

Statistics 215a - 9/1/03 - D. R. Brillinger

The good traveller is flexible and has a sense of humor.

?What is a

Vague concept -

 Make precise in various ways

Datum - undefined concept

Data - {datum}

 Some things became data only recently

Data analysis -

 Ancient

Confirmatory data analysis -

 Deciding seems established

 The model is sacred, clear question

 Careful planning

question → design → collection → analysis → answer

E.g. cloud seeding

Exploratory data analysis -

 What seems to be going on

 The data are sacred, generate questions

 Human interaction basic

idea → question/design → collection → analysis → answer

Kepler-Newton-Lagrange-Gauss

Relation of EDA and CDA

Need both

Scientific method, cyclic, Popper

idea → question/design → collection → analysis → answer → idea

Data mining -

Large data sets, (perhaps collected for other purposes), retrospective

Search for patterns

Brings diverse fields together, e.g. computing

Often profane, opportunistic

Model - Suppes

References.

J. W. Tukey (1986). "We need both exploratory and confirmatory".

P. Diaconis (1985). "Theories of data analysis: from magical thinking through classical statistics".

D. Hand, H. Manila & P. Smyth (2001). *Principles of Data Mining*. MIT Press.

Statistics 215a - 9/1/03 - D. R. Brillinger

"Theories of data analysis: from magical thinking through classical statistics" - P. Diaconis

Magical thinking - a term from anthropology and psychiatry

- assuming can wish for things and get them
- reading too much into patterns

There are patterns in noise!

EDA can come close to magical thinking

Classical mathematical statistics

pick models and hypotheses in advance

Scientific thinking

repetition of experiments - cold fusion

"uncomfortable science" - replication is not feasible - astronomy, economics

INTUITIVE STATISTICS

Scatterplots

most subjects judged a small plot more associated than big plot of same points

Anchoring/experimenter bias

Representativeness

Examples

- clinical trials
- legal cases
- ESP

Multiplicity

- preliminary data screening
- many comparisons
- transformation

Remedies

- Publish without p-values

Success stories

- air pollution
- economics
- medicine
- psychology

Theories for data analysis

Probability-free, GHA, Finch, Mallows

Ad hoc inference with non-experimental data

Mathematics can help

Statistics 215a - 9/2/03 - D. R. Brillinger

Ozone study

22 sites in New Jersey

Highest readings at rural Ancora

Error???

There was some theory suggesting OK

Philadelphia was 23 miles away

Scatter plot of ozone vs. direction of wind
at Philadelphia

When curves added clearly some association

Late other support for the hypothesis of
"transport"

Crucial elements

- (i) willingness to collect and study data
- (ii) use of diagnostic techniques to show unexpected
- (iii) an ability to recognize striking patterns - QQ plot - high at Ancorra
- (iv) enough understanding to enable patterns to be recognized as potentially meaningful
- (v) avoidance of precipitate commitment to models of clearly inadequate complexity; use of robust summarised and graphical displays
- (vi) energetic following-up of clues

