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SOME STATISTICAL METHODS FOR RANDOM PROCESS 
DATA FROM SEISMOLOGY AND NEUROPHYSIOLOGY1 

BY DAVID R. BRILLINGER 

University of California, Berkeley 

To Jeff Austin Brillinger, B.A. 
Examples are presented of statistical techniques for the analysis of 

random process data and of their uses in the substantive fields of seismology 
and neurophysiology. The problems addressed include frequency estimation 
for decaying cosinusoids, signal estimation, association measurement, causal 
connection assessment, estimation of speed and direction and structural 
modeling. The techniques employed include complex demodulation, nonlinear 
regression, probit analysis, deconvolution, maximum likelihood, singular value 
decomposition, Fourier analysis and averaging. 
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I. Introduction 
Thepurpose of statistics,..., is to describe certain realphenomena. 

A. Wald (1952) 

The concern of these lectures is raw data distributed in time and/or space. 
The basic data are curves and surfaces. If n denotes the sample size and p 
denotes the dimension, then the concern is with the case of n much less than p. 
In the situations addressed, the phenomena have developed or are developing in 
time or space. They are complex, so that subject matter plays essential roles in 
the analyses made and in the interpretations and conclusions drawn. There need 
to be combinations of both physical and statistical reasoning. Indeed, a principal 
goal of the lectures is to bring out the key role that subject matter plays in the 
analysis of random process data. A further intention is to show that the fields of 
seismology and neurophysiology are rich in problems for statisticians, particu- 
larly those individuals with some interest in applied mathematics. The work 
presented involves a mixture of data analysis and structural modeling. The 
problems discussed are specific, but the techniques employed are broadly appli- 
cable. The data concerned is of high quality, so that detailed analyses are 
possible. The material presented consists of personal (collaborative) work and a 
few success stories of other particular methods that serve to tie the development 
together. An attempt is made to present problems from a unified point of view. 
Emphasis is on techniques, rather than novel substantive results. 

The study of random process data provides a major interface of statistics with 
science and technology. Indeed, there has been an explosion in the collection of 
spatial-temporal measurements (corresponding in part to much of modern 
technology having become digital). Some particular issues and procedures be- 
come emphasized as a result of the interaction of statistics with technology. 
These include system identification, systems analysis, inverse problems, Fourier 
inference, bias versus variability (resolution versus precision), averaging func- 
tions, dynamics and micro-versus-macro study. These strains run through the 
examples presented. There is also a desire to display the broad range of data 
types with whose analysis statisticians must now be concemed. 

Some provisos are necessary. There is no claim made that the analyses are 
definitive. What is presented is an overview, rather than specific details. Further- 
more, there is little presentation of formalism. The reader is referred to the 
papers referenced for greater detail. 

There are two lectures. The first concentrates on some statistical methods in 
seismology, the second on some corresponding methods in neurophysiology. It is 
interesting to see the same methods playing central roles in the analysis of data 
from two quite disparate fields. Indeed, one of the principal goals of the lectures 
was to bring out the universality of statistical techniques-by examples from 
these two fields. 
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II. Seismology 
Jeffreys... attention to scientific method and statistical detail has been one 
of the main forces through which Seismology has attained its present level of 
precision. 

Bullen and Bolt (1985) 

1. The field and its goals. The term seismology refers to the scientific 
investigation of earthquakes and related phenomena. It has been defined as the 
"science based on data called seismograms, which are records of mechanical 
vibrations of the Earth" [Aki and Richards (1980)]. This latter definition allows 
the admission that seismologists also study vibrations caused by the sea, by 
volcanoes or by man. One further definition that has been given is: the science of 
strain-wave propagation in the Earth. 

Whatever the definition, the broad goals of seismology are to learn the Earth's 
and a planet's interior composition and to predict the time, size, location and 
strength of ground motion in future earthquakes. Workers in the field seek to 
provide valid explanations of earthquake-related phenomena and to understand 
these phenomena so that life may be made safer. 

Specific problems addressed include the detection, location and quantification 
of earthquakes, the distinguishing of earthquakes from nuclear explosions and 
the determination of wave velocity in the Earth's interior as a function of depth. 

The accumulation of knowledge in seismology has displayed a steady back- 
and-forth between new insight concerning the waves and new insight concerning 
the media through which the waves propagate. Among major "discoveries" one 
can list are the inner core, the liquid central core, the Mohorovic discontinuity, 
the movement of tectonic plates causing earthquakes themselves and the locat- 
ing of numerous gas and oil fields. 

The field is largely observational, with the basic instruments the seismogram 
and clock. There are important experiments too, where tailored impulses are 
input to the Earth and the resulting vibrations studied. The field experienced 
the "digital revolution" in the 1950s and now poses problems exceeding the 
capabilities of even today's supercomputers. 

Statistical methods have played an important role in seismology for many 
years-in large part due to the efforts of Harold Jeffreys [see Jeffreys (1977), for 
example]. Vere-Jones and Smith (1981) provide a review of many contemporary 
instances. Statistics enters for a variety of reasons. The data sets are massive. 
There is substantial inherent variability and measurement error. Models need to 
be refined, fitted and revised. Inverse problems need to be addressed. Experi- 
ments need to be designed. Sometimes the researcher must fall back on simula- 
tions. The basic quantity of concern is often a (risk) probability. In particular, it 
may be pointed out, that in the construction of the Jeffreys and Bullen (1940) 
travel time tables, one has an early, perhaps greatest success, of the use of 
robust/resistant methods. [B. A. Bolt's (1976) presidential address "Abnormal 
seismology" is well worth reading in this connection.] 

Seismologists deal with data of a variety of types. The important forms are 
digital waveforms from spatial arrays of seismometers of various dimensions 
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(where the instruments have been arranged in such a fashion that an earthquake 
signal may be seen as a moving, changing entity) and catalogs (containing lists of 
an event's times, locations, sizes and other characteristics) for geographic regions 
of interest. 

Seismology is not without its controversies. There are fundamental ones, such 
as whether or not plate tectonics is a validated theory. There are practical ones, 
such as does the size of the motion of an earthquake increase steadily as one 
approaches the fault or does it level off? As is so often the case, the existing data 
and analysis methods prove inadequate to resolve these disputes conclusively. 

A general reference that provides much of the pertinent seismological back- 
ground is Bullen and Bolt (1985). We tum to a presentation of some specific 
problems and techniques. 

2. Free oscillations of the Earth. This subject is one of the principal 
developments in seismology over the last 25 years. Whenever there is a great 
earthquake, the Earth vibrates for days afterwards. The seismogram then 
consists, approximately, of a sum of an infinite number of exponentially decaying 
cosinusoids plus noise; see expression (2). The frequencies of the cosinusoids and 
the corresponding rates of decay relate to the Earth's composition. Measured 
values may be used to make inferences about that composition. The techniques 
of complex demodulation, nonlinear regression and regularization may be em- 
ployed in this connection. Some details on these techniques will follow. 

As is the case with many natural systems, the vibratory motion of the Earth 
may be described by a system of equations of the form 

(1) dY(t) = AY(t) + X(t), 
dt 

with X(.) a (vector-valued) input. In the case that the input is b8(t), with 8(.) 
the Dirac delta function (corresponding to the earthquake shock) and initial 
conditions Y(O-) = 0, the general solution of (1) may be written as 

Y(t) = exp{At}b 

= Eiexp{t1t}uj , t > 0, 
i 

where t ,uj are the (assumed distinct) latents of the matrix A. The spectrum 
occurring is discrete because of the finiteness of the Earth as a body. Focusing on 
one of the coordinates of Y(t) and assuming the presence of noise, one has 

(2) Y(t) = Eakexp{ I3kt)CoS(Ykt + Sk) + E(t), 
k 

with - /k and yk the real and imaginary parts of the pj and ?(*) the noise. This 
model may be checked by complex demodulation of the series Y(t) in the 
neighborhood of frequencies Yk, as estimated from the periodogram. Provided the 
bandwidth of the demodulation is not too great, a single cosinusoid should be 
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1960 Chilean Earthquake 
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FIG. 1. Record of the Chilean great earthquake of May 22, 1960, as recorded by the tiltmeter in the 
Grotta Gigante at Trieste. The tides have been partially removed. 

included, the log amplitude should fall off linearly with time and the phase angle 
should be approximately constant. Details are given later, specifically at (5). 

Figure 1 is a plot of the seismogram recorded at Trieste of the 1960 Chilean 
great earthquake after partially removing the tides. Details re the data and the 
tidal removal procedure may be found in Bolt and Marussi (1962). Figure 2, a 
plot of the lower-frequency portion of the periodogram of this data, suggests the 

Periodogram - Chilean Data 
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FIG. 2. The periodogram of the data of Figure 1 based on 2548 data values. Only ordinates 
corresponding to frequencies less than 8 cycleslh have been graphed. The y-axis is loganithmic. 
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presence of a variety of periodic components. The periodogram of a stretch of 
time-series values Y(t), t = 0,..., T - 1, is defined as follows. Set 

T-1 

(3) dT(X) = , Y(t)expt - iXt}, - x < X < oc. 
t=o 

Then the periodogram at frequency X is defined as 

(4) Iyy(X\) = (2ZrTT) -Idy T(X)12. 
For data from the model (2), IT (X) may be expected to show peaks for X near 
the Yk* 

The basic ideas of complex demodulation are frequency isolation by narrow- 
band filtering to focus on a single term in expression (2), followed by frequency 
translation to slow the oscillations down. The specific steps are: (i) Y(t) -* 
Y(t)exp{iXt} (modulation), followed by (ii) local smoothing in t of Y(t)exp{ixt} 
to obtain Y(t, X), the complex demodulate at frequency X. In the case that 
Y( t) = a exp -/3t}cos(yt + 8), one has 

Y(t, A) =1ae8 ePtei(XY-)t, for A near y 

0 O, otherwise. 
Hence loglY(t, X)I = log(a/2) - /Bt and arg{Y(t, A)) = 8 + (A - y)t. Plots of 
these quantities versus t provide checks on model adequacy and provide pre- 
liminary estimates of parameters. Figures 3 and 4 present such plots for the 
Chilean data at two frequencies, 3.885 and 5.6775 cycles/h. These frequencies 
were determined by noticing the locations of peaks in the periodogram, setting A 
equal to them, demodulating and then in some cases employing a nearby A to get 
a more nearly horizontal phase plot. The fluctuations in the amplitude plot can 
be due to noise, to leakage from other frequency components or to split peaks 
among other things. The rate of decay / is found to generally vary with 
frequency in the present seismological situation. Results for the Chilean data for 
a variety of frequencies may be found in Bolt and Brillinger (1979). 

The parameters could be estimated from the complex demodulate pictures, for 
example, by fitting regression lines. It is generally more effective to proceed via 
nonlinear regression. This has the further advantage of providing estimated 
standard errors. Suppose one has a model 

Y(t) = S(t; 6) + E(t) 

with S(.) known up to the finite-dimensional parameter 0 and e(*) a noise series. 
In the present case, S(t) = aexp{-f3t}cos(yt + 8) and 0 = {a, /3, y, 8). For the 
next step, it is convenient to take Xi = 2'Tj/T and to write Yj = dT(Aj), 
Ej = dT(Aj) and Sj(6) = dsT(Aj). One will estimate O by minimizing 

(6) E j - ()12 
jin J 

for J a range of subscripts with XA near y. The logic of this is as follows. There 
are a variety of central limit theorems for empirical Fourier transforms [see, for 
example, Brillinger (1983)]. Suppose that the noise series E(-) is stationary and 
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Log Amplitude at 3.885 cycles/hour 
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FIG. 3. The result of complex demodtdtinzg the data of Figure 1 at a frequency of 3.885 cycleslh. 
The upper graph gives the logarithm of the running amplttude. The lower graph gives the running 
phase. The bandwidth of the filter eAgloyed is 0.594 cycleslh. 

mixing with power spectrum fee,(A). Then for large T, Ej is approximately 
complex normal with mean O and variance 2vrTf,,,(Xj). Further the variates 
Ej, Ek are approximately independent. It follows that the determination of an 
estimate of 0 to minimize expression (6) is approxidmately the maximum likeli- 
hood procedure. The statistical properties of such estimates were indicated in 
Bolt and Brillinger (1979) and developed in detail in Hasan (1982). For example, 
one finds the asymptotic variance of yto be proportional to 

4 ?Tfe -Y) 

T 3c'2 
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Log Amplitude at 5.6775 cycles/hour 
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FIG. 4. Complex demoduation as for Figure 3, but at the frequency of 5.6775 cycles/h. 

having considered a limiting process with ,B = 4/T as T -x o. The inverse cubic 
dependence on sample size is on first glance surprising. It comes from the 
narrowness of the peaks when they are present. 

Complex demodulation is an exploratory technique. Hence one has to be 
conscious of the possibility of employing it at frequencies of "false" peaks. In 
practice, it is found that the nearness of the phase plot to a straight line is a 
highly sensitive indicator of the presence of a periodic component. 

Earlier in the paper, it was noted that progress in seismology shows a 
to-and-fro between new knowledge of waves and new knowledge of the structure 
of the Earth. This occurs in the case of free oscillations. Suppose one has an 
initial model for the Earth in terms of some physical parameters, e.g., expres- 
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Earth Model CAL8 

* ~~- S-wave velocit 
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P-wave velocity 
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FIG. 5. The CAL 8 Earth model. The curves give the assumed density (grams per cubic centimeter), 
P-wave velocity (kilometers per second) and S-wave velocity (kilometers per second) as a function 
of depth assuming a spherical Earth. Given such a model, one can compute implied periods of free 
oscillation. Of interest is the inverse problem, given periods what is a corresponding Earth model? 

sions for density, shear wave velocity and compression wave velocity as functions 
of depth, say p(r), c,(r) and cp(r), respectively, r denoting depth. Figure 5, 
based on the data in Tables 3 and 4 of Bolt (1982), shows what is meant by an 
Earth model. Given such a model, one can compute the implied frequencies of 
free oscillation Yk- How to do this is described in Chapter 6 of Lapwood and 
Usami (1981), for example. The relationship involved is nonlinear, but perturba- 
tions may be expressed linearly via kemels. Specifically, suppose one perturbs 
the parameters by amounts Ap, Acs and Acp, respectively, then the perturbation 
of the frequency of the kth free oscillation is given by 

AYk jAk(r) Ap(r) dr + jRBk(r) Acs(r) dr + Ck(r) Acp(r) dr, 

for kemels Ak* Bk and Ck. This expression is said to lay out the "direct 
problem": Given Ap, Ac8 and Acp find Ayk. Now suppose a great earthquake 
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occurs. Then new estimates of the frequencies Yk are available. One has the 
"inverse problem": Given the observed Ayk, find Ap, Acs and Acp. Because the 
new frequencies are just estimates, one seeks a model only approximately 
achieving them. It seems worth setting out the type of problem involved here in 
a specific notation. Let Y and () denote normed spaces. Let X denote a map from 
e to Y, Y = X0. The values Y and X are given, a value for 0 is desired. Let a 
denote a scalar. Some, basically similar, methods for selecting a 0 currently being 
employed include: (a) regularization, choose 0 to minimize IIY - X0112 + allOll2; 
(b) sieve, choose 0 subject to 11011 < a to minimize IIY - X011; (c) residual, choose 
0 subject to IIY - X0ll < a to minimize 11011. A characteristic of the solutions 
obtained is that one has to be content with the estimation of some form of 
average of the unknown 0. Chapter 12 of Aki and Richards (1980) contains a 
discussion of inverse problems in geophysics. A characteristic that distinguishes 
the present Earth model problem, from the usual inverse problems, is that there 
are discontinuities present in the model-corresponding to the Earth's layers. 
The above perturbation approach of a nonlinear problem to a linear one has been 
employed by geophysicists for many years; see Jeffreys and Bullen (1940), for 
example. 

Several other references to the study of free oscillations may be noted. Hansen 
(1982) extends the procedure of Bolt and Brillinger (1979) to handle the case of 
several eigenfrequencies present in the nonlinear regression fit. Dahlen (1982) 
sets down the asymptotic results for the case of tapered data, that is, when 
convergence factors have been introduced into the Fourier transform computa- 
tions. Zadro and Caputo (1968) look for nonlinearities via bispectral analysis. 

3. Estimation of fault-plane parameters. That there exists a see-saw 
between the study of the Earth's structure and the study of earthquake sources 
was pointed out earlier. In this section it will be indicated how a (nonlinear) 
probit analysis may be employed to estimate basic characteristics of the source 
of an earthquake. 

An important quantity read off the seismic trace of an earthquake at a 
particular observatory is the sign of the increment at the arrival of the first 
energy from the event. This sign corresponds to whether the initial motion is a 
compression or a dilation. In many cases, following the observation of an 
earthquake at a number of stations, if the observed signs of first motion are 
plotted on a map centered at the epicenter of the event a (radiation) pattern 
results. Figure 6, taken from Brilinger, Udias and Bolt (1980), provides such a 
plot for one of the aftershocks (event 4) of the Good Friday 1964 Alaskan event. 
(Unfortunately, due to the locations of the particular stations recording the 
event, this figure does not provide a particularly good example of the ideal 
radiation pattem, but the data were of special interest. Were the stations well 
scattered, in an ideal circumstance one would see mainly solid circles in two 
opposite quadrants and mainly open circles in the other two quadrants. In this 
case only two of the four quadrants have been covered. The implication will be 
that one of the planes will be poorly determined.) Following Byerly (1926), plots 
such as this have been employed to leam about the source. Before describing 



SEISMOLOGY AND NEUROPHYSIOLOGY 11 

N 

0 

0~~~~ 

~~~/ 

0~~~~ 

\ 0 0 o 

FIG. 6. The P-wave first-motion data for the earthquake of the Alaskan sequence that took place 
March 30, 1964 at 0200. The solid circles refer to compressions, i.e., first motion upward, the open 
circles to dilations, i.e., first motion downward. [Reproduced with permission from BriUlinger, Udias 
and Bolt (1980).] 

what may be learned, some details of the earthquake process will be set down. 
The usual assumption (the elastic rebound theory) is that earthquakes are due to 
faulting. A crack initiates at a point and (in the case of pure slip) spreads out to 
form a fault plane. As the crack passes a given point, slip takes place (on the 
fault plane) resulting in a stress drop and the radiation of seismic waves. The 
radiated (P-) waves may be shown to have a quadrantal pattern with one of the 
axes parallel and the other perpendicular to the fault plane of the event. It 
follows, and this is what Byerly (1926) contributed, that the data may be used to 
estimate the fault-plane orientation. Having an estimate of the fault plane and 
the direction of motion on that plane is important to geology and geophysics. 
Researchers seek to tie together surface and subsurface features, to consider 
regional stress directions and to use the results to confirm and extend the theory 
of plate tectonics. The results can be crucial to seismic risk computations. 

Byerly proceeded graphically and this has continued to generally be the 
working approach. However, the results so obtained are subjective, have no 
attached measure of uncertainty and may not be easily combined with estimates 
derived from other events at the same site. 
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The problem may be approached in formal statistical fashion as follows. The 
data available consist of hypocenter of earthquake, locations of observatories, 
directions of observed first motions (compressions or dilations) at the observato- 
ries and a store of knowledge concerning the Earth's structure [velocity models 
as given in Jeffreys and Bullen (1940), for example]. It may further be argued 
that seismographic noise is approximately Gaussian [see Haubrich (1965)]. Let a 
fault plane be described by three angles (0T' (kT' Op). Let Aij(OT, 4 T, Op) denote 
the theoretical expression for the wave amplitude on the focal sphere for event i 
at station j. This expression may be found in Brillinger, Udias and Bolt (1980). 
(The focal sphere is a "little" sphere of unit radius around the hypocenter. In 
carrying out the amplitude computation, one has to trace the ray from the 
hypocenter to the observatory through the focal sphere.) Let Yij denote the 
realized amplitude of the seismogram at the onset of the event. Then one can 
write Yu = aijAij + Eyj, with aij a scale factor and -,j normal mean 0 and 
vaxiance a?L variate. Here aij reflects the attenuation the signal experiences in 
traveling from the source to the observing station, whereas Ecj represents noise 
caused by disturbances unrelated to the earthquake of concern. Let yj = 1 if 
Yij > O and = 0 otherwise. It follows that 

Prob{yij = 1} = Prob{Yij > 0) = (pijAij), 

writing pij = aj/vaij, for this signal-to-noise ratio. The model may be further 
expanded by including a term -yij to allow for reader and recorder errors, now 
writing 

(7) Prob{yij = 1} = Yij + (I - 2yij)4D(pijAij)A 

Precise data correspond to y and a small (hence p large) and imprecise to y near 
0.5 or p near 0. 

The model is seen to take the form of a nonlinear probit (with a term -y 
corresponding to "natural mortality"). An example of a corresponding likelihood 
is provided by 

(8) HIj(piAij) ij(1 - 0(piA 1 -Yi 

assuming p to depend on event alone and y = 0. One can now proceed to 
estimate the unknown parameters OT' OT' (P, pi by maximum likelihood. 

Figure 6 includes the fitted planes for the case of event 4 of the Alaska 
sequence. These particular estimates were computed restricting the likelihood (8) 
to the observations of event i = 4 and including a y term as in (7). 

It is critical to assess the fit of any model. In Brillinger, Udias and Bolt (1980), 
this was done by comparing the theoretical and estimated probability functions. 
Figure 7 is based on a pooled analysis of some 16 of the Alaskan events (labeled 
by i previously) that seemed to go together. It has been assumed that the pi are 
all equal in the fit studied. The figure provides the empirical probability that the 
observed first motion agrees with the theoretical as a function of amplitude. The 
fitted values z = p1Aij have been grouped into cells of width 0.1 in the analysis. 
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FIG. 7. A plot of the statistic (9) of Section 3 and ?(z) for the data of 16 events of the Alaskan 
sequence of 1964. The plot is meant to assess the validity of the model (7). Here z refers to the values 
pAij. 

What is plotted are ?(z) and 

(9) 
(i yj)l sgn Yij 

= sgn Aij, Z - h < Aij<Z + h/{(i, j)z - h < Aij < Z +h, 

for h = 0.5. Here A refers to A(OT, (PT, 0p) and # refers to the count of the 
number of elements in the set. The fit seems adequate. 

The results of further computations of this type may be found in Brillinger, 
Udias and Bolt (1980) and Buforn (1982). The maximization program VA09A of 
the Harwell subroutine library, see Hopper (1980), proved effective in determin- 
ing the maximum likelihood values. The estimates were, however, nonunique and 
poorly determined in some cases of small data sets. 

An important by-product of such analyses is to fonn clusters of like fault-plane 
solutions for events in the same region, in order to get at motions occurring on 
the same fault plane; see Udias, Munoz and Buforn (1985), for example. The 
maximum likelihood standard errors are useful in this connection. The practical 
implication of the work just reported is that first motions for large collections of 
events may be handled routinely and that geophysical conjectures may be 
checked formally. The final fault-plane solution may be plotted in traditional 
fashion allowing examination of the data for difficulties. What remains is for 
more realistic seismic source models than the one treated in the papers listed to 
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be fitted statistically. An elementary reference to the subject matter of concem 
here is Boore (1977). 

4. Quantification of earthquakes. One of the important and difficult ques- 
tions of seismology is how to measure the "size" of an earthquake. Size is an 
essential feature that a seismologist makes use of in attempts to deal with 
earthquake hazards and to understand the basic phenomena of concem. Specifi- 
cally, the seismologist is not only interested in estimating the direction of 
movement at the source, he is further interested in the overall deformation that 
took place and the amount of energy that was released. Among the physical 
quantities of interest for a given earthquake are the seismic moment (a measure 
of the seismic energy released from the entire fault) and the stress drop 
(difference between the initial and final stress.) 

For a variety of seismic source models, seismologists have related the seismic 
moment and stress drop to characteristics of the amplitude spectrum IS(X)I, the 
modulus of the Fourier transform of the signal. Suppose that the seismogram is 
written as 

Y(t) = S(t; 0) + E(t), 

where s(.) is the signal, ( is an unknown parameter and E(*) is a noise 
disturbance. If S(X; 0) denotes the Fourier transform of s(t; 0), then what is 
given, from the source model, is the functional form of IS(X, 0)1. A reason for 
working in the Fourier domain here is that distracting phase information is 
eliminated. Common forms (for displacement measurements) include 

IS(X; 0)1 = a/1/ + (X/Xo)f and a/{1 + (X/Xo) } 

with 0 = {a, /B, X0). The seminal paper on the determination of such functional 
forms and on the relationship of their parameters to the "size" of the earthquake 
is Brune (1970/1971). Estimates of the seismic moment and stress drop may be 
determined once estimates of a and X0 are available. That the parameters relate 
to size and duration will be seen for a particular functional form in the discussion 
that follows. The empirical practice has been to estimate the unknowns graphi- 
cally from a plot of the modulus of the amplitude of the empirical Fourier 
transform Idy(X)I. The following formal procedure was suggested in Brillinger 
and Ihaka (1982). 

The asymptotic distribution of Idy(X)I may be evaluated in the case of 
stationary e using a central limit theorem of the type mentioned in Section 2. 
The asymptotic distribution is found to depend on IS(X; 0)I and fee(X) alone. 
Hence one needs an expression only for the modulus of S, and as stated above, 
this is what the seismologist generally provides. Next, with the model Y(t)= 
s(t; 0) + e(t) and small noise, 

idy(X)I = IS(X; 0)1 + (dT(X) + dT(-X))/2 + 

showing variation around ISI not depending on ISI. However, when deviations of 
IdTi from a final fitted form are plotted versus the fitted values, dependence of 
the error on ISI is apparent. An example is provided in Figure 8. This is the 
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Taiwan Event - Transverse Shear Wave - 29 January 1981, Magnitude 6.7 
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FIG. 8. The upper graph gives the transverse S-wave component of the vibrations of the January 29, 
1981, magnitude 6.7, Taiwan earthquake as recorded by the central accelerometers of the Smart 1 
array. The array is approximately 30 km northwest of the epicenter of the event. The lower graph 
plots the differences between the amplitudes of the Fourier transform of the data and corresponding 
(final) fitted values. The data stretch consisted of 256 points. 

result of computations for an earthquake of magnitude 6.7 that occurred in 
Taiwan on January 29, 1981. The data were recorded by one of the instruments 
of the Smart 1 array; see Bolt, Tsai, Yeh and Hsu (1982). The upper graph of the 
figure provides the transverse S-wave portion of the recorded accelerations. The 
lower graph provides the deviations plot just referred to. This plot suggests that 
the noise is in part "signal generated" in this case. There are various physical 
phenomena that can lead to signal-generated noise. These include multipath 
transmission, reflection and scattering. The following is an example of a model 
that includes signal-generated noise: 

(10) Y(t) = s(t) + E(YkS(t - Tk) + akSH(t - Tk)) + e(t), 
k 

with the Tk time delays, with SH the Hilbert transform of s and with Yk, 8k 
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reflecting the vagaries of the transmission process. [The inclusion of the Hilbert 
transform allows the presence of phase shifts. The Hilbert transform is discussed, 
for example, in Brillinger (1975a), page 32]. With the Yk, (k' Tk random and after 
evaluating the large sample variance, one is led to approximate the distribution 
of YJ = dykXj) by a complex normal with mean S(Xj; 0) and variance rj = 
2iTT(p2/S(X1; 0)12 + a2), where now E has been assumed to be white noise (of 
variance a2), and also it is assumed that Eyk, E 3k = 0 and that the process Tk is 
Poisson. The ratio p2/a2 measures the relative importance of signal-generated 
noise. This variance is seen to depend on the "signal" through ISI and leads to 

Taiwan Event - Amplitude Spectrum 
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FIG. 9. The upper graph provides the amplitudes of the Fouriet- transforms of the Taiwan data of 
Fiure 8 and the correspondinzgfitted expected values as cornputed for the model of Section 4. Both 
scales of the plot are logarithmic. The lower graph provides the fitted pulse s( t). 
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wedging of the type present in Figure 8. One can proceed to estimate 0 by 
deriving the marginal likelihood based on the IYjl. This likelihood may be 
evaluated and found to be 

FH(exp(- ilr2 S IO r;_____ 

where Io denotes a modified Bessel function. The upper graph of Figure 9 shows 
a fit of the model IS(X)l = all/(l + (X/Xo)4) to the data of Figure 8. This 
functional form was settled on after the degree of fit of two more elementary 
forms was examined. 

Details may be found in Ihaka (1985). We remark that this model fit 
corresponds to a time domain pulse s(t) = aXop(X0t), where 

p(t) = [sin-i - tsin( e- + t/ 

for t > 0 and p(t) = 0 otherwise. The expression s(t) = aXop(Xot) indicates 
how Xo corresponds (inversely) to the duration of the event and how a corre- 
sponds to size. The lower graph of Figure 9 provides a plot of the fitted pulse. 
Once estimates of a, AO are at hand, these may be converted to estimates of the 
seismic moment and stress drop via theoretical relationships developed by 
geophysicists. 

The maximum likelihood fit of the model was carried out by a computer 
program written by Ihaka. This program also generates standard error estimates 
and standardized residuals. These later may be used to assess the goodness of fit 
of the model. Figure 10 provides a plot of the standardized residuals against the 

Standardized Residual Plot 

CM 
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FIG. 10. A standardized residual plot, based on the model (10), corresponding to the lower graph of 
Figure 8. The differences between the amplitudes of the Fourier transform values and their fitted 
expected values have been divided by their fitted standard deviations to obtain standardized 
residuals. 
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fitted values of the same format as the residual plot of Figure 8. The wedging 
corresponding to signal-generated noise in the later plot is no longer present; 
however, there is a definite suggestion that the fit might be improved in the 
region where the signal has low amplitude. Luckily, this is the region of least 
importance. It awaits future analysis. It might be handled by allowing the series 
E(t) to have a nonconstant spectrum. 

5. Array data. Today it would be a strange thing indeed for an earthquake 
to be recorded on just one seismometer. In fact, from the very earliest days, 
readings of the same event at geographically scattered observatories have been 
made use of. Since the 1960s, seismometers have been deliberately arranged in 
geometric designs over distances of the order of miles to hundreds of miles in 
order to allow extraction of traditional information and sometimes ellicitation of 
new information. 

An important use has been the estimation of the direction from which a 
seismic signal is arriving and the velocity with which it is moving. One manner in 
which this is done is by the computation of estimates of frequency-wavenumber 
spectra. The procedure may be described as follows. Suppose one has array data; 
Y(xj, yj, t), j = 0,..., J and t = 0,..., T - 1. Here (xj, yj) denotes the coordi- 
nates of the location of the jth sensor. The frequency-wavenumber periodogram 
of this data is given by 

2 

(11) |EE Y(xj, yj, t)expt i i(txj + vyj + XAt) } , < AI v, A. < xo. 
j t 

A motivation for this definition is the following. Suppose one has a plane wave 
Y(x, y, t) = p cos(ax + fly + yt + 8) of temporal frequency y and wavenumber 
K = (a, 1). Then the periodogram will have a peak near (a, 3, y). (Incidentaly, 
this wave is moving with apparent velocity y/ ja2 + /32 from azimuth given by 
tan 0 = /3/a.) An example of array data is given by Figure 11. What is plotted 
are the locations of nine of the seismometers of the Smart 1 array located in 
Taiwan. Also plotted are the portions of the traces used in the computations. 
These traces correspond to the vertical P-wave part, of the January 29, 1981 
earthquake. (The initial near-flat part is the noise, saved in a buffer, just before 
the onset of the wave.) The estimated epicenter of this earthquake was 30 km 
southeast of the array. Figure 12 gives a central portion of the frequency-wave- 
number periodogram, for this data, as computed via formula (11), at frequency X 
corresponding to 1.944 cycles/s. (The temporal frequency 1.944 was picked on 
the basis of a times-series analysis of the individual seismograms.) There is seen 
to be a large peak in the southeast quadrant, at an azimuth that turns out to 
correspond to that of the epicenter of the event. The radial distance corresponds 
to the velocity of P-waves. 

Seismologists working with this type of data have often preferred to employ, 
what they call, the "high-resolution" or "Capon" statistic [see Capon (1969)] 
instead of the periodogram (11). The high-resolution statistic typically shows 
more dramatic peaks than the periodogram. Before defining it, we introduce 
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Taiwan Array and Event of 29 January 1981 
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FIG. 11. The vertical P-wave portion of the January 29 Taiwan earthquake as recorded at nine of 
the sensors of the Smart 1 array. The " bullets " are plotted at the physical locations of the sensors. 
Noise immediately preceding the amval of energy from the event had been saved in a buffer. 

some notation. Let Y(t) denote the j-vector [Y(xj, yj, t)]. Set 
T-1 L2k 

Yk= T- Y(t)exp - I 
t=o T 

for k=0,2,.... Further let B=[exp{-i(pxj +vyy)}]. If X=2 2d/T, 1 an 
integer, then the periodogram (11) is proportional to IBTYII2. Next define 

M = EykYk, 

with the sum over k with 2rk/T near X. Now the high-resolution statistic at 
frequency X may be defined as 1/B M-'B. If Y(x, y, t) = p cos(ax + fly + 
yt + 8) + noise, this statistic may be expected to show a peak for (IL, v) near 
(a, fi) and X near y. This statistic has been introduced, in part, in order to be 
able to present the next example. 
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Frequency-Wavenumber Periodogram Taiwan Event 
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FIG. 12. The frequency-wavenumber periodogram of the data of Figure 11. The time series 
stretches contain 720 points. The temporal frequency employed is 1.94 cycles/s. 

Figure 13 is reproduced from Scheimer and Landers (1974). It shows the 
high-resolution statistic computed for two portions of data recorded by the 
Large Aperture Seismic Array (LASA) in Montana following a strip-mining 
blast. These computations confirmed the validity of the high-resolution ap- 
proach. The statistic for one portion shows a single large peak in the direction of 
the blast. The statistic for the following portion shows energy arriving from 
various directions. This analysis provided empirical proof of the existence of 
scattering of seismic waves. That this phenomenon existed had been theorized 
for years. A frequency-wavenumber data analysis has provided the confirmation. 

Spectral analyses are (too) often thought of as being appropriate only for 
stationary data. As the preceding example shows, the technique may be highly 
useful in nonstationary cases as well. As a second example we mention the results 
of Bolt, Tsai, Yeh and Hsu (1982). If, in fact, an earthquake is caused by 
faulting, then the direction of the source of seismic energy will be changing as 
the fault is ripping, that is, as the fault tip is advancing. In the paper cited, Bolt, 
Tsai, Yeh and Hsu present high-resolution spectra for succeeding time stretches 
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seismic dislocation moving along a rupturing fault. 
In each of the preceding two examples, frequency-wavenumber analysis has 

allowed researchers to confirm the presence of suspected scientific phenomena. 

6. Exploration seismology (reflection seismology). The problem of 
learning the Earth's crustal structure can be approached as one of system 
identification. The approach to be described takes advantage of the fact that the 
Earth happens to be made up of layered strata. Signals, such as powerful 
impacts or explosions, can be deliberately input to the Earth and the consequent 
vibrations recorded by an array of seismometers or geophones. Such experiments 
may be carried out in a search for gas and oil, or in a scientific study of the 
general geological makeup of a region of interest. The results of these experi- 
ments may be viewed as one of the grand success stories for statistical techniques 
generally, and of least squares particularly. An unusual aspect of the inferences 
made is that in many cases one gets to examine their validity, by the later 
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drilling of a well. No worked example is presented in this section of the paper, in 
large part because data sets are hard to come by. The material is presented, 
however, because it provides a case where a rather complete solution (design 
through confirmation) can be presented and because the basic experimental 
technique is also employed in the neurophysiological case, where so much less is 
known. 

In its simplest form, the energy of an initiated seismic disturbance propagates 
through the Earth with a spreading wavefront. When it meets an interface 
between geological strata, part of the energy may be reflected back and part 
continue forward due to the difference in acoustic impedance at the interface. 
The sensors record the returning reflected energy echoes. Knowledge of sub- 
surface velocities allows estimation of the depths and angles of inclination of the 
various reflectors, whereas knowledge of the locations of reflectors allows estima- 
tion of velocities. (One notes again a see-saw in the collection of knowledge.) In 
practice, the initiating impacts will be repeated a number of times at the same 
location and at points of a grid. The power of averaging is again used. 

If the input signal is taken to be X(t) and if Y(t) denotes the corresponding 
output, then the two may be modeled as related, assuming linearity and time 
invariance, by 

(12) Y(t) fa(t - s)X(s) ds. 

The function a(.) is called the impulse response, since if the Dirac delta function 
8(t) is taken as input, then the resulting output is Y(t) = a(t). The function a(-) 
evidences the reflectors and velocities in the earth beneath the source and 
receiver. The model and its interpretation may be motivated as follows. Suppose 
a pulse is applied at time T. Suppose in consequence a wave is generated, travels 
at velocity v1 to a reflector at distance d, and a proportion a1 is reflected back. 
With X(t) = 8(t - T), then Y(t) = a, 8(t - T - 2d1/v1). (This is actually the 
naive model for radar or sonar.) Suppose further that the transmitted portion 
continues downward at velocity v2 to a reflector at distance d2 and a portion of 
its energy is reflected back, some of which is transmitted by the first reflector to 
reach the receiver. Now the response has the form Y(t) = a1 8(t - T - 2dJ1v1) + 
a2 8(t - - 2d1/lv - 2d2/v2). This last is seen to correspond to the system 
of expression (12) with impulse response a(t) = a,8(t - 2dJ1/j) + a28(t - 

2d1/v1 - 2d2/v2). One can clearly extend this model to situations with many 
layers, many velocities and many corresponding transmission and reflection 
coefficients. Peaks in the function a(t) may be seen as corresponding to reflec- 
tors. (It must be noted that unfortunately such an elementary interpretation is 
likely to be complicated in practice by interfering phenomena such as ghost 
reflections. Some techniques have been developed to handle these.) The basics of 
exploration seismology are discussed in Wood and Treitel (1975), Waters (1978) 
and Robinson (1983). 

The problem has now been formulated as one of system identification; given 
stretches of corresponding input X and output Y, determine an estimate of the 
impulse response a(-). In the case that a pulse close to a Dirac 8 may be 
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generated and that the function a(-) drops off to 0 reasonably quickly, a 
convenient procedure results from taking 

M 
X(t)= E 8(t- MA) 

m=1 

as input, and the "average evoked response" 
1 M 

M m=1 

as an estimate of a(s). This input corresponds to applying pulses periodically. 
The estimate corresponds to stacking and averaging. 

Suppose one sets myx(t) = Y*X(t) for some convolution operation " ." 
Then from (12) one has 

myx(t) = fa(t - s)mxx(s) ds 

and one has a deconvolution (or inverse) problem to solve. Suppose one decides 
to seek an X(*) such that 

Ja(t - s)mxx(s) ds z a(t), 

to allow elementary processing. In terms of Fourier transforms, the left-hand 
side here may be expressed as Jexp{iXt}A(X)Mxx(X) dX, with MXX a Fourier 
transforn of mxx. Then what is wanted is an X such that Mxx(X) - 1 on the 
support of A(-). If A(X) is known to be near 0 for 0 < X < Xo and for A > A1, 
then a possible function is the "chirp" signal 

X(t) = cos([AO + (A - Ao) ]t)- for0 <t < T. 

In the seismic case, the values of o, X, have been determined in various 
experiments. The chirp probe originated in radar work during World War II [see 
Cook and Berenfield (1967)]. It may be seen to attach near equal power to the 
frequencies between Xo and AX. In the seismic case special devices have been 
developed to input the chirp signal to the earth. The signal is input repeatedly 
and the results averaged. The response is then convolved with the chirp function, 
that is, myx is formed to estimate a(.). Structure can appear dramatically 
during the cross-correlation processing described here. 

In practice, subtle further processing is employed to handle wavefront curva- 
ture, ghost reflections and other natural phenomena that may be present. 

7. Other topics. There are other problems arising in seismology to which 
statistical methodology can be applied fruitfully. These include analysis of the 
coda (i.e., of the irregular trailing part of the disturbance), analysis of scattering, 
risk analysis, nonlinear phenomena, point process studies, polarization, cepstral 
analysis, discrimination of earthquakes from explosions [see, e.g., Tjostheim 
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(1981)], seismicity study, travel time table construction, attenuation laws, earth- 
quake location and azimuthal dependence of characteristics. Vere-Jones and 
Smith (1981) discuss several of these problems. In some cases work has begun. 

8. Discussion. Seismologists have long been serious users of statistical 
methods. One finds Harold Jeffreys making the following statement in the entry, 
"Seismology, statistical methods," in the International Dictionary of Geo- 
physics: "The uncertainty is as important a part of the result as the estimate 
itself. ... An estimate without a standard error is practically meaningless." 
Hudson (1981) remarks: "The success of the Jeffreys-Bullen travel time tables 
was due in large part to Jeffreys' consistent use of sound statistical methods." 
When I asked my colleague B. A. Bolt what he saw as the role of statistics in 
seismology, he replied: "Seismology is largely an inferential science. ... The role 
of statistics in seismology is to provide a rigorous procedure for turning observa- 
tions on seismic waves, etc., into probabilistic statements about properties of the 
(real) Earth." 

One may note that work in seismology is characterized by massive data sets, 
inherent variability and measurement error, defining/fitting/refining models, 
design of experiments, simulation, probabilistic description, needs for robust/re- 
sistant procedures, predictive situations, inverse problems and combination of 
observations. Statistics has much to offer in all these connections. 

9. Update. Since the lectures were presented in 1983, work has progressed 
on various of the topics covered. Abrahamson (1985) has employed Smart 1 data 
to better see the movement of the fault rupture tip. Chiu (1986) studies the 
problem of estimating the parameters of a moving energy source. Lindberg (1986) 
develops "optimal" tapers to employ in the estimation of the frequencies of free 
oscillations. The approach of Kitagawa and Gersch (1985) to nonstationary data 
seems likely to prove of broad practical applicability. The book by Udias, Munoz 
and Buforn (1985) goes into substantial detail over the formal estimation of 
fault-plane parameters. Copas (1983) sets down an expression for the variance of 
a statistic like that of (9). Brillinger (1985) develops a maximum likelihood 
statistic for detection and estimation of a plane wave given array data. Donoho, 
Chambers and Lamer (1986) develop a robust/resistant procedure for better 
aligning the seismic traces of a section. Mendel (1983, 1986) presents maximum 
likelihood state space-based methods for handling the data of reflection seismol- 
ogy. Shumway and Der (1985) indicate how the EM method may be employed to 
deconvolve pulses hidden in seismic traces. The nongaussianity of seismograms 
obtained in reflection seismology is being taken specific advantage of; see 
Giannakis and Mendel (1986). The techniques of Donoho (1981) and Lii and 
Rosenblatt (1982) seem bound to prove useful in the seismological case. The 
thesis, Ihaka (1985), has been completed. Ogata [e.g., Ogata (1983) and Ogata 
and Katsura (1986)] has carried out a variety of likelihood-based analyses of 
earthquake times as a point process. Many statisticians have begun working on 
statistical aspects of inverse problems. We specifically mention O'Sullivan (1986). 
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One can speculate on where the field of statistical seismology will go in the 
coming years. It seems clear that there will be much concern with non-Gaussian 
noise and signals, that vector-valued spatial-temporal data and analysis will 
become the norm, that large-scale conceptual models will be set down and that 
there will be a variety of techniques developed for borrowing strength in 
situations with scanty data, e.g., risk estimation. 

III. Neurophysiology 
modern biometry is the interdisciplinary endeavor to build structural 

stochastic models of biological phenomena. 
J. Neyman (1974) 

10. The field and its goals. Neurophysiology is the branch of science 
concerned with how the elements of the nervous system function and work 
together. The functioning is seen to involve chemical mechanisms, electrical 
mechanisms and physical arrangement. The studies extend from the movements 
of individual ions, through to the mass behavior of the components of the brain. 

The goals of neurophysiologists range to the heroic: how to explain things like 
memory, emotion, learning, sleep, expectation, behavior. At a less ambitious 
level, neurophysiologists are concerned with how a single nerve cell responds to 
stimuli, transmits information and changes with alterations of the environment. 

The neuron is both the functional and structural unit of the nervous system. 
The brain is a multiprocessor of dramatic complexity. The elements of the 
nervous system may be said to differ from those in the seismic case, in that they 
apparently have purposes. 

The field is largely experimental with researchers collecting varied and exten- 
sive data sets. The data include photographs made via electron microscopes, 
fluctuating voltages and current levels within single nerve cells and finally 
electroencephalograms (the brain's electrical potential at points near the skull.) 
The studies are sometimes simply observational, but often complex experimental 
designs are employed. 

Important techniques that are made use of include staining to identify 
individual neurons, insertion of microelectrodes to make measurements within 
individual cells and the averaging of whole suites of responses to a stimulus of 
interest in order to reduce what can be the dominant effects of noise. Many 
experiments are computer controlled and computer processed. 

Discoveries made by neuroscientists include the following. Nerve cells com- 
municate with each other in both a chemical and electrical fashion, the voltage 
pulse that travels along a neuron's output fiber is of near constant shape and 
there are a broad variety of nonlinear phenomena that occur. A number of 
verifiable physical laws and effective deterministic models (such as the 
Hodgkins-Huxley equations) have been set down. Much insight has been gained, 
especially at the level of small groups of neurons. At the level of the brain itself, 
knowledge is mainly phenomenological. Here the brain is viewed as a black box 
and studied by system identification techniques. Whatever the approach, 
discoveries have been made leading to lifesaving and life-improving clinical 
diagnoses. 
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Statistical methods entered with the quantification of the field. No single 
individual scientist seems to have had a dominating effect, rather there have 
been many contributing workers-researchers concerned with electroencephalo- 
grams (EEGs) and researchers concerned with small collections of neurons. 
Statistical methods entered both because of high noise levels and because a 
variety of phenomena seemed to be inherently stochastic. Evidence for this last 
is presented in Burns (1968) and Holden (1976). Pertinent books on neurophysi- 
ology include Freeman (1975), Aidley (1978) and Segundo (1984). General reviews 
of statistical models and methods in neurophysiology are given in Moore, Perkel 
and Segundo (1966) for the cases of single neurons and of small groups of neurons 
and by Glaser and Ruchkin (1976) for EEGs. Statistical methods for classifica- 
tion and pattem recognition, for handling artifacts and for data summarization 
are in common use. 

Neurobiology is one of the most active branches of science. The physiological 
phenomena with which it is concerned are fundamental and in most cases barely 
understood. 

11. Neuronal signaling. One of the important means by which nerve cells 
communicate is via spike trains. The inlays at the tops of the three graphs of 
Figure 14 give examples of spike times representative of three different sorts of 
neuronal behavior; pacemaker (near-periodic), bursting (activity occurs in bursts) 
and bursting with acceleration (of firing within bursts). 

Suppose that a neuron fires at times Tn, n = 0, + 1, + 2, .... A convenient 
formal representation of its temporal behavior is provided by writing 

Y(t) = a(t Tn 
n 

with 8(.) the Dirac delta function. This representation leads to results analogous 
to ordinary time-series results in many cases. In the case that the T, are random, 
one has a stochastic point process {Tn}. A principal descriptor of a point process 
is provided by its rate function. This is given by 

lim Prob{point in (t, t + h }h, 
h 

as h tends to 0. In the stationary case, where the stochastic properties of the 
process do not depend on the time origin, the rate function is constant and so 
only crudely useful then. 

The autointensity function is an important parameter in the stationary case. 
It is defined as 

lim Prob{point in (t, t + h]lpoint at O}/h, 
h 

as h tends to 0. It is a point process analog of the autocovariance function of 
time-series analysis in a general sense. This parameter may be used, for example, 
to describe the behavior of spontaneously firing neurons. Figure 14 presents 
examples for three cases. In the first case, the neuron is firing approximately 
periodically. The (estimate of) the autointensity is seen to oscillate (with period 
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FIG. 14. Point process data (spike train) from the nerve cell L10 of Aplysia californica. The cell is 
behaving in three different fashions. The inlays at the tops of the three graphs give brief stretches of 
the data (but not on Ithe same time scales as the autointensities). The functions plotted are estimates 
of the autointensity functions based on 1538, 1019, 1631 spikes, respectively. 
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equal to the interval between the points). In the second case, the neuron is 
evidencing activity in bursts. The probability that the neuron fires again soon 
after it has fired is high. In the third case, the neuron is also firing in bursts; 
however, now there is structure within the bursts, the rate of firing is seen to 
increase therein. The bursts here are at regular intervals. 

The autointensity functions have been estimated, for this figure, by the 
statistic 

ITn -Tm - ti < h/2}/Nh, 

with N the total number of points, with h a small binwidth and with t lag. 
(Here # refers to the count of the number of points in the set.) The data 
analyzed are for the cell L10 of Aplysia californica, the sea hare. They were 
collected and previously analyzed by Bryant, Marcos and Segundo (1973). The 
experimental procedures and details of the data preparation may be found in 
that reference. 

A question that arises in the study of small networks of neurons is which 
neurons are interacting with which? In other words, which spike trains are 
associated with which others? A useful parameter to employ in the study of such 
questions is provided by the cross-intensity function. Supposing one has spike 
trains named M and N, then the cross-intensity function of N given M at lag t 
is defined as 

lim Prob{N point in (t, t + h ]M point at 0)/h, 
h 

as h tends to 0. If the M spike train consists of points Urn and the N train of 
points T then this cross-intensity may be estimated by 

# IT,,- ,rn - t < h/2)/Mh, 

with M denoting the number of M points in the data set, with h a small 
binwidth and with t lag. Figure 15 presents three examples of estimated 
cross-intensity functions. The first graph refers to data from cells L3 and L10 of 
Aplysia californica. The behavior exhibited here is that of negative association; 
L1O's firing is inhibiting the firing of L3 (for approximately 0.5 s). If one asks 
whether the values at negative lags differ from the level of no-association by 
more than sampling fluctuations, one finds they do not. This result is consistent 
with the cell L10 driving the cell L3. The middle graph corresponds to positive 
association. It is for a cell in the right visceropleural connective (RVP) and cell 
R15. The first cell tends to excite the second for about 0.25 s. The final graph 
represents a more complicated (polyphasic) situation. These data sets were also 
analyzed in Bryant, Marcos and Segundo (1973), where further details may be 
found. The approximate sampling distributions of such statistics were developed 
in Brillinger (1975b). It was found, for example, that it could be more convenient 
to graph the square root of the estimate in some circumstances. 

The cross-intensity function, being a point process analog of covariance, may 
be expected to be an inadequate measure of relationship (as usual, correlation 
does not imply causation). In the case of elementary statistical data, it is usual 
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FIG. 15. Estimates of the cross-intensity functions for three pairs of Aplysia neurons. The estimates 
are based on (1746,302), (1101,288), (1019,993) spikes in the pairs of trains, respectively. 
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to turn to regression as a better technique. In the point process case it is possible 
to carry out regression-type analyses. For example, one may fit the following 
fonn of model: 

lim Prob{N spike in (t, t + h)IM spike train}/h = i + Ea(t - am), 
h m 

as h tends to 0. The function a(t) appearing in this model is referred to as the 
impulse response. This model may be fit as follows. Set 

M 

dT()= E exp{-iXam,, 
m=1 
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FIG. 16. The estmted coherence and impulse response for the data of the upper graph of Figure 
15. The horizontal line gives an estimate of the level exceeded by chance only 5% of the hme when the 
spike trains are independent. 
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with a similar definition for dT(X). These are point process analogs of the 
empirical Fourier transform (3) of time-series data. The cross-periodogram of the 
given data at frequency X is defined as 

INM(X) = (27TT)1dT() dT(X). 

If the cross-periodogram is smoothed to obtain f TM(X), then fNMQ(X) is an 
estimate of the cross-spectrum in the case that {M, N) is a bivariate stationary 
point process. Now A(X), the Fourier transform of the impulse response a(t), 
may be estimated by f T (X)fMTm(X)-1. The impulse response itself may be 
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FIG. 17. The estimated coherence and impulse response for the data of the middle graph of Figure 
14. The horizontal line in the upper graph gives the approximate upper 95% null point of the 
distribution of the sample coherence. 
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estimated by back Fourier transforming AT. The strength of the relationship 
proposed in the model may be measured, at frequency X, by the sample 
coherency function R'M(X) = fN(A)/ IMM(X)I NN(X). Its modulus squared 
is called the sample coherence. The coherence lies between 0 and 1, being nearer 
to 1 the stronger the relationship. More details of these computations may be 
found in Brllinger (1975b) and Brllinger, Bryant and Segundo (1976). [We here 
follow the use of the terms "coherency" and "coherence" in Wiener (1930).] 

Figures 16 and 17 provide the results of such an analysis for the first two data 
sets of Figure 15. In each case the first graph is of the sample coherence. The 
coherences are at some distance from the value 1.0, but above the 95% null 
significance level (given by the horizontal lines in the figures). The relationship is 
inherently nonlinear, so it could have been anticipated that the coherence 
estimate would not be close to 1.0. Further discussion of these and similar 
analyses may be found in Brillinger, Bryant and Segundo (1976). 

12. Assessing connectivities. Questions that can arise with small net- 
works of neurons include; is one neuron driving the rest and if one apparently is, 
which one is it? The next data analysis to be presented addresses this question 
for three Aplysia cells L2, L3 and L10. From other experiments the neurophysi- 
ologists knew that cell L10 was driving cells L2 and L3. It was not known if there 
were any direct connections between L2 and L3. The first three graphs of Figure 
18 present estimates of the three coherences, L10 with L2, L2 with L3 and L10 
with L3. As might have been anticipated, these suggest relationship exists in 
each case. 

It is possible to address the question of the direct connection of cells L2 and 
L3, in the presence of L10, by partial coherence analysis. Suppose that {A, B, C) 
is a trivariate stationary point process. Let RAB(X) denote the coherency 
function of processes A and B, with similar definitions of RAC and RBC. Then 
the partial coherency of the processes B and C, having removed the (linear time 
invariant) effects of process A, is given by 

RBC- RBARAC (13) RBCIA 
~~V(1- IRBAI12) (1 -_IRcAI12) 

suppressing the dependence on X. This definition may be motivated several 
ways. For example, it is the coherency between the processes resulting when 
their best linear predictors based on A are removed. Or, it is given by 

lim corr(d - ddT, dT ; d[T 2 

Here corr denote the (complex) correlation coefficient and fBA/fAA' fCA/fAA are 
approximate regression coefficients. An estimate may be determined by sub- 
stituting estimates for the quantities appearing on the right-hand side of expres- 
sion (13). If there is no connection between the processes B and C beyond their 
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13. A struCtural stochastic model. The analyses of neuronal firing, so far 
presented, are of the correlation and regression type. Parameters with direct 
biological interpretations have not been introduced. In Brillinger and Segundo 
(1979), a conceptual model is constructed and fitted by the method of maximum 
likelihood. The model involves the following elements. 

Input to a nerve cell leads to electrical-current genesis. This current flows to a 
trigger zone, being filtered in the course of its passage. When the voltage level at 
the current zone exceeds a threshold value, the nerve cell fires. The neuron 
remembers back only to the time of previous firing. This process may be specified 
analytically as follows. Let U(t) denote the voltage (membrane potential) at the 
trigger zone at time t. Let B(t) denote the time elapsed since the neuron last 
fired. Let X(t) denote the (measured) input to the cell. Then, assuming linearity 
and time invariance, one can write 

U(t) = f( B (s)X(t - s) ds, 

for some summation function (impulse response) a(.). The neuron fires when the 
process U(t) crosses a threshold level 0(t). Depending on the level at which the 
threshold is set and the internal mechanics of the nerve cell, the input will either 
accelerate (excite) or slow (inhibit) the firing. In Brillinger and Segundo (1979), 
this mechanism was completed and discretized as follows. Input to the cell was 
written Xt, t = 0,..., T - 1. Corresponding output was Yt, t = O,..., T - 1, 
with Yt = 1 if there was a firing in the (small) interval immediate to t and with 
Yt= 0 otherwise. With Bt denoting the time elapsed at t since the preceding 
time that Y = 1, they set 

Bt- 1 

Ut- E asXt-s. 
s=O 

The presence of Bt in the model had the effect of introducing a form of feedback. 
Finally, they assumed that the threshold function had the form (t = 0 + Et with 
the e's independent normals having mean 0, variance 1 and cumulative distribu- 
tion function d(*). 

The likelihood function of the given data and the model then took the form 
T-1 

H 4(Ut - )Yt(1 - 1(Ut - 0))l-Yt. 
t=O 

Parameter estimates were determined by maximizing this likelihood with respect 
to 0 and the a.. Approximate standard errors were determined by procedures 
traditional to maximum likelihood. 

Figure 19 presents the results of one such analysis. In this case fluctuating 
current X(t) was injected directly into the cell R2 of Aplysia. The current level 
was taken to have marginal distribution that was approximately uniform (but 
that is not crucial to the technique). The sampling rate was 50 samples/s. The 
upper graph of the figure gives a stretch of the noise signal injected and the 
corresponding times at which the neuron fired. Details of the experiments are 
given in Bryant and Segundo (1976). It is very difficult, if not impossible, to see a 
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FIG. 19. The results of fittin the neuron model of Section 13 to data obtained in an experiment with 
the ceU R2 of Aplysia. The upper graph is a segment of the data. Noise (lower trace) is injected into 
the cell. The upper trace gies corresponding observed firng times. The middle graph gives the 
maximum likelihood estinate of the summation function a(-), estimated at 25 lags. The lower graph 
provides the statistic (14) of Section 13 and the curve 4D(U - I) with # the estimated mean 
threshold. The vertical line is at U = ?. 



36 D. R. BRILLINGER 

connection between these two stretches of data. The middle graph gives the 
estimated summation function a'. The lower graph is one means of assessing the 
fit of the model. It is analogous to expression (9) of Section 3, and given by 

(14) #{Yt=1withU-h<Ut< U+h}l#{twithU-h< U< Ut +h}, 

for small h, plotted versus U. Here 
Bt- 1 

Ut E as t-s 
s=O 

is the fitted linear predictor. The smooth curve is the corresponding D(U - 0). 
The fit may be described as adequate. The computations were carried out by a 
variant of the program developed for handling the seismic first-motion data of 
Section 3. Further examples and discussion may be found in Brillinger and 
Segundo (1979). Other types of input are employed and alternate estimating 
procedures compared there. 

The large-sample properties of such estimates may be studied as in Sagalov- 
sky (1982). A great advantage of the model-building approach, of this section, is 
that the parameters introduced and estimated have biological interpretations. A 
further advantage of the maximum likelihood approach, over that of partial 
coherency, is that the spike trains involved can be highly nonstationary. 

14. Analysis of evoked responses. A traditional means of studying the 
nervous system involves applying sensory stimuli to a subject and examining the 
ongoing electroencephalogram for an evoked response. The stimulus may be 
auditory, visual (e.g., light flash, checkerboard pattern), olfactory, somatosensory 
(e.g., an electrical shock), gustatory or a task. Generally, the stimulus is applied 
for a time interval that is brief in comparison to the duration of the response. 
Evoked-response experiments play an essential role in quantitative biology. 
Because the experimenter is able to choose which stimuli to apply and when to 
apply them, conclusions can pass beyond associations noted, to formal inferences 
concerning causal mechanisms. These experiments are formally the same as the 
seismological reflection experiments described in Section 6. 

Some dramatic success stories of the technique may be mentioned. One is 
presented in Bergamini, Bergamasco, Fra, Gandiglio and Mutani (1967). Siamese 
twins were joined in such a way that it was not possible to determine by 
traditional means if the peripheral nervous pathways were interconnected. 
Before operating, it was crucial to determine the interconnections of the twins. 
Ongoing EEGs were recorded for each. A series of trials were carried out in 
which each of the twins' legs was stimulated in turn by electrical shocks. What 
was found was that when a leg of one twin was stimulated, response was noted 
only in her EEG. On the basis of this information, the twins were 
separated -successfully. A second notable example of the use of the evoked 
response technique is provided by hearing exams for newbom infants (including 
infants asleep.) EEGs are recorded. These are examined for responses after loud 
clicks are made near the infants' ears. Rapin and Graziani (1967) present an 
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example for an infant with hearing difficulties, both wearing and not wearing a 
hearing aid. The hearing aid is found to have an objectively measurable effect. 

Figure 20 presents an example of evoked-response data recorded at a 4 x 4 
array of sensors implanted in a rabbit. In this case the stimulus was an odor and 
the sensors were implanted in order to study the rabbit's olfactory system. These 
responses were recorded concurrently. A second example is given in Figure 21. It 
gives the 20 successive responses evoked by applying a current pulse to the 
lateral olfactory tract of a rabbit and recording from a sensor implanted in the 
depth of the pre-piriform cortex. The signal is fairly pronounced in Figure 20. In 
Figure 21 the strength of the stimulus was weak and the signal is not apparent. 
Both of these data sets were collected in the laboratory of W. J. Freeman, 
University of California, Berkeley. Some details of his experiments may be found 
in Freeman and Schneider (1982). 

Crucial to many evoked response experiments is the fact that it is generally 
insufficient to apply a stimulus once. Rather it must be applied repeatedly 
(perhaps thousands of times) and the responses averaged. (This is also true in the 
case of reflection seismology as mentioned earlier.) In the twins and infant 
examples discussed previously, M equaled 250 and 100, respectively. Formally, if 
Y(t) denotes the measured EEG and the stimulus is applied at times am, 
m = 1,..., M, then it is usual to take as the basic statistic, the average evoked 
response 

m 1M 

M m=1 

The left-hand column in Figure 22 presents the results of averaging the data of 
Figure 21 with M = 3, 5, 10, 20 and 38. With increasing averaging a signal is 
slowly appearing from the noise. Some alternate evidence for the presence of a 
signal is provided by the results of the right-hand column. These are averages of 
38 responses, where the stimulus has been applied at a succession of increasing 
strengths. 

A variety of questions, which have statistical formulations, arise in the course 
of work with evoked responses. (1) Does an applied stimulus elicit a response? (2) 
Do two different stimuli elicit the same response? (3) Is the same response 
elicited at two different sensor locations? (4) Is the response stationary? (5) If the 
order of stimuli application is altered, are the corresponding responses altered? 
(6) Are the effects of different stimuli additive? (7) How does the response 
depend on the stimulus intensity? (8) How do the responses depend on exogenous 
variables? To go with answers to these questions, researchers seek quick efficient 
data collection, precise estimates and indications of variability. Difficulties that 
commonly arise include small response, large noise, variability in response, 
artifacts present and superposed effects. Next in this section, two formal set-ups 
will be presented that may be employed to address the situation. 

Suppose, to begin, that there is a single stimulus and that it is applied 
at times am. Let a(-) denote the response in a single-shock experiment. If 
the system is time invariant and the effects of the various shocks additive 
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FIG. 21. Twenty successive responses evoked in thepre-piriform cortex by (electricaey) stimulating 
a rabbit. The x-axis units are in seconds. 
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FIG. 22. The various graphs here are meant to show the effects of changing the number of responses 
averaged (left column) and the strength of stimulus applied (right column) for data such as that of 
Figure 21. 
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(superposable), then a model for consideration is 

(15) Y(t) = ,u + 2a(t - am) + E(t), 
m 

with Y(.) denoting the ongoing EEG and E(.) denoting noise. In the case of the 
EEG this model seems to have to be empirically verified, rather than being an 
implication of basic biology. (In the seismological case it came out of a concep- 
tual framework.) For example, the assumption of superposability may be ex- 
amined as follows for the animal studied. To begin, carry out some single-shock 
experiments, i.e., apply the shocks at times far enough apart that their individ- 
ual effects seem likely to have died off. Let a&(s) denote the average of the 
responses evoked, with s lag since stimulus application. Now carry out some 
two-shock experiments, i.e., apply shocks say A time units apart. Let b(s, A) 
denote the average of the responses evoked. To examine the assumption of 
superposability compare d(s) + a(s - A) with b(s, A). The results of carrying 
out such a check, in an experimental situation, are given in Biedenbach and 
Freeman (1965). They forn averages of M = 150 responses and do not note 
departure from superposability. 

We now turn to one formal analysis of the model (15). If one writes 

X(t) = E 8(t rnM), 
m 

then (15) takes the form 

Y(t) = ,u + la(t - s)X(s) ds + e(t)q 

i.e., it is seen to be the model of cross-spectral analysis. Taking Fourier trans- 
forms, one has 

dT(X) = A(X) dT(X) + d[(X), 
for X > 0, with A(X) denoting the Fourier transform of a(-). Consider a number 
of frequencies Xk = 27rk/T near X. Then, assuming A(-) smooth, one has the 
approximate linear model 

Yk A(X)Xk + Ek, 

with 
T-1 2,,kt\ 

Yk= E Y(t)exp - i T } 
t=0 

and similar definitions of Xk, Ek. Next, via a central limit theorem for empirical 
Fourier transforms, the noise variates Ek may be approximated by independent 
(complex) normals having mean 0 and variance 2fTfTee(X). All the inference 
procedures for the linear model become available. For example, as an estimate of 
the transfer function A(X), one has 

A(X) = 
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and this variate will be approximately distributed as complex normal with mean 
A(X) and variance 27TTfee(X)/E4lXkI2. This formulation has a variety of conveni- 
ent properties. It directly extends to the cases of multiple stimuli and multiple 
responses. It handles stimuli of varying intensity. It allows the individual 
responses of the separate shocks to overlap. Formal inference procedures, such as 
tests, are available. Complex experiments may be designed and analyzed-com- 
plexities handled such as blocking, rotation, factorial treatment structure, mea- 
sured covariates. Formal checks for interaction are available. Finally, one can 
turn to the question of optimal design. 

It is sometimes convenient to adopt a different viewpoint for the problem. 
Suppose that the shocks are applied at times such that ,m,, -,,, > V with 
a(s) = 0 for s > V and s < 0. Write 

Y.(S) = Y(s + am.) 

Then Yin(S) = ,x + a(s) + Em(S) for 0 < s ? V. The average evoked response is 
now conveniently denoted Y(s). As an example of the use of this formulation, 
suppose there are I different stimuli and that each are applied J times, then one 
is led to set down the model 

Y,j(s) = Alij + a(s) + b,(s) + eij(s), 

with i indexing stimuli and j indexing replicates. Other methodologies, such as 
grown curves and discriminant analysis, are seen to become available with this 
formulation. 

It was mentioned that evoked-response data may be contaminated by artifacts. 
It is perhaps worth noting that robust/resistant estimates are directly available. 
Suppose one has a measure of distance, such as 

IIY- al2 - [Y(s) - a(s)] ds 

and an estimate of scale p. Then a family of robust/resistant estimates is 
provided by 

a(s) = ,WmYm(S) F2Wm, m m 
with WM= W(MIY - ad/,p) and W(.) a univariate set of multipliers for 
robust/resistance. The estimate will need to be computed recursively. An ele- 
mentary example is provided by the "trimmed mean" 

a(s) - E'Ym(S)/13M, 

with E' over the fBM smallest IYYm - all. This class of estimates was proposed in 
Brillinger (1979, 1981a) and investigated in Folledo (1983). The upper graph of 
Figure 23 provides an example of this estimate with 50% trimming (/3 = 0.5), in 
the case of data like that of Figure 21 (but with a stimulus of strength 122% of 
the threshold stimulus). The solid curve denotes the average evoked response, 
the dashed one the trimmed statistic. The two curves are nearly identical, 
although when examined, the individual responses are found to differ noticeably. 
Fifty-percent trimming was employed, because this is usually considered a highly 
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FIG. 23. The upper graph compares the average evoked response with the 50% trined mean for 
the data taken at 122% of a threshold stimulation value. The lower graph contrasts the 50% trimned 
mean statistic with a value computed recursively. 

resistant level in the case of elementary statistics. The fact that the trimming 
had such little effect on the final answer suggests that there were no substantial 
outlying curves in the data set. Had a curve been far removed from the rest, then 
it would have been rejected from the average. It is to be remarked that in this 
case of present concem, whole curves are being eliminated from the average, not 
just outlying points that some curves might have. 

It is to be noted that a "real-time" version of such a trimmed mean may be 
computed; see Brillinger (1981a). This statistic is given recursively for m = 
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1,2,... by 
L 1 

Pm = m - a - 

if IIYm? -amII < Pm' and 
Pm+? = Pm + L/m 

otherwise, and by 

am?i(S) am(S) + (Ym?i(S) Ain(S)), 

if IIYm+? - Pm, and 
A 

?i(S) = am(S) 

otherwise. (In preparing a worked example, it was found more convenient in the 
choice of L to replace p by its logarithm.) The lower graph of Figure 23 gives the 
result for the same data as that of the upper graph. The algorithm was run 
setting ad(s) = Yl(s) and L = 0.15. The real-time estimate, given by the solid 
line, has performed virtually as well as the dead-time estimate in this case. One 
can remark again that had there been some highly dissimilar curves present, 
then this estimate would have differed from the sample average. Following the 
advice sometimes given in connection with resistant regression estimates, it 
would seem sensible to compute both the ordinary and the resistant forms. If the 
two are similar, then there is no difficulty. If the two differ noticeably, then the 
situation should be examined in some detail. 

Brillinger (1979) proposed the preceding techniques and various others. Bril- 
linger (1981a,b) were based on that lecture and cover some other statistical 
problems arising from evoked-response methods. Tukey (1978) also addresses 
statistical issues and proposes some procedures. 

15. A confirmed (Fourier) inference. Muscle cells are electrochemical 
devices. If the chemical acetylcholine is applied at the neuromuscular junction, 
measurable voltage fluctuations result. Specifically, acetylcholine release causes 
postsynaptic membrane channels to open leading to voltage fluctuations. Katz 
and Miledi (1971, 1972) measured voltage fluctuations associated with this 
phenomenon and found that the power spectrum could be approximated by the 
functional form a/(/32 + A2). [An example of the fit of this function to such data 
and a description of a fitting procedure may be found in Bevan, Kullberg and 
Rice (1979).] They proposed the model 

Y(t) = >a(t -am), 
m 

with the o(J points of a Poisson process and with a(t) = exp{ -,t}. This a(-) 
function corresponds to the effectiveness of an open channel decaying exponen- 
tially and leads to a power spectrum of the indicated form. Katz and Miledi 
mentioned that the pulses might actually be rectangular of random duration, but 
they preferred to deal with the exponential form. Stevens (1972) proposed the 
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specific model 
Y(t) = Yam(t am), 

m 

also with (am) Poisson, but now with am(t) = 1 for 0 < t < Tm and am(t) = 0 
otherwise. The Tm are independent exponentials of mean 1/fB and correspond to 
the lengths of time that the channels are open. Stevens noted that this model 
also led to a power spectrum of the form a/(,2' + X2). The models were 
indistinguishable with the data collected. 

The problem was later resolved by improved experimental technique. Neher 
and Sakman (1976) developed a technique that allowed the opening and closings 
of individual channels to be seen. They found that the channels remained 
equally effective and open for time periods of varying lengths. The two proposed 
models could be distinguished. 

Examples of single-channel data and the corresponding estimated power 
spectrum may be found in Lecar (1981). Jackson and Lecar (1979) present results 
confirming the exponential duration of the openings. 

16. Other topics. Spatial-temporal data are commonly collected by neuro- 
scientists. One form is the electroencephalogram recorded by an array of sensors 
on the scalp. Figure 19 presented an example of data collected for the olfactory 
system of the rabbit. The stimulus was release of the odor ethylacetate. An 8 x 8 
array of electrodes was imbedded in the animal. The data, already presented in 
Figure 19, give the responses for the sensors at the positions with x-coordinates 
2, 4, 6 and 8 and y-coordinates 1, 3, 5 and 7 of Figure 23. One procedure that 
Freeman has found helpful for understanding this type of data is the computing 
of empirical orthogonal functions; see Freeman (1980). Figure 24 gives an 
example. These results are derived by stacking the responses into a matrix X 
with rows corresponding to sensor and columns to time, and then computing the 
singular value decomposition X = UDVT, of that matrix. The U for a particular 
component, say the first, are then plotted versus sensor location as in the upper 
graph of Figure 23. The V values are similarly plotted versus time and appear in 
the lower graph. The results of Figure 23 are based on 64 series, not just the 16 of 
Figure 19. The contour plot suggests the presence of a focus of activity. The 
time-series component elicited may be seen lurking in the individual responses of 
Figure 19. (It may be mentioned that meteorologists have long computed 
empirical orthogonal functions for spatial-temporal data and used them in 
forecasting; see Lorentz (1956), for example. A number of other references are 
given in Jolliffe (1986).] 

Childers has also made use of array data in studying the neural system. In 
Childers (1977), he estimates the frequency-wavenumber spectrum for responses 
evoked by visual stimuli (light flashes) in the human EEG. He was concerned 
with estimating the speed and direction of propagating waves. In the paper cited 
he first notes an apparent high-velocity wave. After this wave has been "re- 
moved," he notes the presence of a pair of waves moving in opposite directions. 
His research is directed at developing a diagnostic procedure for various visual 
disorders and obtaining insight concerning how the visual system functions. 
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FIG. 24. The results of a singular value decomtposition of the full set of the data from which the 
bursts of Figure 20 were taken. The values graphed are for the first components. The axes in the 
upper graph give spatial location. 

The decaying cosine model of Section 2 has also found a use in nseurophysi- 
ology. In his work with the olfactory system, Freeman (1972, 1975, 1979) found 
that the average evoked response could be weR fitted by the sunn of a few 
decaying cosine tertns. He developed a model involving spike-to-wave conversion, 
involving collections of constant coefficient second-order differential equations, 
involving feedforward and feedback and involving wave-to-spike conversion. He 
employed nonlinear regression in the time domain to estimate the unknowns. In 
one case, involving two cosines, he was led to view the stronger wave as 
representing intracortical negative feedback and the weaker as representing a 
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second feedback loop. Of interest in this type of work is what happens to the 
frequencies and the decay rates when the experimental conditions are altered. A 
second reference to decaying cosines is Childers and Pao (1972). They consider 
the model 

Y(t) = EakteXp{ 3kt}coS(Ykt + Sk) + e(t), t > 0, 
k 

for visual evoked responses monitored over the occipital region. In particular, 
they study the data by complex demodulation. 

Brief reference will be made to several other topics. Dumermuth, Huber, 
Kleiner and Gasser (1971) estimate the bispectrum of human EEGs. de Weerd 
and Kap (1981) discuss the computation of some time-varying quantities. 
Marmarelis and Naka (1974) consider the case of biological systems with several 
inputs. An extreme case of this occurs when the input is varying in both time 
and space. This circumstance is considered in Yasui, Davis and Naka (1979). The 
book by Marmarelis and Marmarelis (1978) goes into great detail conceming the 
identification of systems that are polynomial and time invariant in the input. 
They emphasize the advantages resulting from employing a Gaussian white-noise 
input. The dedication of the book is worth mentioning-" To an ambitious new 
breed: SYSTEMS PHYSIOLOGISTS". 

Another area of research activity has been that of control. The works by 
Poggio and Reichardt (1981) and Wehrhahn, Poggio and Bulthoff (1982) may be 
noted. They are concemed with data that are three-dimensional trajectories. 

17. Discussion. As the examples presented indicate, a broad range of data 
types arise in the neurosciences. Furthermore, data are collected at both the 
micro and macro level. The procedures developed often have the opportunity to 
move on to direct clinical use. 

It is particularly interesting to note the evolution of the analysis in the case of 
the neuronal signaling analysis as presented in Sections 11 and 13. One can 
recognize the stages of (1) (feature) description; (2) correlation/association; (3) 
(ad hoc) regression; (4) conceptual model. These stages are usual in many 
elementary situations. 

The field of neurophysiology has the satisfying aspect that in many cases 
controlled laboratory experiments are possible and repeatable. Furthermore, 
there are opportunities for the design of experiments. In the field, statistics has 
been seen to provide techniques for model formation and validation, for measur- 
ing uncertainty in conclusions and for addressing questions of causality. Statisti- 
cal techniques have led to insight concerning the underlying physiology. In this 
connection it seems important to note the following proviso of my collaborator 
J. P. Segundo, however, ".... The maxim of all of the above is that the power of 
available mathematics (and of the instrumentation that implements them) 
should be used exhaustively, gded by an unflagging biological realism, mis- 
trustful and stubborn, and keeping in mind that the ultimate goal is understand- 
ing in strictly biological terms." [See Segundo (1984), page 294.] 

It seems likely that in the neurosciences, more often than not, notable 
advances will come from the carrying out of novel experiments, rather than from 
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novel analytic methods. Experiments will be carried out measuring things at new 
orders of smallness. More complex stimuli will be invoked. Nonlinear systems 
will be the norn. Neural networks will be a major concern. Luckily, for us 
statisticians, digital computers have become common in the laboratory and this 
seems to be bringing a move toward quantization of other aspects of the work 
beyond the simple recording of the data. 

18. Update. The analysis of single ion-channel data, briefly referred to in 
Section 15, has become a whole industry. Models with several states are now 
routinely fitted. References include Coloquhoun and Hawkes (1983), Labarca, 
Rice, Fredkin and Montal (1986) and Milne, Edeson and Madsen (1986). Extend- 
ing the work of Section 13, Brillinger (1986) presents a number of examples of 
the maximum likelihood fitting of a neural model employing corresponding spike 
train input and output data. Smith and Chen (1986) study a more complicated 
neural model. The chirp signal was propounded as being of substantial impor- 
tance in seismic exploration. Some use of it has been made recently in physiologi- 
cal studies. In Norcia and Tyler (1985), a 10-s spatial frequency sweep stimulus is 
employed and the corresponding visual evoked potential measured. Th. Gasser 
and collaborators have now carried out a substantial number of statistical and 
substantive analyses of evoked responses. We mention in particular the papers 
by Mocks, Tuan and Gasser (1984), Gasser, Mocks, Kohler and de Weerd (1986) 
and Gasser, Mocks and Kohler (1986). Finally, we note that Grajski, Breiman, 
di Prisco and Freeman (1986) apply modern classification procedures to study 
the effects of applying different odors on the olfactory bulb EEGs of rabbits 
and that Gevins, Morgan, Bressler, Cutillo, White, Illes, Greer, Doyle and 
Zeitlin (1987) relate human performance accuracy to brain electrical patterns 
just before a task. 

IV. Concluding remarks. In this article we have presented a number of 
examples, drawn mainly from our personal experience, showing the use of the 
same statistical technique in the rather separate sciences of seismology and 
neurophysiology. It now seems appropriate to ask what, if anything, have the 
three sciences-statistics, seismology, neurophysiology-gained from each other 
as a result of connections even though they are indirect? Having in mind a 
broader class of examples than those discussed in this paper, one can say that: (i) 
statistics is richer for having been led to develop and study various novel 
methods to handle specific problems arising in seismology or neurophysiology; 
(ii) both seismology and neurophysiology are the richer for the other's field 
having generated a problem for the statistician to abstract sufficiently that the 
result's applicability to their field became apparent; (iii) either seismology or 
neurophysiology benefit from a statistical fornulation because various of their 
problems seem necessarily to need to be stated in terms of probabilities (e.g., 
neither neuron firings nor earthquakes seem deterministic) and because these 
fields need procedures to validate results and to fit conceptual models. That the 
methods of statistics can lead to important insight and understanding in sub- 
stantive problems seems agreed. 
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It may be remarked that the applicability of statistical procedures to these 
two substantive fields has further grown in direct consequence of their move to 
greater quantification and digital data collection. The data sets analyzed were of 
high quality. The fact that the analyses were informative to an extent here bodes 
well for the use of such techniques in fields with data of lesser quality. I need to 
remark how crucial, in working with the data sets discussed, I have found it to 
be to plot the data in its original form. Something special seemed to be learned 
in each case from doing so. This is why for the various analyses, I have sought to 
provide data plots as parts of the presentation. 

The reader will have noted that some of the analyses were time-side and some 
were frequency-side. Each domain has its advantages. It seems worth pointing 
out specifically that stationarity was not required for some of the frequency-side 
procedures. It would seem that most time series and point process situations 
would benefit from carrying out simultaneous time-side and frequency-side 
analyses. 

On review it may be seen that the techniques employed for time-series data 
and for point process data in many cases are not that different. Brillinger (1978) 
presents some comparative discussion of the techniques for the two cases. Our 
presentation is somewhat remiss in the seismological case in not presenting some 
worked examples of auto- and cross-intensity estimation. Examples could have 
been provided. 

It should be apparent that major data management and computational efforts 
were required in the derivation of all results presented. I have been impressed by 
the way that the neuroscientists could turn to their lab book kept during the 
experiments and pull out crucial details, sometimes many years after the experi- 
ments had been completed. My analyses also extend over many years now. I 
have found it very useful recently to maintain a "Readme" file in the various 
computer directories for the data sets, wherein I list what the various programs 
do, future wishes concerning the programs and all of the things that I think I 
will never forget. 

Turning to thoughts concerning developments to come, it seems that the 
future will see many of the traditional statistical techniques extended to apply to 
datum of more complicated forms-specifically, to curves, moving surfaces, point 
clouds and the like. It seems that techniques developed in one field will continue 
to be transferred (by statisticians?) to other fields. For example, I expect to see 
the results developed by neuroscientists for arrays on a curved surface (the skull) 
to be taken up by the seismologists as they need to take specific note of the 
Earth's curvature. If I have found anything lacking in our current toolkit of 
statistical methods and devices, it is a collection of techniques that suggest what 
to do next when a model fails a validation check. Perhaps the future will see such 
techniques developed in an organized fashion. 
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