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An example where OLS is biased and the conventional variance estimator is wrong

Let (Xi, Yi) be IID for i = 1, . . . , n with E{Xi} = E{Yi} = 0. Let b minimize E{(Yi − Xi)
2},

so
b = E{XiYi}

/
E{X2

i } (1)

This is a parameter to be estimated, and the OLS estimator is

b̂n =
n∑

i=1

XiYi

/ n∑
i=1

X2
i (2)

This problem does not fit into the usual OLS framework. To see why, let εi = Yi − bXi .
The εi are IID with mean 0 and εi ⊥ Xi , which is all to the good. But εi and Xi will generally
be dependent, so E{εi |Xi} will generally not be 0, and var{εi |Xi} will generally not be constant.
Hence, b̂n may be biased, and the conventional formula for v̂ar b̂n may be seriously in error.

In the following special case, calculations can be done quite explicitly. Suppose Xi ∼ N(0, 1)

and Yi = X3
i . Then

b̂n = 1

n

n∑
i=1

X4
i

/1

n

n∑
i=1

X2
i (3)

E{b̂n|X1, . . . , Xn} = b̂n (4)

var{b̂n|X1, . . . , Xn} = 0 (5)

For the variance estimator, define the residuals as

ei = Yi − b̂nXi (6)

Now
∑n

i=1 eiXi = 0, but
∑n

i=1 ei 	= 0 because there is no intercept in the regression. (None is
needed, since the random variables are known to have expectation 0.) The usual estimate for the
variance of b̂n given X1, . . . , Xn is

v̂ar b̂n = 1

n − 1

n∑
i=1

e2
i

/ n∑
i=1

X2
i (7)

To determine the asymptotic behavior, we need some moments. The odd moments of Xi

vanish by symmetry. For the even moments, integration by parts shows that

E{X2
i } = 1, E{X4

i } = 3, E{X6
i } = 5 × 3 = 15, E{X8

i } = 7 × 15 = 105 (8)

The regression parameter b in (1) is now easily computed, as

b = E{X4
i }

/
E{X2

i } = 3 (9)
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By (4) and the strong law of large numbers, b̂n is consistent:

b̂n → 3 a.e. as n → ∞ (10)

We turn now to the variance estimator in (7). The denominator is asymptotic to n, since
1
n

∑n
i=1 X2

i → 1. For the numerator,

1

n

n∑
i=1

e2
i = 1

n

n∑
i=1

Y 2
i − b̂2

n

1

n

n∑
i=1

X2
i → 15 − 32 = 6 (11)

Since n/(n − 1) → 1,
v̂ar b̂n ≈ 6/n a.e., (12)

in the sense that the ratio approaches 1.

How far is b̂n from b? The answer is given by the following proposition.

Proposition. Suppose Xi are IID N(0,1) and Yi = X3
i . The OLS estimator b̂n is defined by (3).

Then b̂n = 3+Un +Vn +Wn, where E{Un} = 0, Un is asymptotically N(0, 42/n), E{Vn} = −6/n,
and Wn is of order 1/n3/2.

Here, Un, Vn, andWn will be computed as explicit functions ofX1, . . . , Xn. GivenX1, . . . , Xn,
the conditional bias in the OLS estimator is essentially Un, which varies from one set of X’s to
another, (almost) following the normal distribution. The mean is 0, so the unconditional bias is about
−6/n. The asymptotic distribution of Un can be stated more rigorously as follows:

√
42/nUn →

N(0, 1) in law. The assertion about Wn is usually stated as follows: Wn = OP (1/n3/2), meaning
that for any small positive δ, there is a large finite L with P {|Wn| < L/n3/2} > 1−δ. The argument
will only be sketched, i.e., remainder terms will be dropped rather than estimated carefully;

.= means
“approximately equal.”

Define ξn and ζn as follows:

ξn = 1

n

n∑
i=1

(X2
i − 1), ζn = 1

n

n∑
i=1

(X4
i − 3). (13)

Now

b̂n = 3 + ζn

1 + ξn

.= (3 + ζn)(1 − ξn + ξ2
n )

.= 3 + (ζn − 3ξn) + 3ξ2
n − ξnζn. (14)

The approximation in (14) is the “delta method”; cubic terms are ignored. In the proposition,

Un = ζn − 3ξn = 1

n

n∑
i=1

(X4
i − 3X2

i ), Vn = 3ξ2
n − ξnζn (15)

The remainder term Wn is
b̂n − 3 − (ζn − 3ξn) − 3ξ2

n + ξnζn.
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The asymptotic normality of Un follows from the central limit theorem; and E(Un) = 0 by (8).
Moreover,

n var Un = var{X4
i − 3X2

i } = E{(X4
i − 3X2

i )
2} = E{X8

i − 6X6
i + 9X4

i } = 105 − 90 + 27 = 42.

This completes the discussion of Un. For Vn, cross-product terms in

ξ2
n = 1

n2

n∑
j,k=1

(X2
j − 1)(X2

k − 1)

or

ξnζn = 1

n2

n∑
j,k=1

(X2
j − 1)(X4

k − 3)

have mean 0, so

3E{ξ2
n } = 3

n
E{(X2

i − 1)2} = 6

n

E{ξnζn} = 1

n
E{(X2

i − 1)(X4
i − 3)} = 1

n
E{X6

i − 3} = 12

n

and E{Vn} = −6/n. This completes the discussion of Vn and the outline of the proof.

Remark. var Vn ≈ 120/n2. Thus, Vn is around −6/n, give or take
√

120/n or so. On the other
hand, Un is around 0, give or take

√
42/

√
n or so. In telegraphic form, the argument for var Vn is as

follows. We have shown that E{Vn} = −6/n, and will show that E{V 2
n } = (156/n2) + O(1/n3).

Indeed,

Vn = −ξn(ζn − 3ξn) = 1

n2

n∑
j=1

(X2
j − 1)

n∑
k=1

(X4
k − 3X2

k )

so that

V 2
n = 1

n4

n∑
j1=1

(X2
j1

− 1)

n∑
j2=1

(X2
j2

− 1)

n∑
k1=1

(X4
k1

− 3X2
k1

)

n∑
k2=1

(X4
k2

− 3X2
k2

)

= 1

n4

n∑
j1,j2,k1,k2=1

(X2
j1

− 1)(X2
j2

− 1)(X4
k1

− 3X2
k1

)(X4
k2

− 3X2
k2

)

Most of the terms have expectation zero, i.e., terms with 4 different indices, terms with 2 indices
the same and 2 different, terms with 3 indices the same and 1 different. There are n terms with
j1 = j2 = k1 = k2, which contribute O(1/n3) to E{V 2

n }. There are n(n − 1) terms with j1 =
j2 	= k1 = k2; each is E{(X2

i − 1)2}E{(X4
i − 3X2

i )
2} = 84. Likewise, there are n(n − 1) terms

with j1 = k1 	= j2 = k2; each is
[
E{X6

i − 3X4
i }

]2 = 36. Finally, there are n(n − 1) terms with
j1 = k2 	= j2 = k1; each is 36, as before. Thus,

E{V 2
n } = 84 + 36 + 36

n2 + O
( 1

n3

)
,

as required.
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