DA Freedman Notes on the MLE Fall 2003

The object here is to provide a sketch of the theory of the MLE. Rigorous presentations can
be found in the references cited below.

Calculus. Let f be a smooth, scalar function of tlrex 1 vectorx. We view f" as a 1x p
vector of partial derivative&f/ox; : i =1,..., p}. Likewise, f” isap x p matrix andf” is a
3-D array of partials. As a matter of notatioff, is the derivative off andg?’ is the transpose of
g. Moreover,| x| is the Euclidean normijx||2 = 3"7_, x2. Abbreviate
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(1) Lemma. Let

M = maxmax | f7l;

ijk lxl<é

the indices, j, andk need not be distinct. Ifx| < §, then

1
f(x) = fO) + f'(Ox + Efo”<O)x + g(x)

where 1
lg(x)] < 5p3/2M||x||3.

Sketch of proof. We may assume th&t0) = f/(0) = f”(0) = 0. Fix x with ||x|| < §; let
0 <u < 1;viewg(u) = f(ux)asascalarfunction of the scalatheng (0) = ¢’'(0) = ¢”(0) = 0,
so¢ (u) = u3¢" (v)/3! by Taylor's theorem, with G< v < u. Now 0< »® < 1, and
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by the inequality of Cauchy-Schwarz.
Let ¢ be a smooth Xk p function ofx. We viewg’ asp x p; and

gx+8) =gx)+87¢x)+ 081> ass— O.



(2) Lemma. Leth = fg, wheref is scalar ang is 1 x p; both functions are smooth. Théhis
p X p and
=fe'+r"s
Examples. Supposez is a 1x p vector of reals andf(x) = ax. Then f'(x) = a and
f"”(x) = 0. Supposet is ap x p matrix of reals, perhaps asymmetric, andt) = x” A. Then
g’ (x) = Aandg”(x) = 0. Leth(x) = xT Ax. Thenh'(x) = xT (A + AT), W’ (x) = (A + AT)
andh” (x) = 0.

Fisher information. Let fy(x) be a density, bounded, positive, vanishing rapidijtés> oo.
There are problems at boundary points; we takedx to be Euclideand, x — fy(x) is assumed
smooth. Now/ fy(x)dx =1, so
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TheFisher Information Matrix is

82
160) = - [ (372109500) fot) dx.

(4) Lemma.

10) = [ (5510950)" (55109 f50)) fo(o) dx

=/<%fe(x)) ( folx )>f9( ;

Proof. To begin with,

0
5 £|ng9(x) m@fe( x).

Then by (2),
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and (3) completes the proof.

The statistical model. Let X; be measurable functions g, ) fori = 1, ..., n, with
values inRY. Forf € RP, let Py be a probability or2, ). With respect to the probabilit,, let
X, be independent random variables, having common probability defysday RY. In particular,
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53100 fo (X)) |.
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We assumd (0) is invertible. By (3) and (4),

©® £ | log fo(Xn) =0, van | L log fy (x| = 1¢6).

Thelog likelihood function is
L©6) =) log fo(X).
i=1

The X; are often viewed as fixed, the variabl@isWrite 6p for the (unknown) true value @f. The
first derivative of the log likelihood function is

n

0
L'©0) =) —-log fo(Xi).

i=1

Of course,L’(9) is random, because it depends on Ke this is suppressed in the notation. By

(6),

(7 Eo{L'(0)} =0, varn{L'(6)}=nl®).

The MLE 6, by definition, maximizes the likelihood function. (Technically, there may be
multiple maxima, but see below; with weaker conditions, there may be no maximum, but the theory
can still be pushed through.) The main result to be discussed here says that asymptotically, the
MLE is normal, with meary and variancd (6p) ~1/n. Asymptotic optimality is another idea, see
the references below.

(8) Theorem. As: — oo, the Py,-distribution ofﬁ(é — 6p) converges to normal, with mean O
and variancd (6p) L.

Sketch of proof. By entropy considerations, for largehe MLE will almost surely be within a
small neighborhood of the true parameter vakuendeed, iff andg are densities, thefi f log g <

[ flog f unlessg = f. SoL(#) is much smaller that(fp) unless|é — 6p| < 8. Then the log
likelihood function can be expanded in a Taylor series ara@ignd

1
L(0) = L(6o) + L' (60)(6 — o) + 50~ 60)" L" (60)(6 — 60) + R.

The lead terni.(6p) is random; but since this term does not depend,ats behavior is immaterial.
The first derivativel.’ (0p) is asymptotically normal with mean 0 and variand€6) by the central
limit theorem and (7). By the strong law,’ (60) ~ —n1(6p). The remainder tern® has

[R| = O(nll6 — 6o]l°)
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by (1), and is negligible relative to the quadratic term. Thus, the MlgSsentially maximizes
/ 1 Ty
6 — L'(60)(0 — 6o0) + 5(0 —6o)” L"(60) (0 — 6o).

So
6 — 0o~ —L"00) 1L 60T

and is asymptotically N(Q (69) ~1/n), as required.

The maximum can be found by setting the derivative to 0. The “likelihood equatie) =
(almost) boils down to
L'(60) + (0 — 60)" L" (60) = O.

The “observed informationL”(9)/n can be used to approximate Fisher information. There is
similar theory for integer-valued random variables, for random variables with fairly general range
spaces, foP a half-space, an open subsetr, etc., etc.

Testing. Let ®g be app-dimensional subset akR”. We wish to test the null hypothesis
thatdpy € Og. Letdy be the MLE, where the maximization is restricted@g. For a simple
hypothesis, Wald's-test compares the MLE to its SE and there is a version like Hotellifig’s
for composite hypotheses. The Neyman-Pearson (or Wilks) statistid.i® 2[- L(9p)], which
has under the null hypothesis an asymptgzgﬁgp0 distribution. Rao’s score test uses the statistic
L'(B0)1(Bo) L' (60)T /n; again the asymptotic distribution J§_ - Atinterior points, these test
statistics are asymptotically equivalent; at boundary points, Wald’s test and the Neyman-Pearson
statistic get into trouble, while the score test often does fine. The leading special case for the
null distribution of these tests has= 1, X ~ N(6o, I), SO I(6p) is the identity matrix, and
©o = {0 : Opo+1 = --- = 6, = 0}. The general case follows by change of variables and rotation.

Examples. Suppose thdJ; are 1ID N(x, 1), the V; are IID N(8, 1), theU’s and V's are
independent. LekX; = (U;, V;) andf = (a, B). Now

2L(0) = nlog % =Y Wi =0 =) (Vi = V)* = n(U — a)* —n(V — p)°.
i=1 i=1

The MLE is the sample mean. For testing the null hypothesisghat 0, the Neyman-Pearson
statistic and the Rao score statistic are botf. If you restricts to be non-negatives is 0 when
V < 0; the Neyman-Pearson statistif? is not x 2-like: the score statistic is still V2, whose null
distribution isy 2.

Exercises. Suppose th&; are IID Poisson, with mean Write downL, L', L”, I. Find the
MLE for A. If A1 > 0O, write down the Neyman-Pearson statistic and the score statistic for testing
the null hypothesis that = 11. Verify the asymptotic distributions under the null. Which test is
more powerful for. > A1? Fora < A1?



Suppose th&; are independent(q;, 1) fori =1, ..., p; thed; are unrestricted real numbers.
Find the MLE for6. Find the Neyman-Pearson and Rao tests for the null hypothesis that

0; =0fori=po+1,...,p

Let M be a non-random x p matrix of full rank; suppos& = M6 + ¢, where the:; are
IID N(O, o). Write downL, L', L”, I. Find the MLE forg ando?. Write down the Neyman-
Pearson statistic and the score statistic for testing the null hypothesis thdi. Derive the normal
equations by differentiating — ||Y — M6 |2 with respect t®.

Let ® be the standard normal distribution function, with= ¢ being the density. According
to the probit model, givex, ..., X,, the variabled71, ..., Y, are independent 0—1 variables, each
being 1 with probabilityd (X; 8). Forx > 0, show that - ®(x) < ¢(x)/x. Conclude that and
1 — & are log concave. Conclude further that the log likelihood function for the probit model is
concave. Hint: show first + ®(x) < fxoo(z/x)gb(z) dz.
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Notation
4 =1(0)
=1L
V=L'®)"/Jn
D = /n(@ — 6o).

The subscript 0 means, substitagefor 6.
The superscript * means, substitute for 6, the former being the MLE over a restricted subset

of parameter space; Rao’s parameieis g-dimensional, and his restricted parameter space is
s-dimensional.
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The x2 and likelihood ratio tests are discussed on pp.477ff.
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The information inequality (aka the CramRao inequality) is discussed on pp.115ff, and the theory
ofthe MLE is developed in Chapter 6. For exponential families, the calculus is much more tractable;
see pp.119, 417, 438.



