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Smoothing scatter plots

Repl acing (x,y) by (X,yx) with y, snooth and
connect the points

datum = snmooth + rough

Purposes.
Get clearer view, |ess detail
See what the data are saying
Reduce inpact of isolated points
Reduces irrel evant variation / noise
Preparatory to further processing
Separates rapid changes from|l ess rapid
May suggest sinple closed form expression

Variants preserve discontinuities
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Smoothing — some types

dat a (Xi,yi)



Paranetric regression
e.g. regression line by OLS
nonlocal, infinitely smooth
variance small, 1/n

“ bias”, (error for specific function),

can be large

Bi n snpot her
cut points Ck
cells ckx € Xi < Ck+1

Re ={i ¢k £ Xi < Ckuah,C o = -inf,
approx equi-sized

s(x)= ave{yili U Rox U R
not smooth, step function

cut(), stepfun(), ksmooth()

Runni ng nean

Average over points close to x

sx)= ave{ yjlj 0O NX)}

Ck =inf



N(xi)={ max(i-k,1),...,i-1,i,i+1,...,min(
Moving/running average
k controls appearance, smooth vs. jagged
span: (2k+1)/n
wiggly, biased, endpoint problem
theory is “easy”

might use r=2k+1 nearest neighbors

| V. Runni ng-1ine snoot her
Replace average above by OLS line
s(x) = a(x) +b(x)x
a(x), b(x) OLS for data in N(x)
good at ends

jagged, points equal weight (big change
on shift)

loess(), lowess()

i+k,n)}



V. Kernel snoothers
K(.): kernel function, e.g. pdf
Biweight — (1-u 2) 2
Kp(X)=K(x/b), b bandwidth
s(x)= 2 y; Ko(x- xj) 1 2 Kp(X-Xj)
linear in y's
choice of b is important
surprisingly effective/efficient
endpoints

ksmooth()

VI . Runni ng nedi ans
replace running mean by running median
resistant to outliers
salt-and-pepper noise

repeated running medians

VII. Equival ent kernels

Many studied are linear



s(xi) = % Sij Y

S is the smoother matrix
may have parameter A

Se; :the equivalent kernel
plot vs. X 0

Degrees of freedom: tr (S), tr(SS ), ...

VIIl. Regression splines
compromise between local and global
piecewise polynomials, separated by knots
smooth joins

e.g. cubic

S() = Bo + Pix+ Box® 4 B’ + T G(x- &)
s® exists,s @) continuous

Find B, 0 byOLS

Knots more difficult

bs() generates a basis

| X. Cubi c snoot hing splines



Xl .

solve extremal problem
So{yi —fC x)} 2+ NP Cdt
closeness to data + smoothness

A: relative weight

smooth.spline()

Local | y-wei ghted runni ng-11ine
Cleveland’s  lowess (), loess()

weighted least squares

[1 robust variant

Super snoot her

k- th nearest neighbor LS, k=n/2,n/5,n/20
cross-validation used to choose k for

each x interpolating between the three

Xl .

“fast”

supsmu()

Mul tiple predictors
spatial data

thin-plate spline



T. Hastie and R Tibshirani (1990).
General i zed Additive Mdels. Chapman & Hall

Cross-validation. A nethod for estinmating
predi ction error and other things.

One tests the procedure on data different
fromthose used to estimate its paraneters.
E.g. drop out one observation at a tine.

Thin plate spline radial basis functions

d: di nensi on of space
r: radial distance

m derivatives in roughness penalty

r™d j1og r , d even

remd d odd



