Section 6. The generalized additive model
$\text{Nonparametric regression.}$

Model: $y = f(x) + \epsilon$

- f: smooth
- ϵ: noise, mean 0, $\perp f(x)$

$f(x) = E\{y | x = x\}$

This conditional expectation has two interpretations:

1) mean $E f(Y | f(X))$

2) max corr $\{y, f(x)\}$

Proof: $E \{ (y - E y | x) + (E y | x) - f(x) \}^2$

$= E \{ (y - E y | x)^2 \} + E \{ (E y | x) - f(x) \}^2$

$+ 2 E \{ E (_)(_) \}$

$= 0$

This result will be used to motivate ACOR later.
Model and large sample properties.

Suppose \(Y_1, \ldots, Y_n \) are independent r.v.'s with

\[
\text{E} \{ Y_i | x_i \} = \mu(x_i)
\]

\[
\text{var} \{ Y_i | x_i \} = \sigma^2(x_i)
\]

Consider

\[
\hat{\mu}(x) = \frac{\sum_i Y_i K_m(x - x_i)}{\sum_i K_m(x - x_i)}
\]

where

\[
K_m(x) = \frac{1}{b_m} K \left(\frac{x}{b_m} \right)
\]

for some binwidth \(b_m \).

\[
\text{E} \hat{\mu}(x) = \frac{\sum_i \mu(x_i) K_m(x - x_i)}{\sum_i K_m(x - x_i)}
\]

and

\[
\text{var} \hat{\mu}(x) = \frac{\sum_i \sigma^2(x_i) K_m(x - x_i)^2}{\left(\sum_i K_m(x - x_i) \right)^2} - \frac{1}{\sum_i K_m(x - x_i)}
\]

Let us look for approximations of the terms appearing, using the lemma and supposing \(b_m \to 0 \) as \(n \to \infty \).
\[\frac{1}{n} \sum d(x_i) K_n(x-x_i) = \int d(u) K_n(x-u) f(x) du + \text{remainder} \]
\[= \int K_n(u) d(x-b_n u) f(x-b_n u) du + \text{remainder} \]
\[= d(x) f(x) \int K_n(u) du, \text{ for smooth } f \]

So provided \(f(x) \int K_n(u) du \neq 0 \)

\[E \Delta(x) = \Delta(x) \] is asymptotically unbiased.

Next consider the variance. As before

\[\frac{1}{n} \sum \sigma^{-2}(x_i) K_n(x-x_i) = \int \sigma^{-2}(u) K_n(x-u) f(x) du + \text{remainder} \]
\[= \frac{1}{b_n} \int K_n(u) \sigma^{-2}(x-b_n u) f(x-b_n u) du + \text{remainder} \]
\[= \frac{1}{b_n} \sigma^2(x) f(x) \int K_n(u) du \]

So the variance

\[= \frac{1}{n b_n} \sigma^2(x) f(x) \int K_n(u) du \left(\frac{\int \sigma^{-2}(u) K_n(u) du}{\int \sigma^2(u) K_n(u) du} \right)^2 \]

This will tend to 0 provided \(nb_n \to \infty \). Also estimate their consistent.
Local weighting/Local likelihood.

Model: \(f(y|\theta) \)

Suppose measurement made in time \(t_i \), \((t_i, y_i) \)

Wish \(\hat{\theta}(t) \) as \(\theta \) may be changing

I. Local likelihood

\[
\max_{\theta} \prod_{i: |t_i-t| \leq b} f(y_i|\theta)
\]

II. Local weighting

\[
\max_{\theta} \sum_{i} k\left(\frac{t-t_i}{b}\right) \log f(y_i|\theta)
\]

cp. does

Tibshirani
We have been considering the models

\[Y = d(x) + \text{noise} \quad \text{s: smooth} \]

\[Y = d(x_1, x_2) + \text{noise} \quad \text{s: smooth} \]

Now turn to

\[Y = d_1(x_1) + d_2(x_2) + \text{noise} \quad \text{s: smooth} \]

The generalized additive model (gam)

Hastie and Tibshirani - gam()

Another technique - projection pursuit
Given.

Baseline:

\[(x, y)\]

\[E(Y) = \mu(x)\]

\[n = x' \beta\]

\[= g(\mu)\]

\[\mu = h(n)\]

\[\text{var}(y) = v(\mu)\]
2)

5 Nov 01

to get $\hat{\beta}_1$, then $\hat{\alpha}_i$, then $\hat{\mu}_i = h(\eta_i)$.

To get started take $\hat{\mu}_0 = y$, i.e. the response.

The setup (*) even suggests large sample distribution.
Generalized linear model.

Exponential Family

\[p_Y(y; \theta, \phi) = \exp \left\{ \frac{y \theta - b(\theta)}{a(\phi)} + c(y, \phi) \right\} \]

\(\theta \): natural parameter

\(\phi \): dispersion parameter

\(\mu = E(Y) \) related to covariates \(X_1, \ldots, X_p \) by

\[g(\mu) = \eta \]

where

\[\eta = \alpha + X_1 \beta_1 + \cdots + X_p \beta_p \]

is the linear predictor and \(g(\cdot) \) is the link function.

\[\left\{ \begin{array}{l}
\mu = b'(\theta), \text{ the canonical link} \quad \gamma \\\n\end{array} \right. \]

\[w_i^{-1} = \left(\frac{\partial g(\mu)}{\partial \mu} \right)^{-1} \]

weights

\[V_i^{0} = \text{variance of } Y \text{ at } \mu_i^{0} \]

Regression \(\beta_i = \mu_i^{0} + (y_i - \mu_i^{0}) \left(\frac{\partial g(\mu)}{\partial \mu} \right) \) on \(x_i \) with weights \(w_i \).
generalized additive variant

Now
\[g(\mu) = \alpha + \sum_{j=1}^{b} f_j(x_j) \]

Local scoring algorithm

1) Initialize
\[\mu = g^{-1}(\eta) \]
\[f^0, \ldots, f^0 = 0 \]

2) Update
\[\beta_i = \eta^0_i + (y_i - \mu^0_i)(\frac{\partial \eta^0_i}{\partial \mu^0_i}) \]

with
\[\eta^0_i = \alpha^0 + \sum_{j=1}^{b} \beta^0_{i,j} (x_{ij}) \]
\[\mu^0_i = g^{-1}(\eta^0_i) \]
\[w_i = \left(\frac{\partial \mu_i}{\partial \eta_i}\right)^2 (v_i)^{-1} \]
Fit a weighted additive model to z_i to obtain estimated functions \hat{f}_j predicted \hat{y}_i fitted values \hat{m}_i.

Convergence criterion:

$$\Delta(\hat{y}, y^0) = \frac{\sum_{j=1}^k \sum_{i=1}^n \left(\hat{y}_i - y^0_i \right)^2}{\sum_{j=1}^k \sum_{i=1}^n (y^0_i)^2}$$

iii) Repeat step ii) replacing y^0 by \hat{y} until $\Delta(\hat{y}, y^0)$ is below some small threshold.
Alternative approach to game.

Paraclized likelihood

Linear predictor

\[\eta_i = \alpha + \sum_{j=1}^{p} f_j(x_{ij}) \]

Log likelihood \(l(\eta; y) \)

Find functions \(f_1, \ldots, f_p \) to maximize

\[l(\eta; y) = \frac{1}{2} \sum_{j=1}^{p} \gamma_j \int f_j''(x) \bar{y}_j^2 \, dx \]

\(\gamma_j > 0 \)

Cox & O'Sullivan (1985)
Resistant fitting of additive models.

Penalized M-estimates

\[\sum_{i=1}^{n} \frac{b_i - \sum_{j=1}^{p} \beta_j f_j(x_i)}{\delta_i} + \frac{b}{2} \sum_{j=1}^{p} \left[\int_{\mathbb{R}} f_j''(x)^2 \, dx \right] \]

Iterative re-weighting

\[s = \rho \]

\[w_i = \frac{4 (r_i / s)}{r_i / s} \]

\[r_i = y_i - \sum_{j=1}^{p} \beta_j f_j(x_i) \]

\[s = \text{med} |r_i| / 0.67 \]

Solution using cubic splines

Can use Newton-Raphson

\[f(x) = \alpha + \sum_{j=1}^{k+3} \alpha_j B_j(x) \quad k \text{ knots} \]

Linear parameterization. Easy way to think about it all.
Resistant fitting of gamma's

View deviance contribution $D(y_i; \hat{\mu}_i)$ as analog of $(y_i - \hat{\mu}_i)^2$.

$$g(\mu_i) = \alpha + \sum_j \beta_j (x_{ij})$$

Re-express $\beta(x)$ as $w(x)$

Penalized criterion

$$\sum_{i=1}^{n} w_i D(y_i; \mu_i) + \frac{1}{2} \sum_j \beta_j \int \left[f_j''(x) \right]^2 dx$$

Expand f_j using finite dimensional basis

Use penalized iterative reweighted least squares

May need to use $D(y_i; \hat{\mu}_i)/\hat{\sigma}^2$

eg. $\hat{\sigma} = \text{med} D(y_i; \hat{\mu}_i)$
gam (family = robust (binomial))

df. robust version of glm()

Instead of minimizing usual
\[I_1(y_i; \phi) \]

minimize
\[D_\phi = \sum_{i=1}^{n} \sigma^2 w_i \left(\frac{D(y_i; \phi)}{\sigma^2} \right) \]

\[\phi : \text{robust estimate of scale} \]

Idea: damp down large contributions

\[w(t) = \begin{cases} t & t \leq k^2 \\ 2k\sqrt{t} - k^2 & t > k^2 \end{cases} \]

eg. \(k = 1.345 \)

Iterative weights get multiplied by a factor which is \(> 1 \) for small deviance contributions and gets small for large contributions
> robust
function(family = gaussian(), scale = 0, k = 1.345, maxit = 10)
{
 family <- as.family(family)
 weight <- family$weight
 new.exp <- eval(if(scale == 0) substitute(expression({
 if(iter == 1)
 robweight <- 1
 else {
 if(iter == 2) {
 robust.scale <- median(abs(family$deviance(mu, y, w, T, F)))/0.67
 attr(w, "robust") <- c(robust.scale, k)
 }
 robust.scale <- attr(w, "robust")[1]
 robweight <- (k * robust.scale)/abs(family$deviance(mu, y, w, T, F))
 robweight <- ifelse(robweight > 1, 1, robweight)
 }
 })), list(k = k)) else substitute(expression({
 robweight <- (k * scale)/abs(family$deviance(mu, y, w, T, F))
 robweight <- ifelse(robweight > 1, 1, robweight)
 attr(w, "robust") <- c(scale, k)
 })), list(k = k, scale = scale))

dummy <- expression(junk * robweight)
dummy[[1]][[2]] <- weight[[1]]
new.exp[[1]][[length(new.exp[[1]]) + 1]] <- dummy[[1]]
family$weight <- new.exp
family$deviance <- substitute(function(mu, y, w, residuals = F, robust = T)
{
 old.deviance <- function(mu, y, w, residuals = F)
 body
 if(!robust)
 return(old.deviance(mu, y, w, residuals))
 a <- attr(w, "robust")
 if(is.null(a))
 return(old.deviance(mu, y, w, residuals))
 else {
 robust.scale <- a[1]
 k <- a[2] * robust.scale
 dev <- old.deviance(mu, y, w, T) # remember if there are prior weights they are included here
 devsq <- dev^2 * devtest + (!devtest) * (2 * k * abs(dev) - k^2)
 if(residuals)
 sign(dev) * sqrt(devsq)
 else sum(devsq)
 }
}, list(body = family$deviance[[5]]))
family$family["name"] <- paste("Robust", family$family["name"])
family$initialize <- c(family$initialize, substitute(expression(maxit <- nit), list(nit = maxit))[2])
family}
Call: glm(formula = y ~ a + b + offset(log(n)), family = "poisson")

Deviance Residuals:
Min 1Q Median 3Q Max
-1.832904 -0.8559731 -0.3807713 0.4241323 2.176178

Coefficients:

 Value Std. Error t value
(Intercept) -7.2810177 0.1724004 -42.2331955
a1 -2.1787235 0.5027471 -4.3336372
a2 -0.9586813 0.3663622 -2.6167581
a3 -0.0796293 0.2562401 -0.3107605
a4 0.1302123 0.2492969 0.5223182
a5 0.7221383 0.1716511 4.2070126
a6 0.9374875 0.1689896 5.5476038
b1 -3.1187052 0.8933875 -3.4908761
b2 -2.1717629 0.5299118 -4.0983481
b3 -1.4171269 0.3886831 -3.6459703
b4 0.0842177 0.2294316 0.3670711
b5 0.1235435 0.2421091 0.5102803
b6 1.0901213 0.2050192 5.3171658
b7 1.3289269 0.2177310 6.1035266
b8 1.7861285 0.2292702 7.7904966

(Dispersion Parameter for Poisson family taken to be 1)

Null Deviance: 445.099 on 62 degrees of freedom

Residual Deviance: 51.47087 on 48 degrees of freedom

Number of Fisher Scoring Iterations: 5

Call: glm(formula = y ~ d + b + offset(log(n)), family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.991026 -1.202705 -0.3255014 0.4096175 2.018623

Coefficients:

 Value Std. Error t value
(Intercept) -11.7739704 0.37019955 -31.804389
 d 0.4886346 0.04956777 9.857911
 b 0.5637749 0.03775633 14.931931

(Dispersion Parameter for Poisson family taken to be 1)

Null Deviance: 445.099 on 62 degrees of freedom

Residual Deviance: 71.21102 on 60 degrees of freedom

Number of Fisher Scoring Iterations: 4

Correlation of Coefficients:

 (Intercept) d
(Intercept) 1
 d -0.7462301
 b -0.6817992 0.0678269

Call: gam(formula = y ~ lo(d) + lo(b) + offset(log(n)), family = poisson)

Deviance Residuals:
British physicians: 1 & 2 fitted factors, 3 & 4 via \(\text{gam} \)