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SUMMARY

In the subject of multivariate time series analysis, there arise
the direct analogs of problems

problems that are/studied in classical multivariate analysis. If the
series involved are stationary one is able to estimate relevant statistics
from a single realization. The purpose of this paper is to derive analogs
of principle components, factors and canonical variates that may be esti-
mated from a single realization. The distribution of the proposed estimates
is approximated. In addition an adaptive approach 1s presented that may be

used in the case of non-stationary series.
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1. INTRODUCTION
Consider a multiyariate, stationary, Gaussian time series e
{x,(t)y «us, xk(t)] with zero mean and power spectral density matrix
f(w) = Hf“(m)lb where t is either discrete or continuous. The matrix
f(w) may be thought of as the veriance-covariance matrix of a particular

set of Gaussian variates. Namely if,

Lot

x(t) = fera Z,(w) ,

is the Cramer representation of the process xi(t) then,
w

fid(w)i- E {4 zgtw) d ?.j“‘”} .
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This result leads one to consider analyzing the series by applying
techniques developed for the analysis of a sample from a multidimensional
Gaussian distribution. |
(w) is avallable

Specifically, suppose that en estimate ? (w) of

13 13
where ?iJ(w) is a weighted aversge of the cross~periodogram. If the
weighted average corresponds to a positive kernel the analogy with the
analysis of a multivariate Gaussian sample continues for in this case
Ilgid(w)ll may be written (in the discrete case) in the form,
1 T -t
Ta 88 o

vhere gj is a complex-valued vector Gaussian random variable with mean
0 and variance-covariance a weighted average of f(w). (There is a similar
expression in the continuous case.) TheégJ above are dependent j = 1, ..., T;
however it will be seen later that the;zgglapproximated by QT independent
variables where Q is the bandwidth of the kernel. That is one is in
possession of an approximate sample from a multivariate Gaussian distribution.

The particular classical multivariate techniques of analysis of such
& sample to be considered in this paper include, principle components,
factor analysis and canonical variates. The results obtained from such
an analysis have applications to problems such as, the construction of
economic indices, the analysis of signals received by an array of seismic
stations, and the enquiry into the relationship between the components
of pressure and velocity in a wind field.

The distribution of the statistics proposed in this paper may be
approximated by the distributions of similar statistics derived from a
complex Gaussian sample. These latter distributions were provided recently

by James (1964).



2. FRINCIPLE COMPONENTS
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Bowley (1920) makes the following stagément, "Index numbers are
Nayie A K o) an U\\M PUTETR VN

used to méasure th change in some quantity vhich we cannot observe
directly, which we know to have a definite influence on many other
quantities which we can so observe, tending to increase all, or diminish
all, while this influence is concealed by the action of many causes
affecting the separate quantities in various ways."

Admittedly the concept of a quantity which can not be observed
directly has many philosophical pitfslls comnected with it, but still
the intent of Bowley's definition does seem reasonable. Let us not
comnence with a definition involving unobservable quantities, but instead
let us think of en index number as a time series describing in s simple
manner the complex concomitant behaviour present in a set of stationary
time series. Specifically suppose that one is dealing with time series
X (%), euey xk(t) defined for t = 0, + 1, + 2, +e» 8nd one wishes to find
functions hi(t) such that subject to a suitable normalization the series,

explains, in a variance sense, as much of the variation present in the
series [xi(t)} as is possible.

An example of a use to which such a series {(t) might be put is to
describe the comovement of the prices of a number of securities.

The following theorem presents an explicit method of calculating

index numbers as defined above.
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Theorem: Consider a multivariate, wide-sense stationary time series

[xi(t), srey xk(t)} - Consider time series {(t) of the form,

12 % hi(t - T) xi(T) .

Among all time series of this form, subject to the condition,

*
155 By (o) Kyg0) Hjw) = 1, ¥

where Hy (w) is the Fourier transform of b, (t), and the matrix IIKiJ(w)lf
is Hermitian, the series with maximum variance is the one generated by

the functions Hi(w) such that,

% {fij(w’ - Mw) K, (w)} Hd(w) =0 (2.1)

J
where A(w) is the maximum latent root satisfying (2.1).
Proof: The variance of {(t) may be written,

n

e
a2y By 24 Bjw) do

A classic result now applies to yield the result that the expression,

1Ty By(@) £;(0) Hy(w)
is‘maximised subject to the condition,
1§J Hy(w) K j(w) Hylw) = 1,
by selecting the Hi(w) as described in the theorem.
| The variance of the {(t) actually achieved by the above choice of

Hi(w) at each frequency is,

T
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The series {(t) may now be determined by constructing filters
hi(t) having the desired transfer functions Hi(w) .

~
In practice fij(w’ in (2.1) will be replaced by an estimate fij(“"

Reasonable choices for Kij(”) to use in practice would appear to be,

Kyjlw) = By 4 £y, (w) \ (2.3)

where 513 = 1 1f 1 = J and 0 otherwise.

(2.2) appears to be applicable if the series may reasonebly be
thought of as being in the same scale, while (2.3) appears useful if it
is desired to eliminate some of the effects of scale and is equivalent

to carrying out the analysis on the matrix of coherencies.

The equation (2.1) will have k roots. At this point we have only
made use of the largest of these at each frequency; however as in the
classical situatign the remaining roots may well be most useful. They
explain in s égi;;ig;:;n sense the variation remaining in the series after
the component {(t) has been removed, the second largest root explaining
the largest possible amount of the remaining variation and go on.

One may consequently comstruct a sequence of series gl(t), ceey ;k(t)
uncorrelated with one another, explaining the movement of the complex
of time series [x‘(t), aeey xk(t)} to various degrees.

The existence of the series ge(t), veey gk(t) leads one to a position
that many constructors of indices do not appear to have adopted, that is,

in many situations it may well be meaningful to quote a number of indices,



The first index typically providing a form of aversge of the series involved,
the second a form of average of the deviations from the first index and so on.
The index arrived at in this section if evaluated for a number of econ-
omic time series differs from the sort of index arrived at by Rhodes (1937) X
and by Stone (1947) in that it makes use of all the observed values of the
series as more than weights. To make this contrast more apparent, Rhodes
and Stone would arrive at the same index no matter what the time order of
the basic data they use.
If one is considering any form of projection, making use of the order

of the observations does appear essential.
3+ REDUCTION

One way of viewing the construction of indices is to view it as the
reduction of a number of series to fewer series with as 1little s loss of
information as is possible. Let us quantize this viewpoint as follows;
consider the time series {x, (%), ..o, xk(t)). By means of linear time
invariant operations reduce these k series to 2 series, that is form

¥y =§§hi.j(t"”xi‘” J= 1, eeey 8.

Now by means of linear operations on the £ series yJ(t) return to k

series

! = - = XX .
%y (%) -‘i E gij(t T) YJ(T) i=1, » k

What are the functions hij

as possible is lost by these operations? Interpreting the loss of information

(t), giJ(t) such that as little information

&5 a mean-squared error, this question may be answered as follows; the mean=-



squared error of x'(t) - x(t) is,

trace {var-covar matrix of xi(t) - xi(t)] .
This may be written as,
[ trace (I - Glw) H(w)) flw) (I - G(w) H(w))* dw (3.1)

where f(w) denotes the spectral matrix of the series and G(w), H(w) denote
the matrices of the Fourier transforms of gij(t)’ hij(t)' IisakXk
identity matrix.

The essential point in the problem of minimizing (3.1) is to note
that the matrix product G(w) H(w) is of rank 2 .

Consider the problem of minimizing

trace (I - M)T R(I - M)
where M 1s a matrix of rank £ and size k X k, R 1s k X k and positive

definite. This problem is equivalent to the problgﬁ\of minimizing,

trace (R% - RéM)T (R% - Réﬂ),

or of minimizing
trace (R% - N)T (R% - N),

where N is of rank 2.

The matrix N providing the required minimum is given by,

LR

(see Eckart and Young (1936)) where We is an £ X k matrix having as its 2
rows, the £ rows of the eigenvector matrix of R corresponding to the
largest 4 eigénvecfors.

This result remains true if R is a complex hermitian matrix and in

terms of (3.1), one 1s led to the calculation of the eigenvalues and



elgenvectors of the spectral matrix once again.

Elementary manipulations indicate H = We and G = R% wg, R = f(w),
as possible choices of H(w) and G(w).

Making use of H(w) one can consequently construct £ series yj(t),
linearly related to the original series xi(t), that in the sense of
being able to rederive the original series xi(t) back from them, contain
as much of the information as is possible. The series yj(t) are seen to
correspond to the principle components of Section 2.

However something more has been added at this stage. One has been

led to think of xi(t) as beilng of the structure

Xy (%) =~ % § 313“" - T) yj('r) .

This structure leads one into the very specific factor analysis model

of the next section.

4. FACTOR ANALYSIS

Suppose that k seismometers have been set up in an array of k seismic
stations. Let xi(t) denote the output of the seismometer at the ith
station at time t. Suppose that some sort of seismic event has taken
place. The output xi(t) then has the form,

xi(t) = Si(t) + ni(t) i = l, sy k

where si(t) is the component of the output attributable to the seismic
event and ni(t) is the undesired, but ever present noise. If it is
assumed that the earth in the region containing the k stations behaves

like a linear filter. The signals si(t) are then related to the "true"



signal s(t) vy,

LBy (t) = ? hi(t - T) 8{1) .

Consequently an imegined model for the k records xi(t) is

xi(t) = i: hi(t - T) 8(T) + ni(t) (4.1)

and one is interested in estimating hi(t) and s(t).

One has consequently been led to a very specific structural model.
This example is a particular case of the factor analysis model, namely
imagining that there exist factor series yj(t), loading series gij(t)'

noise series ni(t) such that

- - t (4.2
xi(t) g 5 gij(t 1) yJ(T) + ni( ) ( )

Assuming that the yj(t) are independent unit white noise series
uncorrelated with the ni(t) and that the latter are uncorrelated with one

another and have power spectral matrix Z(w), otte obtains from (4.2)

f(w) = GT(w) G(w) + Z(w) .

This is the basic equation of factor analysis, see Harmon (1960).
One may now proceed to the estimation of G{w) by means of the classical
techniques of factor analysis, e.g. inserting comunalities, evaluating
latent roots etc.

The reader may wonder at the apparent dissimilarity of the models
(4.1) and (4.2). The model (4.2), specifically the white noise assumption
for the factors, finds meaning in Ricker's (1940) theory of wavelets
as developed by Robinson (1957). The 81 ;(t) represent the wavelets
received at location i from the impulse ‘excitation yj(t) at some location.

The gij(t) may be thought of as representing the effect that the earth

has upon the various impulses.
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The adventage of the model presented herein is that it allows the
separation of a number of disturbances. Also one can estimate the direction
of the various disturbances and the velocities with which they are

propegating.
5. CANONICAL VARIATES AND CANONICAL CORREIATIONS

Suppose that one is considering two sets of time series
() evvy %, (6)) and (y,(t), «ov, ¥, (%)) and that one is interested
in representing a possible relationship between the two sets of series.

ot wishes abtbrngan Uay o @ seviae Ag Nonsns -
More specifically suppose 3
the extent to which the two sets of series reflect the same underlying
traits. A quanfitative means of answering this question would be to
find that linear combination of the first set of series which is most
highly correlated with a linear combination of the second set of series.
One could continue by finding the pair of next most highly correlated
serles orthogonal to the first pair and so on. In a certain sense what
are being found are factors accounting for the correlations between the
two séts of time series.

As an example of the sort of problem being considered here, suppose
that at a particular point in the atmosphere one is able to measure the
three components of wind velocity (u(t), v(t), w(t)) and also one is able
to measure the three components of the pressure gradient (pu(t), pv(t),
pw(t)) at time t. Theory leads one to imagine that there is a linear

relationship between the two sets of measurements, specifically one

can imagine the existence of functions a(t), b(t), c(t); a(t), Blt), r(t)



such that,
f a(t - 1) u(t) dv + f b(t - 1) v(t) at + f e(t - 1) wit) az
=Jat - v)p vy ar + [ Brt - 1) P (7) At + [ y(t - ) p (1) ar .
In the investigation of the existence of such a relationship one may

perhaps take advantage of the following result.
Theoren Let there be given two sets of zero mean wide sense stationary

time series [xl(t), ooy X ()} and [yl(t),..., ym(t)]. The series

at) =2 Zg (t-1) x(1),

B(t) = ? f By (6-1) ¥, (%),

which have the extrema co-spectra Re{.‘t‘c,‘B (w)} at each w subject to
T * '
G (w) fxx(w) G (w) =1, (5.1)
Uy *
H (w) fyy(w) H(w) =1, {5.2)

(where G and H denote the column vectors of Fourier transforms of gi(t) and

h,j (t)) are provided by first solving the determinental equation;
-1 -
[A(w) (@) - £ @ £0(@) £ (0 | = o,

where the spectral density matrix of the process {xl (B)r00e xk(t); A
Yy s,y (%) } has been partitioned as follows;

Fox (W) fxy (w)

fyx(w) fyy(w)_

fxx being k x k, fyy being m x m.
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Then solving

p(w) fxx(w) - fxy(w) G{w)
‘ . =0 (5.3)
‘—fyx(w) P(w) fyy(w) H(w)

where p(w) ='J AMw)

The two solutions «(t), B(t) having the greatest cckspectrum at each w

correspond to the largest A(w) at each frequency w.

Proof: The co-spectrum of a(t) and B(t) at frequency w is,

Re {GT(w) fxy(w) B ()

= 1 @) £y B (w) +6*T (w) £l () ) (5.4)

The extrema of this expression, subject to the conditions (5.1), (5.2),

may be found by the differentistion of,

(5-4) + p(w) G (w) £, (w) G"(w) + o(w) HY(w) £, (W) E*(w)
. . oy

with respect to the real and imaginary parts of the components of G(w) and
H{w), p(w), o(w) being undetermined Lagrange multipliers.

Carrying out this differentiation one is quickly led to the equation
(5.3).

The remainder of the theorem results from simple algebraic manipulations.

It seems relevant to point out that if one is concerned over possible
differences in scale of f.he series involved he may carry out the procedure

proposed above on the matrix of coherencies.
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6. AN ADAPTIVE APPROACH

There is another quite different approach that may be made to the
problems discussed in this Paper. This different approech brings out the
essential linear nature of the prdblems consldered and has the advantage
that it may provide a useablejadaptivég time varying, solution if the basic
relationships and structures of the series under consideration are changing
slowly in time.

When one considers: the problems investigated in this paper, he notes
that the proposed solution of each of them was based upon the spectral density
matrix. Consequently if one is in Possession of some observed stretches of
series, he will require an estimate of the spectral density matrix in order
to implement one of the proposed solutions.

The spectral density matrix may be estimated by first estimating relevary
covariances and then Fourier transforming the covariances with the use of con-
vergence factors. This approach is discussed in Jenkins (1963) for example.

Another approach is to be found in Brillinger (1964a), this latter
approach is based upon the technique of complex demodulation (Tukey (1961).)

The process of the complex demodulation of a time series proceeds as

follows; let there be given an cbserved segment {x(t); t=1, ..., T} of a 'Jéf”h*%

R

series. Select a frequency w, - Form the series (x(t) cos wbt;t= lyee,T) %ﬁ}k*i
. A Adrd Al

and {x(t) sin wo't; t =1,...,T}. Smooth these two serles, forming the v

series {u(t,woj;'t= 5y «ve,T') and [uH(t, W) t=1,...,71) where T' <T.
These series are the complex demodulates at frequency W, -

It is pointed out in Brillinger (1964a) that the cross-spectrum f:z(wd)
of the two series {xl(t), xz(t)) may be estimated by time averaging the

preduct,

.. R :
(ul(t,wo) +iu (e, wo)} {ug(t,wo)- 1ol

Z(t, mo)} .
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The advantage of estimating fl 2“"0) by this technique is that it is very
easily implimented to provide & running average in time of f1 z(wo) This
allows one to look for certain classes of non-st.a‘cionarities.

Let us consider this technique in respect of the desire to factor analyzs

cross-spectra’ are estimated as above, the estime®™
the spectral matrix. If the various/cross—spectral wmatrix is essentially ar
estimated variance-covariance matrix for the random variables
{uj(t, wo) + iu?(t, wo) } where J Tuns across the series involved. In

other words then, the problem of principle components for example,, may be

1ooked upon as the problem of finding constants a.j such that,

T aj‘&j‘t’“’o) +iu (%, wo)? ,
hes maximum variance, and the solution to this problem consists of carrying

out the same procedure &8 developed for the case of independent cbservatione.

This leads to the golution of this paper.

7. DISTRIBUTIONS OF THE PROPOSED STATISTICS

In the Appendix of this paper it will be shown that if ”%ij(w) “ is
an estimate of the spectral density matrix ﬂ fi J(w) II where /fij(w) is a
weighted average, corresponding to a positive kernel, of the cross~-periodograr

of xi(t) and x‘j (ty , then ll f‘ij(w) || may be written

goe g !
T = 3 ':J ’ (7.1)

where gj is a complex valued vector Gaussian rendom variable with mean 0 and
veriance-covariance metrix,
| S G-ty £500"0 aw' | (7.2)

K corresponding to the kernel. The gj, J=1, eee T are dependent;
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however it is argued in the Appendix that (7.1) may be approximated by,

e

n, n!

1By p) (7.3)

L

u J
where u equals the integral part of QT (@ denoting the bandwidth of X), ann
the nj are now independent with mean o0 and variance covariance mamr;x (7.2

One may consequently imagine himself in possession of s samplgg;;gg :ie
complex Gaussian distribution (Goodmen (1963), ) and may note that (7.3) is
en observation from the corresponding complex Wishart distribution.

James (1964) has considered the distributions of various statistics
calculeted from an observation from a complex Wishart distribution. The
distributions he considers that have specific relevance to this paper are
the distributions of eigenvalues and canonical correlations. These distribu.
tions are given by expressions (95) and (112) of his paper and from what was

said above would appear to provide suitable approximations to the distribu-

tions of the eigenvalues and cenonical correlations of this paper.

8. COMPUTATIONAL FROCEDURES

It has been seen that the soluticn of a number of problems relating to
the joint analysis of a number of stationary time series comes down to the
determination of various roots and related vectors of a complex Hermitian
matrix. As the standard cbmputational techniques developed for the corres-
ponding problems in multivariate analysis apply only to real symmetric
matrices a comment seems in order.

The determination of the roots of a k x k complex Hermitian matrix is
equivalent to the determination of the roots of a 2k x 2k real matrix, this

results from the isomorphism of the complex numbers and 2 x 2 matrices,
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o + ip ¢—mr>

-B o

One simply replaces each complex entry of the spectral density matrix
by the corresponding 2 x 2 real matrix and evaluates the desired roots for
the larger mabtrix. Each root will however be duplicated.

This technique is discussed in Brenner (1961) and Goodman (1963).
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APPENDIX

Let fij(w) be a weighted average of the cross=periodogram of

A

{xi(t)} and {xj(t)} corresponding to the positive kernel K(w). fij(w)

may consequently be written,

1
7 s?t kis - t) xi(s) xj(t), (A.1)

where k(s) is an even function of s such that,

T
k(s) = [ ™ k) aw ,
-7t

where K(w) has the approximate form,

1 for |w 4 wol< &Q and | - w < 1o

K(w) Ty

]

0 othervise.

]

As stated sbove it is assumed that k(w) > 0. This implies that the

matrix k = || ko ll = || k(s - t)|| is non-negative definite. Assume that
this matrix is mXm ||k(s - t)[l has a 2m - 1 X m matrix square root
b = ”bst” = |Ibts - t)]] such that k = bTb. (See Brillinger (1964b)).

The expression (A.1) may now be written,
1 T
T{b xi} (b XJ-} 3
where xf denotes the row vector lei(l), ceey xi(T)]I. In other words

(A.1) may be written,
1 T
glyyd vyl (A.2)

where Yo yj are zero mean, multivariate Gaussian random variables such

that,



A-2

E yi(a) VJ(B) E gb(a -7) xi()') gb(B - P) xJ.(p)

At this point let us assume that fij‘w) is essentially a constant,
fij(wo), on the support of K(w). Consequently,
B y;(@) ¥y8) = £, | - ]

Now suppose that q is an orthogonal matrix that diagonalizes k

that is quq = A where A is disgonal. Define the 2m -~ 1 X m matrix

-1

let y = pz define m variates z. The expression (A.2) becomes

P to have the form,

lz,)" (z,) . (A.3)

The z; are Gaussian, mean 0 and

T T T
125 =PEY; ¥yp

=
N
3
[

- T
fij(wo) Pkp

1"

fij(wo) A

Summing up the calculations to this point it has been seen that the

spectral estimate A.1 is approximately of the form,

1
gV 550 T35 T X ¥y Vig



where the (uia, Vja) are independent for different o and where (uia’ vja)
have a joint Gaussian distribution with means 0, variances 1 andhpbrreiation
Rij(wol

The intention of the remainder of this section is to argue that the
%3 if ordered such that Al > hz > ... are very nearly 1 for a < QT and o
thereafter. If this can be argued convincingly then it is immediately
apparent that A.1 has the approximate form of a multiple of a simple
covariance calculated from a sample of QT independent variates.

Because k = ||k(a - Byl 1s a Toeplitz matrix, results are known
concerning its eigenvalues. In fact a theorem of Grenander and Szeg3

number xu <x

(1958) states that s T —> oo, lim { }=meas [A[K(A) <x] .

T
The reader will remember that K(w) was selected to have the approximate

shape,

]

K(w) 1 for |w + mol< &-Q, |w - w0|< ﬁ-ﬂ

0 otherwise.

Consequently, the number of Au > 1 - € is approximately QT for any
€, 0 <€ <1, while the rest of the Au are < €.

In other words the first QT eigenvalues are near 1 and the remainder
near o.

References to the use of Toeplitz approximations in the consideration
of the distribution of spectral estimates include Freiberger and Grenander
(1959) and Grenander, Pollak and Slepian (1959).

I have learned from Professor E. Parzen that in a preliminary version
of Parzen (1957) he obtained the representation (A.2) for the case of a

single time series.



