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26.1 Introduction

The study of trajectories has been basic to science for many centuries. One can mention the
motion of the planets, the meanderings of animals and the routes of ships. More recently
there has been considerable modeling and statistical analysis of biological and ecological
processes of moving particles. The models may be motivated formally by difference and
differential equations and by potential functions. Initially, following Liebnitz and Newton,
such models were described by deterministic differential equations, but variability around
observed paths has led to the introduction of random variables and to the development of
stochastic calculi. The results obtained from the fitting of such models are highly useful.
They may be employed for: simple description, summary, comparison, simulation, pre-
diction, model appraisal, bootstrapping, and also employed for the estimation of derived
quantities of interest. The potential function approach, to be presented in section 26.3.4, will
be found to have the advantage that an equation of motion is set down quite directly and
that explanatories, including attractors, repellors, and time-varying fields may be included
conveniently.

465



P1: BINAYA KUMAR DASH

October 30, 2009 16:15 C7287 C7287˙C026

466 Handbook of Spatial Statistics

Movement process data are being considered in novel situations: assessing Web sites,
computer-assisted surveys, soccer player movements, iceberg motion, image scanning, bird
navigation, health hazard exposure, ocean drifters, wildlife movement. References showing
the variety and including data analyses include: [4,9,14,17,19,21,27,29,33–35,39,40]. In the
chapter, consideration is given to location data {r(ti ), i = 1, . . . , n} and models leading to
such data. As the notation implies and practice shows, observation times, {ti }, may be un-
equally spaced. The chapter also contains discussion of inclusion of explanatory variables.
It starts with the presentation and discussion of two empirical examples of trajectory data.
The first refers to the motion of a small particle moving about in a fluid and the second to the
satellite-determined locations of a Hawaiian monk seal foraging off the island of Molokai.
The following material concerns pertinent stochastic models for trajectories and some of
their properties. It will be seen that stochastic differential equations (SDEs) are useful for
motivating models and that corresponding inference procedures have been developed. In
particular, discrete approximations to SDEs lead to likelihood functions and, hence, classic
confidence and testing procedures become available.

The basic motivation for the chapter is to present a unified approach to the modeling and
analysis of trajectory data.

26.2 History and Examples

26.2.1 Planetary Motion

Newton derived formal laws for the motion of the planets and further showed that Kepler’s
Laws could be derived from these. Lagrange set down a potential function and Newton’s
equations of motion could be derived from it in turn. The work of Kepler, Newton and
Lagrange has motivated many models in physics and engineering. For example, in a study
describing the motion of a star in a stellar system, Chandrasekhar [11] sets down equations
of the form

du(t)
dt

= −βu(t) + A(t) + K(r(t), t) (26.1)

with u, velocity; A, a Brownian-like process; β, a coefficient of friction; and K, the acceler-
ation produced by an external force field. Chandresekar in [11] refers to this equation as a
generalized Langevin equation. It is an example of an SDE.

Next, two examples of empirical trajectory data are presented.

26.2.2 Brownian Motion

In general science, Brownian motion refers to the movement of tiny particles suspended
in a liquid. The phenomenon is named after Robert Brown, an Englishman, who in 1827
carried out detailed observations of the motion of pollen grains suspended in water [17].
The phenomenon was modeled by Einstein. He considered the possibility that formalizing
Brownian motion could support the idea that molecules existed. Langevin [26] set down
the following expression for the motion of such a particle,

m
d2x
dt2 = −6πμa

dx
dt

+ X,
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FIGURE 26.1
Perrin’s measurements of the location of a mastic grain at 48 successive times. The figure is adapted from one
in [16].

where m is the particle’s mass, a is its radius of the particle, μ is the viscosity of the liquid,
and X is the “complementary force”—a Brownian process-like term. One can view this as
an example of an SDE.

A number of “Brownian” trajectories were collected by Perrin [31]. One is provided in
Figure 26.1 and the results of an analysis will be presented later in the chapter. The particles
involved were tiny mastic grains with a radius of .53 microns. Supposing (x, y) refers to
position in the plane, the trajectory may be written (x(t), y(t)), t = 1, . . . , 48. The time
interval between the measurements in this case was 30 sec.

In Figure 26.1, one sees the particle start in the lower right corner of the figure and then
meander around a diagonal line running from the lower left to the upper right.

26.2.3 Monk Seal Movements

The Hawaiian monk seal is an endangered species. It numbers only about 1,400 today. They
are now closely monitored, have a life span of about 30 years, weigh between 230 and 270
kilos and have lengths of 2.2 to 2.5 meters.

Figure 26.2 shows part of the path of a juvenile female monk seal swimming off the
southwest coast of the island of Molokai, Hawaii. Locations of the seal as it moved and
foraged were estimated from satellite detections, the animal having a radio tag glued to its
dorsal fin. The tag’s transmissions could be received by satellites passing overhead when
the animal was on the surface. The animal’s position could then be estimated.

The data cover a period of about 15 days. The seal starts on a beach on the southwest tip
of Molokai and then heads to the far boundary of a reserve called Penguin Bank, forages
there for a while, and then heads back to Molokai, perhaps to rest in safety. Penguin Bank
is indicated by the dashed line in the figure.

An important goal of the data collection in this case was the documentation of the ani-
mals’ geographic and vertical movements as proxies of foraging behavior and then to use
this information to assist in the survival of the species. More detail may be found in [9]
and [40].



P1: BINAYA KUMAR DASH

October 30, 2009 16:15 C7287 C7287˙C026

468 Handbook of Spatial Statistics

290 300 310 320 330 340 350 360

40

60

80

100

120

East (km)

N
or

th
 (k

m
)

+

FIGURE 26.2
Estimated locations of a Hawaiian monk seal off the coast of Molokai. The dashed line is the 200 fathom line,
approximately constraining an area called the Penguin Bank Reserve.

26.3 Statistical Concepts and Models

26.3.1 Displays

It is hard to improve on visual displays in studies of trajectory data. In a simple case, one
shows the positions (x(ti ), y(ti )), i = 1, 2, . . . , as a sequence of connected straight lines, as in
Figure 26.1 and Figure 26.2. One can superpose other spatial information as a background.
An example is Figure 26.2, which shows the outlines of Molokai, the hatched region, and
Penguin Bank, the dashed line.

A related type of display results if one estimates a bivariate density function from the
observed locations (x(ti ), y(ti )), i = 1, 2, . . . , and shows the estimate in contour or image
form. Such figures are used in home range estimation; however, this display loses the
information on where the animal was at different times.

A bagplot [36] is useful in processing trajectory data if estimated locations can be in
serious error. It highlights the “middle 50%” of a bivariate dataset and is an extension
of the univariate boxplot. An example is provided in [9]. Before preparing the bagplot
presented there, this author did not know of the existence of the Penguin Bank Reserve.
Computing the bagplot of all the available locations found the reserve.

Another useful display is a plot of the estimated speed of the particle versus time. One
graphs the approximate speeds,

√
(x(ti+1) − x(ti ))2 + (y(ti+1) − y(ti ))2/(ti+1 − ti )

versus the average of the times, ti and ti+1, say. It is to be remembered that this “speed”
provides only the apparent speed, not the instantaneous. The particle may follow a long
route getting from r(ti ) to r(ti+1).

Figures are presented in this chapter, but videos can assist the analyses.
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26.3.2 Autoregressive Models

A bivariate time series model that is coordinate free provides a representation for processes
whose realizations are spatial trajectories. One case is the simple random walk,

rt+1 = rt + εt+1, t = 0, 1, 2, . . .

with r0 the starting point and {εt} a bivariate time series of independent and identically
distributed variates.

In the same vein one can consider the bivariate order 1, autoregressive, VAR(1), given by

rt+1 = art + εt+1, t = 0, 1, 2, . . . (26.2)

for an a leading to stationarity.
The second difference of the motion of an iceberg has been modeled as an autoregressive

in [29].

26.3.3 Stochastic Differential Equations

The notion of a continuous time random walk may be formalized as a formal Brownian
motion. This is a continuous time process with the property that disjoint increments, dB(t),
are independent Gaussians with covariance matrix Idt. Here B(t) takes values in R2. The
random walk character becomes clear if one writes

B(t + dt) = B(t) + dB(t), −∞ < t < ∞.

The vector autoregressive of order 1 series may be seen as an approximation to a stochastic
differential equation by writing

r(t + dt) − r(t) = μr(t)dt + σdB(t)

and comparing it to Equation (26.2).
Given a Brownian process B, consider a trajectory r in R2 that at time t has reached the

position r(t) having started at r(0). Consider the “integral equation”

r(t) = r(0) +
∫ t

0
μ(r(s), s)ds +

∫ t

0
σ (r(s), s)dB(s) (26.3)

with r, μ, dB each 2-vectors and σ 2 by 2. Here, μ is called the drift and σ the diffusion
coefficient. Equation (26.3) is known as Ito’s integral equation.

This equation requires the formal definition of the Ito integral

∫ b

a
G(r(t), t)dB(t)

for conformal G and B. Under regularity conditions, the Ito integral can be defined as the
limit in mean-squared, as � ↓ 0, of

N−1∑

j=1

G(r(tj ), tj )[B(tj+1) − B(tj )],

where
a = t�

1 < t�
2 < · · · < t�

N = b, � = max(tj+1 − tj ).
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Expressing Equation (26.3) as an “Ito integral” is a symbolic gesture, but the definition is
mathematically consistent.

The equation (26.3) is often written

dr(t) = μ(r(t), t)dt + σ (r(t), t)dB(t) (26.4)

using differentials, but Equation (26.3) is the required formal expression. For details on Ito
integrals, see [12] or [15].

26.3.4 Potential Function Approach

A potential function is an entity from Newtonian mechanics. It leads directly to equations
of motion in the deterministic case (see [41]). An important property is that a potential
function is real-valued and thereby leads to a simpler representations for a drift function,
μ, than those based on the vector-valued velocities.

To make this apparent, define a gradient system as a system of differential equations of
the form

dr(t)/dt = −∇V(r(t)), (26.5)

where V : R2 → R is a differentiable function and ∇V = (∂V/∂x, ∂V/∂y)T denotes its
gradient. (“T” here denotes transpose.) The negative sign in this system is traditional. The
structure dr(t)/dt is called a vector field, while the function V is called a potential function.

The classic example of a potential function is the gravitational potential in R3, V(r) =
−G/ | r − r0 | with G the constant of gravitation (see [11]). This function leads to the
attraction of an object at position r toward the position r0. The potential value at r = r0
is −∞ and the pull of attraction is infinite there. Other specific formulas will be indicated
shortly.

In this chapter the deterministic equation (26.5) will be replaced by a stochastic differential
equation

dr(t) = −∇V(r(t))dt + σ (r(t))dB(t) (26.6)

with B(t) a two-dimensional standard Brownian process, V a potential function, and σ a
diffusion parameter. Under regularity conditions, a unique solution of such an equation
exists and the solution process {r(t)} is Markov. Repeating a bit, a practical advantage of
being able to write μ = −∇V is that V is real-valued and thereby simpler to model, to
estimate, and to display.

For motion in R2, the potential function is conveniently displayed in contour, image, or
perspective form. Figure 26.3 and Figure 26.4 provide examples of image plots. If desired,
the gradient may be displayed as a vector field. (Examples may be found in [6].)

An estimated potential function may be used for: simple description, summary, compar-
ison, simulation, prediction, model appraisal, bootstrapping, and employed for the estima-
tion of related quantities of interest. The potential function approach can handle attraction,
and repulsion from points and regions directly. While the figures of estimated potential
functions usually look like what you expect a density function to be, given the tracks, but
there is much more to the potential surface; for example, the slopes are direction and speed
of motion.

Some specific potential function forms that have proven useful are listed below. A re-
search issue is how to choose among them and others. Subject matter knowledge can prove
essential in doing this. To begin, consider the function

V(r) = αlog d + βd (26.7)

with r = (x, y)T the location of a particle, and d = d(r) the distance of the particle from a
specific attractor. This function is motivated by equations in [21]. The attractor may move in
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space in time, and then the potential function is time-dependent. Another useful functional
form is

V(r) = γ1x + γ2 y + γ11x2 + γ12xy + γ22 y2 + C/dM, (26.8)

where dM = dM(x, y) is the distance from location (x, y) to the nearest point of a region, M,
of concern. Here, with C > 0, the final term keeps the trajectory out of the region. On the
other hand,

V(r) = αlog d + βd + γ1x + γ2 y + γ11x2 + γ12xy + γ22 y2, (26.9)

where d = d(r) = d(x, y) is the shortest distance to a point, leads to attraction to the point
as well as providing some general structure. It is useful to note for computations that the
expressions (26.7) to (26.9) are linear in the parameters.

In summary, the potential function approach advocated here is distinguished from tra-
ditional SDE-based work by the fact that μ has the special form (26.5).

26.3.5 Markov Chain Approach

Taking note of the work of [22], [23], and [24], it is possible to approximate the motion
implied by an SDE, of a particle moving in R2, by a Markov chain in discrete time and space.
This can be useful for both simulations of the basic process and for intuitive understanding.

In the approach of [23] and [24], one sets up a grid forming pixels, and then makes a
Markov chain assumption. Specifically define

a(r, t) = 1
2
σ (r, t)σ (r, t)T

and, for convenience of exposition here, suppose that ai j (r, t) = 0, i �= j , i.e., the error com-
ponents of the Gaussian vector are assumed statistically independent for fixed r. Suppose
further that time is discretized with tk+1 − tk = �. Write rk = r(tk), and suppose that the
lattice points of the grid have separation h. Let ei denote the unit vector in i-th coordinate
direction, i = 1, 2. Now consider the Markov chain with transition probabilities,

P(rk = r0 ± ei h | rk−1 = r0)

= �

h2 (aii (r0, tk−1) + h|μi (r0, tk − 1)|±)

P(rk = r0 | rk−1 = r0) = 1 −
∑

preceding.

Here it is supposed the probabilities are ≥ 0, which may be arranged by choice of � and h.
In the above expressions the following notation has been employed:

|u|+ = u if u > 0 and = 0 otherwise

and
|u|− = −u if u < 0 and = 0 otherwise.

A discrete random walk is the simplest case of this construction.
(For results on the weak convergence of such approximations to SDEs, see [12], [22], and

[23].)
With that introduction attention can turn to a different, yet related type of model. Suppose

that a particle is moving along the points of a lattice in R2 with the possibility of moving
one step to the left or one to the right or one step up or one step down. View the lattice as
the state space of a Markov chain in discrete time with all transition probabilities 0 except
for the listed one step ones. This is the structure of the just provided approximation. The
difference is that one will start by seeking a reasonable model for the transition probabilities
directly, rather than coefficients for SDE.
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26.4 Inference Methods

There is substantial literature devoted to the topic of inference for stochastic differential
equations (references include [32], [37]). Many interesting scientific questions can be posed
and addressed involving them and their applications. Elementary ones include: Is a motion
Brownian? Is it Brownian with drift? These can be formulated in terms of the functions μ

and σ of Equation (26.3) and Equation (26.4).
Consider an object at position r(t) in R2 at time t. In terms of approximate velocity,

Equation (26.6) leads to

(r(ti+1) − r(ti ))/(ti+1 − ti ) = −∇V(r(ti )) + σZi+1/
√

ti+1 − ti (26.10)

with the Zi independent and identically distributed bivariate, standard normals. The reason
for the

√
ti+1 − ti is that for real-valued Brownian Var(dB(t)) = σdt. In Equation (26.10), one

now has a parametric or nonparametric regression problem for learning about V, depending
on the parametrization chosen. If the ti are equispaced, this is a parametric or nonparametric
autoregression model of order 1.

If desired, the estimation may be carried out by ordinary least squares or maximum
likelihood depending on the model and the distribution chosen for the Zi . The naive ap-
proximation (26.10) is helpful for suggesting methods. It should be effective if the time
points, ti , are close enough together. In a sense (26.10), not (26.3), has become the model of
record.

To be more specific, suppose that μ has the form

μ(r) = g(r)Tβ

for an L by 1 parameter β and a p by L known function g. This assumption, from Equa-
tion (26.10) leads to the linear regression model

Yn = Xnβ + εn

having stacked the n − 1 values (r(ti+1) − r(ti ))/
√

ti+1 − ti to form the (n − 1) p vector Yn,
stacked the n − 1 matrices μ(r(ti ), ti )

√
(ti+1 − ti ) to form the (n − 1) p by L matrix Xn and

stacked the n − 1 values σZi+1 to form εn. One is thereby led to consider the estimate

β̂ = (
XT

n Xn
)−1XT

n Yn

assuming the indicated inverse exists. Continuing, one is led to estimate g(r)Tβ by g(r)T β̂.
Letting yj denote the j th entry of Yn and xT

j denote the j th row of Xn, one can compute

s2
n = ((n − 1) p−1

∑ (
yj − xT

j β̂
)T(

yj − xT
j β̂

)
,

as estimate of σ 2 and, if desired, proceed to form approximate confidence intervals for the
value g(r)Tβ using the results of [25]. In particular, the distribution of

(g(r)T(
XT

n Xn
)−1g(r))−1/2g(r)T (β̂ − β)/sn

may be approximated by a standard normal for large n. (Further details may be found
in [5].)



P1: BINAYA KUMAR DASH

October 30, 2009 16:15 C7287 C7287˙C026

Modeling Spatial Trajectories 473

Another concern is deciding on the functional form for the drift terms μ and the diffusion
coefficient σ of the motivating model (26.3). In [35], [6] the estimates are nonparametric.

26.5 Difficulties That Can Arise

One serious problem that can arise in work with trajectory data relates to the uncertainty of
the location estimates. The commonly used Loran and satellite-based estimated locations
can be in serious error. The measurement errors have the appearance of including outliers
rather than coming from some smooth long-tailed distribution. In the monk seal example,
the bagplot proved an effective manner to separate out outlying points. It led to the empirical
discovery of the Penguin Bank Reserve in the work. Improved estimates of tracks may be
obtained by employing a state space model and robust methods (see [1] and [20]).

A difficulty created by introducing the model via an SDE is that some successive pairs
of time points, ti − ti−1, may be far apart. The concern arises because the model employed
in the fitting is (26.10). One can handle this by viewing Equation (26.10) as the model of
record, forgetting where it came from, and assessing assumptions, such as the normality of
the errors, by traditional methods.

It has already been noted above that the speed estimate is better called the apparent speed
estimate because one does not have information on the particle’s movement between times
ti−1 and ti . Correction terms have been developed for some cases [18].

26.6 Results for the Empirical Examples

Figure 26.3 provides the estimated potential function, V̂, for Perrin’s data assuming the
functional form (26.8) with C = 0. The particle’s trajectory has been superposed in the
figure. One sees the particle being pulled toward central elliptical regions and remaining
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FIGURE 26.3
The estimated potential function for the Perrin data using the form (26.8) with C = 0. The circle represents the
initial location estimate.
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FIGURE 26.4
A potential function estimate computed to describe a Hawaiian monk seal’s outbound, then inbound, foraging
journeys from the southwest corner of Molokai. The circle in the southwest corner represents an assumed point
of attraction.

in or nearby. This nonrandom behavior could have been anticipated from the presence of
viscosity in the real world [17]. Were the process “pure” Brownian, the particle would have
meandered about totally randomly and the SDE been

dr(t) = σdB(t).

The Smolukowski approximation (see [11],[30]), takes (26.1) into

dr(t) = K(r(t), t)dt/β + σB(t)

instead. The backgound in Figure 26.3 is evidence against the pure Brownian model for
Perrin’s data.

Figure 26.4 concerns the outbound foraging journeys of a Hawaiian monk seal whose
outbound and inbound parts of one journey were graphed in Figure 26.2. Figure 26.4 is
based on a trajectory including five journeys. The animal goes out apparently to forage
and then returns to rest and be safer. The potential function employed is Equation (26.9)
containing a term, αlog(d) + βd , that models attraction of the animal out to the far part of
Penguin Bank Reserve. More detail on this analysis may be found in [9]. Outbound journeys
may be simulated using the fitted model and hypotheses may be addressed formally.

26.7 Other Models

Figure 26.4 shows the western coast of the island of Molokai. Coasts provide natural bound-
aries to the movements of the seals. In an analysis of the trajectory of a different animal, that
seal is kept off Molokai in the modeling by taking C > 0 in the final term in (26.8, see [8]).Please

clarify for
sense.

A boundary is an example of an explanatory variable and it may be noted that there is
now substantial literature on SDEs with boundaries [3]. There are explanatory variables to
be included. A particle may be moving in a changing field G(r(t), t) and one is led to write

dr = μdt + γ∇G + σdB.

A case is provided by sea surface height (SSH) with the surface currents given by the
gradient of the SSH field. It could be that μ = −∇V as previously noted in this chapter.
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A different type of explanatory, model and analysis is provided in [7]. The moving object
is an elk and the explanatory is the changing location, x(t) of an all terrain vehicle (ATV).
The noise of an ATV is surely a repellor when it is close to an elk, but one wonders at
what distance does the repulsion begin? The following model was employed to study that
question. Let r(t) denote the location of an elk, and x(t) the location of the ATV, both at time
t. Let τ be a time lag to be studied. Consider

dr(t) = μ(r(t))dt + ν(|r(t) − x(t − τ )|)dt + σdB(t).

The times of observation differ for the elk and the ATV. They are every five minutes for
the elk when the ATV is present and every one sec for the ATV itself. In the approach,
adopted location values, x(t), of the ATV are estimated for the elk observation times via
interpolation. One sees an apparent increase in the speed of the elk, particularly when an
elk and the ATV are close to one another.

The processes described so far have been Markov. However, non-Markov processes are
sometimes needed in modeling animal movement. A case is provided by the random walk
with correlated increments in [28]. One can proceed generally by making the sequence {Zi }
of Equation (26.10) an autocorrelated time series.

A more complex SDE model is described by a functional stochastic differential equation

dr(t) = −∇V(r(t)|Ht)dt + σ (r(t)|Ht)d B(t)

with Ht = {(ti , r(ti )), ti ≤ t} as the history up to time t. A corresponding discrete approxi-
mation is provided by

r(ti+1) − r(ti ) = −∇V(r(ti )|Hti )(ti+1 − ti ) + σ
√

ti+1 − ti Zi+1

with the Zi again independent standard Gaussians. With this approximation, a likelihood
function may be set down directly and, thereby, inference questions addressed.

It may be that the animals are moving such great distances that the spherical shape of the
Earth needs to be taken into account. One model is described in [2]. There may be several
interacting particles. In this case, one would make the SDEs of the individual particles
interdependent. (References include [13] and [38].)

26.8 Summary

Trajectories exist in space and time. One notices them in many places and their data have
become common. In this chapter, two specific approaches have been presented for analyzing
such data, both involving SDE motivation. In the first approach, a potential function is
assumed to exist with its negative gradient giving the SDE’s drift function. The second
approach involves setting up a grid and approximating the SDE by a discrete Markov
chain moving from pixel to pixel. Advantages of the potential function approach are that the
function itself is scalar-valued, that there are many choices for its form, and that knowledge
of the physical situation can lead directly to a functional form.

Empirical examples are presented and show that the potential function method can be
realized quite directly.
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