

Optimization methods.

Local, e.g. *IRLS*

may be several extrema

move in discrete jumps

variant

check to see if next location actually improvement

if not, pull back closer to current (Fletcher-Powell)

Global

simulated annealing

exponential probability jumps
exceedingly slow

genetic algorithms

stochastic
crossing rules, e.g. interchange of coordinates
slow

smoothing

local extrema disappear
then, add more detail

branch and bound

more reliable

Statistics 215a - 9/22/03 - D. R. Brillinger

Properties for ψ .

Want:

1. High breakdown point

breakdown point - the smallest proportion of contamination that can force a description off to arbitrary values

mean, $\beta = 0$; median, $\beta = .5$, trimmed mean, $\beta = \gamma$

2. ψ bounded
controls influence of datum

3. ψ moderately continuous
insensitive to small shifts

4. ψ has rejection point
deletes extreme outliers

5. ψ adapted to problem

6. $\psi(r)$ approx linear for small r
good for bell-shaped

7. $\psi(-r) = -\psi(r)$

center clear