statistic (14) divided by n converges to a negative number.

Thus, the score test based on (14) is inconsistent. Indeed, the power is 0. There
will be many parameter values for which this conclusion holds. In short, the data
set in the paper is typical not exceptional, given the mixture model considered by
the authors.

Paradoxically, the test does better at alternatives close to the null hypothesis
on the 1/

√
n scale, for instance, θT = (5/

√
n, 2). Here, as in most of the literature

on local alternatives, the data-generating θT changes with n.
What happens if observed information is computed at the unrestricted MLE?

The matrix O(θ̂) converges, along with I (θ̂), to the Fisher information matrix(+5.87 −0.16
−0.16 +0.08

)
, (22)

whose inverse is (+0.18 +0.36
+0.36 +13.54

)
. (23)
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Now consistency of the score test is assured, although λ is hard to estimate: the
asymptotic variance is 13.54/n, compared to .18/n for w: see (23). We are still
assumingw = .8 and λ = 2, and using the formulas in Morgan, Palmer, and Ridout.

8. Inconsistency due to spurious roots

In (19), is

EθT

{f ′
θ (Xi)

fθ (Xi)

}
�= 0 (24)

for θ �= θT ? This inequality helps to show consistency for the score test. The
inequality is plausible because the entropy of Q relative to P is

∫
log

(dQ
dP

)
dP =

∫
log

(Q′

P ′
)
P ′dµ. (25)

Here, Q′ is the derivative with respect to a dominating µ, and likewise for P ′.
Relative entropy is a smooth, concave function of Q with a strict maximum at
Q = P . In a natural parameterization, (24) is therefore likely to hold: takeP = PθT
and Q = Pθ . On the other hand, if the map θ → Pθ is sufficiently peculiar, then
(24) becomes problematic.

We give an example where (24) fails and the score test is inconsistent—even if
based on expected information. The observation space is {0, 1, 2}. The parameter
θ is confined to the open unit interval (0, 1). Suppose Pθ puts mass θ at 1. The
remaining mass 1 − θ is split between 0 and 2, in the proportion 1 − π(θ) to π(θ),
with π a polynomial to be determined. We require 0 < π(θ) < 1 for 0 < θ < 1.
For consistency with previous notation, we write fθ (x) = Pθ(x).

Fix θT in (0, 1), for instance, θT = 1/2. Let

φ(θ) = EθT

{f ′
θ (Xi)

fθ (Xi)

}
. (26)

The equation φ(θ) = 0 is the “expected likelihood equation” referred to above. We
choose π so that φ(θ) = 0 has a root θ0 �= θT in (0, 1). By trial and error on the
computer, we arrive at the quadratic

π(θ) = .9999 − (θ − 1/3)2. (27)
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Fig. 1. Graph of π(θ) against θ .
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Of course, π is positive and concave, with a maximum of .9999 at 1/3 (graph in
Fig. 1). Getting the maximum so close to 1 is essential. The function φ in (26) has
two real roots other than θT , one near .31 and the other near .33 (graph in Fig. 2).
With a large sample drawn from θT , the score function is essentially nφ. So the log
likelihood function will have a local maximum near .31, where the score function
changes sign from + to −, a local minimum near .33, and a global maximum near
θT = .5.

Fig. 2. Graph of φ(θ) against θ .
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Let θ0 be a root of φ = 0 other than θT . The parameter θ is identifiable, being
fθ (1). However, the score test is inconsistent (power at θT does not approach 1 as
sample size grows) for the null θ = θ0 against the alternative θ �= θ0. This will be
so even if variance is computed from expected information. Indeed, the test statistic
is then

1

nI (θ0)

(
n∑
i=1

f ′
θ0
(Xi)

fθ0(Xi)

)2

. (28)
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This statistic is asymptotically χ2
1 I (θT )/I (θ0) when sampling from θT , because

φ(θ0) = EθT
{
f ′
θ0
(Xi)/fθ0(Xi)

} = 0 by construction. In short, the score test
statistic does not tend to infinity as it should.

The issue seems to be the peculiar behavior of fθ (0). Intuition about the
MLE may be based on log concave likelihood functions, as discussed above, but
log [fθ (0)] is strongly convex near .33 (graph in Fig. 3). Inequality (24) holds for
the relevant θ ’s in Morgan, Palmer, and Ridout.

Fig. 3. Graph of log [fθ (0)] against θ .
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9. Literature

Bahadur (1971), Rao (1973), and Lehmann and Romano (2005) give rigorous
accounts of the likelihood theory sketched here; also see White (1994), Stigler,
Wong, and Xu (2002). Section 13.3 in Lehmann and Romano demonstrates local
optimality of the score test, and notes the difficulty created by remote alternatives.
For the history of likelihood methods, see Stigler (2007). Huber (1967) discusses
the behavior of the MLE when the model is wrong—which includes the behavior
of θ̂S under θT .

In some mixture models, the MLE is ill-defined, unstable, or inconsistent;
modified estimators have been proposed. For examples, see Day (1969), Ferguson
(1982), Deveaux (1989), Cutler and Cordero-Braña (1996). LeCam (1990) has a
variety of examples where the MLE is poorly behaved.

Pawitan (2001, pp. 237, 247) discusses the three flavors of the score test given
by (13)-(14)-(15), and mentions the possibility of negative variance estimates with
(14). Schreiber (2006) finds asymptotically negative χ2 statistics in Hausman’s test.
Non-monotone power functions for the Wald test are discussed by Nelson and Savin
(1990); also see Fears, Benichou, and Gail (1996).

Reeds (1985) shows that for the translation Cauchy problem, the likelihood
equation L′ = 0 has spurious roots with positive probability; but these are farther
than 2n − √

n from θT . Our example has two roots, which do not wander off to
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infinity. We start from the expected likelihood equation

EθT

{f ′
θ (Xi)

fθ (Xi)

}
= 0, (29)

rather than the likelihood equation computed from sample data, that is,

1

n

n∑
i=1

f ′
θ (Xi)

fθ (Xi)
= 0. (30)

(Both equations are to be solved for θ .)
Verbeke and Molenberghs (2007) discuss a number of problems likely to arise

for the score test, including observed information matrices that generate negative
variance estimates. That is the problem illustrated by the rabbit data in Morgan,
Palmer, and Ridout. Further analytic detail is provided by sections 2–7 above.
As shown in section 8, lack of power at remote alternatives—especially when the
expected likelihood equation has spurious roots—should also be on the list of things
to think about.
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