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"Data! data! data!" he cried impatiently, "I can't make bricks without 

clay." 

Sherlock Holmes 

—A. Conan Doyle, The Adventure of the Copper Beeches (1892) 

 

"Mr. . . . has joined the society, and, like many engineers, is interested 

in the possible effects of earthquakes. . . . These men want to know 

the seismicity of given places. The Lord help them!" 

If the engineers of the county will cooperate with the Seismological 

Society of America in the effort to gather and publish data regarding 

earthquakes, the Seismological Society of America will gladly 

undertake to get them some help here on this earth. 

—Seismological Notes (1911, p. 185) 

 

IntroductionIntroductionIntroductionIntroduction    

A subject that has been called statistical seismology has too few researchers but a 

number of success stories to its credit. Vere-Jones and Smith (1981) reviewed 



much of the work in the subject up to 1980. This presentation concentrates on some 

themes of contemporary statistics that seem of some relevance to the seismological 

circumstance. The examples of their use are based principally on the work of my 

students and myself. 

That statistics is important in seismology seems self-evident. This was recognized very early 

on. Rothé (1981) recorded that part of the program of the 1891 Tokyo Earthquake 

Investigation Committee was 

To draw up a list of shocks with dates and times for each phase; to 

study the distribution of earthquakes in space and time; to study 

possible relations with the seasons, the phases of the moon, 

meteorological conditions, etc. 

These are all data sets ripe for statistical analysis. It may be mentioned generally that there 

are massive seismological data sets, that uncertainty abounds, and that there are floods of 

hypotheses and inferences. Earthquake prediction is in the public mind. Seismology is also 

important to statistics. This results in part from the field's remarkable generosity in making 

data sets available and from the intriguing formal problems it raises. 

The foremost researcher in statistical seismology has to be Harold Jeffreys. His research 

altered the field of both seismology and statistics in major 
 

― 267 ― 

fashions. His working attitude is illustrated by the remarks: ". . . I have been insisting 

for about twenty years that the claim of finality for any scientific inference is absurd" 

(Jeffreys, 1939) and "The uncertainty is as important a part of the result as the 

estimate itself. . . . An estimate without a standard error is practically meaningless" 

(Jeffreys, 1967). 

Of Jeffreys's work, Hudson (1981) has written: "The success of the Jeffreys-Bullen travel 

time tables was due in large part to Jeffreys's consistent use of sound statistical methods." 

The part of Jeffreys's work that has perhaps affected statistics the most is his 

development of robust/resistant techniques for handling nonnormal and bad data. 

Other scientists whose work has had major impact on seismological statistics 

include: Keiiti Aki, Bruce Bolt, Allin Cornell, Yan Kagan, Vladimir Keilis-Borok, Leon 

Knopoff, Bob Shumway, John Tukey, and David Vere-Jones. More recent 

contributors include Daniele Veneziano and Yosihiko Ogata. 



LikelihoodLikelihoodLikelihoodLikelihood----Based ProceduresBased ProceduresBased ProceduresBased Procedures    

In the statistical approach to data analysis it is usual to view observations as 

realizations of random variables. Important to that approach is the notion of 

likelihood. If the (multivariate) observation (Y1 , . . ., Yn ) is assumed to come from a 

random variable with probability function p (y1 , . . . ,yn | q ), depending on the 

unknown parameter q , then the likelihood function of q given the observation is 

defined to be 

  

Employing likelihood-based inference procedures handles and unifies a variety of problems. 

The procedures are often highly efficient. There are corresponding estimation, testing, and 

confidence procedures, (referring back to the second Jeffreys's quote). Results derived from 

different data sets may be combined routinely 

In applications, the approach is to set down a likelihood based on a conceptual model of the 

situation at hand. As an example of employing a likelihood procedure, consider the problem 

of estimating the seismic moment and stress drop of a particular event given a particular 

seismogram. For a variety of source models, researchers have related the seismic moment 

and stress drop to characteristics of the amplitude spectrum, |W (w )|, (that is, the modulus of 

the Fourier transform of the signal). Suppose that the seismogram is written 

  

where u is the signal, q is an unknown parameter and Î is the "noise." If W (w ;q ) denotes 

the Fourier transform of u (t ;q ), then what is given, from the 
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source model, is the functional form of |W (w;q) |. Following Brune (1970), common 

forms (for displacement measurements) include 

  

where q = {a, b,wo }, are the parameters to be estimated. Estimates of the seismic moment 

and stress drop may be determined once estimates of a and w0 are available. The practice has 

been to estimate the unknowns graphically from a plot of the modulus of the empirical 

Fourier transform, |dT
Y (w )|, where 

  

0 £ w£p . The following likelihood-based procedure was suggested in Brillinger and Ihaka 

(1982) and developed in detail in Ihaka (1985). 

When the asymptotic distribution of |dT
Y (w )| is evaluated for the case of stationary mixing Î 

(t ), it is found to depend on |W (w;q )| and fÎÎ (w ) alone, where fÎÎ (w ) is the power spectrum of the noise. 

Hence, given an expression only for the modulus of W , one can proceed to estimate q . For the model (1), and small noise, one has 

  



showing variation around |W | independent of |W |. However, when deviations of |dT
Y | from 

a fitted version of itself are plotted versus the fitted values, dependence of the error on |W | is 

apparent. An example is provided in figure 1. This is the result of computations for an 

earthquake of magnitude 6.7 that occurred in Taiwan on 29 January 1981. The data were 

recorded by one of the instruments of the SMART 1 array (Bolt et al., 1982). The top graph 

of the figure provides the transverse S-wave portion of the recorded accelerations. The lower 

graph provides the deviations plot just referred to. This plot suggests that the noise is in part 

"signal generated." 

Various physical phenomena can lead to signal-generated noise. These include multipath 

transmission, reflection, and scattering. The following is an example of a model that 

includes signal-generated noise. 

  

where t k are time delays, u H
 is the Hilbert transform of u , g k , dk like a and b above, are 

parameters to be estimated reflecting the vagaries of the transmission process, and Î (t ) is 

unrelated noise. The inclusion of the Hilbert transform allows the possibility of phase shifts. 

Assuming g k , dktk are random, and evaluating the large sample variance, one is led to 

approximate the distribution of the discrete Fourier transform values, Yj = dT
Y (w j ) by a 

complex normal with mean W (wj ;q ) and variance  = 2pj /T. 
Here it has also been assumed that Î is white noise (of variance s2

 ), 
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Figure 1 

The top graph provides the computed transverse shear wave component derived 



from data recorded by the SMART 1 array. The bottom graph provides residuals, 

that is, the difference between the absolute values of the empirical Fourier transform 

values and their mean values determined from the final fitted values. These 

are plotted against the fitted values. Wedging is apparent. 

that the expectations of gk and dk are zero, and that the process tk is Poisson. The ratio r2
 /s 2

 

measures the relative importance of signal-generated noise. In the likelihood approach one 

proceeds to estimate q by deriving the marginal distribution of the |Yj | and then setting down 

the likelihood. This likelihood when evaluated is found to be approximately 

 
[Full Size] 

where I0 denotes a modified Bessel function. Figure 2 shows a fit of the model 

  to the data of figure . The fit is good. 

Once estimates of a , w0 are at hand, they may be converted to estimates of 
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Figure 2 

The plotted points are the absolute values of the discrete Fourier 

transform of the data of figure 1. The smooth curve is the result of 

fitting the Brune-type model |w | / [1 + (w /w  0 )4 ] 
the seismic moment and stress drop via the theoretical relationships that have been 

developed. Uncertainty measures are directly available for the estimates. Details of 

this technique and a study of its theoretical properties may be found in the thesis of 



Ihaka (1985). 

Borrowing StrengthBorrowing StrengthBorrowing StrengthBorrowing Strength    

"Borrowing strength" is the colorful term John Tukey has introduced for the class of 

statistical procedures that seek to improve on naive estimates by incorporating data 

from parallel but formally distinct circumstances. These procedures also go under 

other names, such as pooling, random effects, James-Stein, shrinkage, empirical 

Bayes, and Bayes. The technique of damped regression provides an example most 

known to seismologists. Of the notion generally, Mallows and Tukey (1982) have 

remarked: "Knowing when to borrow and when not to borrow is one of the key 

aspects of statistical practice." A popular account of "improved" estimates is given in 

Efron and Morris (1977). The case of the linear model is developed, with examples, 

in Dempster et al. (1981). 

To begin with a simple example, suppose that one wishes to estimate the mean µ i of a 

population i , and one has available the mean   of a sample of 
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values from that population. Then the naive estimate of µi is  . Suppose, however, 

that other populations beyond the i th, and corresponding sample means, are 

available. Suppose that these populations are all somewhat similar. Let   denote 

the mean of all the sample means of the populations. Consider borrowing strength, 

in the estimation of µi , from the other populations; specifically consider forming an 

estimate 

  

for some q lying between 0 and 1. One would like to choose q to be near 1 if   can almost 

stand on its own, but q to be near 0 if the   are highly variable. This problem may be 

formalized via a random effects model, specifically by setting down a model 

  

with the Îi , say, independent variates with mean 1 and variance t2
 , and the Îij independent 

variates with means o and variance s2
 . Then, for the case of samples all the same size, J , the 

"best" linear unbiased estimate of µ i = µ + Î i is given by expression (2) with 

  

In the case that t is zero, q is 0, and the estimate is  . In the case that t is infinity, q is 1, and 

the estimate is  . 



As an example of what is involved here, consider the problem of developing attenuation 

relationships. Quite a variety of specific functional forms, involving a finite number of real-

valued parameters, have been set down. For example, Joyner and Boore (1981) develop the 

relationship 

  

for (mainly) western United States earthquakes with A peak horizontal acceleration, with M 

moment magnitude, and with d closest distance to the surface fault rupture in kilometers. To 

prevent earthquakes with many recordings from dominating the estimates, Joyner and Boore 

carried out the fitting in two stages. First magnitude was not included in the model, but an 

event constant was. Then the event constant estimates were regressed on magnitude to 

obtain the term – 1.02 + 0.249M. There were 23 events and 182 records in all. 

One may obtain "improved" estimates as follows. The Joyner-Boore functional form will be 

retained. Let the subscript i index the event, and j index the record within the event. 

Consider the (random effects) model 

  

where ai , bigidiI = 1, . . . , , are independent realizations of random variables with means 

ma,m bmgmd and variance  , respectively. 
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TABLE 1 

Parameter Estimate Standard Error 

µa –0.969 0.210 

µb 0.239 0.034 

µg 0.00187 0.00091 

µd 6.99 2.29 

sa 0.0617 0.0700 

sb 0.148 0.066 

sg 0.00193 0.00127 

sd 0.0294 132. 

s 0.213 0.014 
 

The Îij are independent noises with mean 0 and variance s2 . This model ties 

together the events, but each event has its own a , b , g , d . (The usual nonlinear 



regression model corresponds to sa , sb , sg , sd. identically 0.) Implications of this 

model are that records for the same event are correlated and that the disparate 

numbers of records for the events are handled automatically. Assuming that the 

random variables involved are normal, the model can be fit by maximum likelihood 

(employing numerical quadrature as needed). The results are provided in table 1. In 

some cases, for example sa, sd there is a clear suggestion that the corresponding 

population parameter may be 0. 

Once fit, model (3B) may be used, for example, for obtaining "improved" estimates of the 

attenuation behavior of the individual events. Consider for example the 1979 Imperial 

Valley aftershock. The data for this event are the points plotted in figure 3. Also plotted, as 

the curve of short dashes, is the result of fitting the Joyner-Boore functional form to the data 

for this event alone. Clearly, this curve is not too useful away from the cluster of 

observations. It has high uncertainty as well. 

The solid curve graphed is the estimate of 

  

with subscript 0 referring to this particular event. One has obtained a much more reasonable 

curve. This curve would be of use if one wished to estimate, a posteriori, an acceleration 

experienced in the Imperial Valley aftershock at a specified distance from the epicenter, for 

example to relate it to damage experienced at that distance. 

The curve of long dashes in figure 3 is the Joyner-Boore curve, equation 
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Figure 3 

Points plotted are observed accelerations at the indicated distances. The curve 

of short dashes is the result of fitting the Joyner-Boore functional form to 

these data points only. The curve of long dashes is the curve developed by 

Joyner and Boore using the data set of twenty-three events. The solid curve 

is the "improved" estimate developed from expression (4) and the model (3B). 
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(3A). It is not inappropriate. A thing to note however is that the Joyner-Boore curve 

is the same for all events of the same magnitude, here M0 = 5.0. It does not take 

special note of the actual data for the event. 

Figure 4 provides "improved" estimates for three other events. In each case, the 



improved estimates (solid curves) are plotted, as well as the Joyner-Boore (dashed) 

curves given by equation (3A). The general effect of borrowing strength here, and 

typically, has been to provide a curve lying nearer to the mass center of the points 

observed in the particular event of concern. Of particular note is the case of the 

1957 Daly City event where but one observation was available. One could not 

sensibly fit a curve to that data point alone. The Joyner-Boore curve has some 

validity. The "improved" curve pulls the Joyner-Boore shape nearer to the available 

observation. In the case of the 1979 Imperial Valley event the two curves are very 

close to each other. This is the case with the most observations (38). 

Nonparametric and Semiparametric EstimationNonparametric and Semiparametric EstimationNonparametric and Semiparametric EstimationNonparametric and Semiparametric Estimation    

Traditionally, the formal theories of statistical estimation were directed at cases 

involving a finite dimensional parameter. Exceptions consisted mainly of the cases 

of histograms and power spectral density estimates. Another exception was 

provided by the various curve estimates developed by seismologists, particularly 

Jeffreys, to deal with travel-time data (which correspond to a problem of infinite 

dimensional regression analysis, albeit one with a multivalued regression function). 

Recently, statisticians have turned to the problem of curve estimation in broad 

general situations. Problems studied include: estimation of a nonparametric 

transformation of the dependent variable, transformations of variates involved in 

quantal models, and (semiparametric) situations involving both finite and infinite 

dimensional parameters. In some cases the estimates are based on likelihoods, are 

adaptive, and may be anticipated to be highly efficient. References, with discussion, 

to statistical aspects of this work, are Breiman and Friedman (1985) and Hastie and 

Tibshirani (1986). Wegman (1984) is a survey article on some aspects. 

As an example of what is involved here, return to the problem of developing attenuation 

relationships. Above, the Joyner-Boore functional form 

  

was employed. Some theory suggests the use of the log and square root transformations in 

such a relationship; however, the theory is not definitive, and variants of equation (5) have 

been proposed. 

These days one can often turn to a nonparametric analysis, estimating general 



transformations from the data. In Brillinger and Preisler (1984), monotonic functions q , ø , 

and y were estimated for a relationship 
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Figure 4 

Observed accelerations are plotted for the four indicated events. The solid curve 

is the "improved" estimate, while the dashed curve is that of Joyner and Boore. 
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In determining such functions, critical assumptions were that the functions were 

smooth and the relationship additive. The formal model fit was 

  

with i indexing an event and j a record within an event. The model was fit by a variant of the 

ACE procedure of Breiman and Friedman (1985). Figure 5 presents the results, namely the 



estimated functional transformations, q,ø , y , for the Joyner-Boore data. The transformation 

of magnitude is essentially linear. The general transformation of amplitude found is nearer to 

a cube root than a logarithm. The transformation of distance decays in a steady manner, as 

might have been anticipated. 

From these curves one can obtain broadly applicable, predicted values of 

acceleration corresponding to specified magnitudes and distances. 

Other TopicsOther TopicsOther TopicsOther Topics    

Had time and space allowed, other topics that would have been reviewed include: 

general procedures for uncertainty estimation (such as the jackknife and the 

bootstrap), dimensionality estimation procedures (such as Akaike's information 

criterion), adaptive techniques, modeling incomplete data (or biased sampling), 

regression diagnostics, influence measures, and techniques for analyzing quantal 

data. 

A Concluding RemarkA Concluding RemarkA Concluding RemarkA Concluding Remark    

I end with a personal comment, based on a "noncollaboration" with a seismic 

researcher. A year or so ago, a young geologist came to see me because he had 

been advised that I might be able to help in computing uncertainties attached to 

some risk figures he had prepared. Happy to oblige was my feeling; however, as we 

talked, it became a highly frustrating business for both of us. As we tried to establish 

a common language it turned out that we really did not have an operational one. He 

had never taken any sort of statistics course. His problem was a hard one, so subtle 

techniques were called for. Sadly that is where the matter ended. Had he been at 

Berkeley, steady contact would have allowed a continuation, but he was not. There 

is no denying that there is much material that earth scientists have to be expert in. 

However, I would hope that statistics could be more routinely included in the list. 
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Figure 5 

Estimated monotonic transformations of acceleration, magnitude, and 

distance providing the "best" additive relationship of acceleration in terms 

of magnitude and distance for the Joyner-Boore data set. 
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