

Residual analysis.

data = fit + residual

discrepancy between data and fit

fit might be OLS or robust/resistant or ?

patterns suggest fit can be improved, e.g.
by transformations, and there are often
surprises

Procedure: improvement of fit by stages

Types of residuals

"ordinary", $r_i = y_i - x_i^T b$

standardized, $r_i/s\sqrt{1-h_{ii}}$

cross-validation, $y_i - x_i^T b_{-i}$

Uses of residual plots

improvement of fit

identification of outliers

behavior of techniques on the data to
portray adequacy of fit

Types of residual plots

residuals, r_i , vs. fitted values, $x_i^T b$

residuals vs. explanatories, x_{ij}

residuals vs. functions of the x's, e.g.
products

residuals vs. new variables, e.g. time

$|r_i|$ vs. $x_i^T b$

smoothed residuals vs. ...

Some patterns

sloping band - include linear term

curved band - add quadratic or somesuch

wedging - variability increasing
(use weights in fitting)

- but, perhaps result of point
density increasing (add lowess lines)

- wedging may be one-sided if $|r|$ used

Plot of response vs. fit can be misleading

Partial residual plots

Plot partial residual of j -th explanatory vs. its values

i.e. $r_i^j = y_i - \sum_{k \neq j} b_k x_{ik}$ versus x_{ij}

have "removed" the linear effects of the other x 's

the slope is b_j

the residuals are the r_i

transform the j -th explanatory?

Fitting by stages/one variable at a time

Two explanatories case

(x_1, x_2, y)

1) fit y by x_1

$y_{.1} = y - c_1 x_1$

2) fit x_2 by x_1

$$x_{2.1} = x_2 - d_1 x_1$$

3) fit $y_{.1}$ by $x_{2.1}$, including intercept

Because of the orthogonalities this gives the one step result

$$b_0 + b_1 x_1 + b_2 x_2$$

now written as

$$b_0 + c_1 x_1 + c_2 (x_2 - d_1 x_1)$$

One can graph (x_1, y) , (x_1, x_2) , $(x_{2.1}, y_{.1})$ along the way as well as residuals

Robust/resistant fitting could be used

R. D. Cook and S. Weisberg (1982). *Residuals and Influence in Regression*. Chapman and Hall.

Statistics 215a - 9/24/03 - D. R. Brillinger

The x-values.

1. location parameter, $p = 1$, $x \equiv 1$

2. factor

object taking on values from a set of levels

often created via x-variables taking on the values 0, 1

e.g. for q levels set

$x^1 = 1$ for level 1 and 0 otherwise

$x^2 = 1$ for level 2 and 0 otherwise

.

$x^{q-1} = 1$ for level $q-1$ and 0 otherwise

$x^q = 0$

provides a coding

The X-matrix is made up of 0's and 1's

`factor()`, `contrasts()`

Example - the RBC data

A: day

B: run

lm(y ~ -1 +A +B)