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1.1 Introduction

Earthquake statistics are facts recorded in
the aftermath of earthquakes. They are
the concern of seismologists, geologists, en-
gineers, government officials, and statisti-
cians. Statisticians are involved because
of the large amount and many forms of
data that become available following an
event. The associated substantive field,
seismology, has been called the “science
based on data called seismograms” (Aki
and Richards [1]). A seismogram is a
recorded time series of the displacement,
velocity, or acceleration experienced by a
particle of the Earth. Figure 1 presents
an example of this basic datum. It is a
record made at Berkeley of the January 17,
1995 earthquake that caused over 5000 ca-
sualties and much damage in Kobe, Japan.
One notes a variety of wiggles and fluc-
tions of varying amplitudes. The seismol-
ogist attaches physical significance to such
features and reads off specific quantitative
values, e.g., arrival times of various waves.
In the figure the first 9 min or so is noise;
then the signal begins to arrive.

Statistical methods have played an im-
portant role in seismology for many years.
Perhaps this is due to the pathbreaking ef-
forts of Harold Jeffreys [4]. Of Jeffreys’
work, Hudson [18] has written: “The suc-

cess of the Jeffreys–Bullen travel time ta-
bles was due in large part to Jeffreys’ con-
sistent use of sound statistical methods.”
In particular, Jeffreys’ methods were ro-
bust and resistant.

Statistics enters for a variety of reasons.
The basic quantity of concern is often a
probability or risk. The data sets are mas-
sive and of many types. There is substan-
tial inherent variability and measurement
error. Models need to be fitted and revised.
Inverse problems, with the basic parame-
ters defined indirectly, need to be solved.
Experiments need to be designed. Some-
times the researcher must fall back on sim-
ulations. It can be noted that new statis-
tical techniques appear to find immediate
application in seismology particularly and
in geophysics generally. As well, problems
arising in the field of seismology have led
to the development of new statistical tech-
niques.

The field of seismology is largely obser-
vational. It underwent the “digital revo-
lution” in the fifties and continually poses
problems exceeding the capabilities of the
day’s computers. Researchers have turned
up a variety of empirical laws [24], which
prove useful for extrapolation to situations
with few data. Physical theories find im-
portant application [1]. The subject mat-
ter developed leads to hazard estimation
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Figure 1: Honshu event of January 17, 1995.

[50], improved seismic design [32], earth-
quake prediction [28], determination of in-
surance premiums [9], and general knowl-
edge of the structure of the Earth [53].

1.2 Problems

Specific problems addressed by earthquake
researchers include the detection, location,
and quantification of seismic events; risk
assessment; prediction of earthquakes; the
distinguishing of earthquakes from nuclear
explosions; and learning about the Earth’s
interior for example, (the determination
of wave velocities as a function of depth).
Statistical methodology is employed on all
of these problems. The researchers are in-
terested in structural questions such as:
How should seismometers be laid out in a
network [45]? How can one predict earth-
quakes [28,39]? Are layer boundaries flat
or bumpy [37]? Is activity on different
faults associated? Further, in problems of
risk assessment, there is a need for attenu-
ation laws providing the falloff of strength
of earthquake effect with distance from
the seismic source. Algorithms are needed
for automatically detecting the onset of
a strong earthquake and thence shutting
down a nuclear reactor at high risk. Gen-
eral references providing basic seismologi-
cal background include Aki and Richards
[1], Bullen and Bolt [10], and Bolt [5].

1.3 Types of Data

Measurements may be made close to the
seismic source or far away. The recording
of data may be continual, as at an obser-
vatory, or brief, as when strong-motion in-
struments are triggered by substantial mo-
tion. The data processed may be the seis-
mogram Y (t), t = 0, . . . , T − 1, as in the
figure, or they may be quantities derived
from the seismogram. Quantitative values
read off a seismogram include the first ar-
rival time, direction of first motion, first-
motion amplitude, signal duration, max-
imum overall amplitude, and oscillation
periods. Characteristic features may be
noted to infer the individual arrival times
of superposed waves of different types; see
Simon [41]. Alternatively there may be ar-
rays of seismometers with the instruments
arranged in such a fashion that an earth-
quake signal may be seen traveling and
changing shape. The data recorded at lo-
cation (xj, yj) can then be denoted Yj(t),
t = 0, . . . , T − 1, with j labeling locations.

The time series recorded at one lo-
cation are typically trivariate (two hor-
izontal and one vertical components),
{(Y1(t), Y2(t), Y3(t)), t = 0, . . . , T −1}. De-
rived values such as an event’s origin time,
location, and magnitude—{τk, (xk, yk, zk),
Mk, k = 1, 2, . . . , K}, with k indexing
events—may be collected into so-called
catalogs for geographic regions of interest.
These catalogs can date back centuries and
are a fundamental tool of seismological re-
search. The data may be binary, as in signs
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of first wave motion (+ or −, correspond-
ing to up or down).

Sometimes seismological data are not
based directly on seismograms. For exam-
ple, they may be subjective assessments of
damage following an event. The modified
Mercalli (MM) intensities are used for such
a description. They are ordinal-valued.
The description of MM intensity VI starts:
“Felt by all; many frightened and run out-
doors. Some heavy furniture moved . . .,”
while that of intensity VII starts: “Ev-
erybody runs outdoors. Damage negligi-
ble in buildings of good design and con-
struction; slight to moderate in well-built
ordinary structures; considerable in poorly
built . . ..”

1.4 Models

Models range from the naive—e.g. the ex-
ponential distribution for magnitudes (the
so-called Gutenberg–Richter relation)—to
the massive and sophisticated. Those
commonly employed include simple bino-
mial, Gaussian, Poisson, complex spatial–
temporal, and branching. Seismic engi-
neers, for example, proceed by develop-
ing stochastic models for the response of
a building to seismic input, while seismol-
ogists may model the Earth’s interior as
random to handle the omnipresent irregu-
larities [19].

An exceedingly broad range of stochastic
models have been employed by earthquake
researchers. These provide effective sum-
marization of the data and allow address-
ing questions of interest. For example the
sequence of times {τk} of earthquake oc-
currence in a given region may be viewed
as corresponding to part of a realization
of a stochastic point process. It becomes
a marked point process or jump process
{(τk, Mk)} when there is a value (mark) as-
sociated with each event time. This could
be the event’s magnitude or seismic mo-
ment. A basic point-process parameter,

the rate, tells how many earthquakes may
be expected in a unit time interval. There
are other parameters to describe tempo-
ral dependence. A random field or spatial
process, Y (x, y), can be envisaged as de-
scribing realized values of (say) maximum
displacements occurring at locations (x, y)
on the Earth’s surface during the course
of an earthquake. A fluctuating displace-
ment value in time and space, Y (x, y, t),
may be viewed as a spatial–temporal pro-
cess. A branching process may correspond
to crack or geological-fault formation or
underlie the times and locations of events
[47,48].

There are many uses made of the mod-
els of elementary statistics such as multiple
regression and nonlinear regression. The
generalized linear model is beginning to be
employed for data that are counts or pro-
portions or are necessarily positive.

1.5 Statistical Methods

Reviews of statistical techniques applied to
earthquake data are provided by Jeffreys
[21], who describes the methods employed
through the mid sixties, Vere-Jones and
Smith [49], who provide a review of many
contemporary instances up through 1980,
and Vere-Jones [48], who presents more re-
cent work.

Much of modern seismological research
is based on the spectral analysis of seis-
mograms; see Reference 2. Other spe-
cific statistical methods that have been em-
ployed are maximum likelihood [16], er-
rors in variables [14], robust regression
[6], nonlinear regression [6], probit analy-
sis [49], Fourier inference [20], discrimina-
tion [43], array analysis [40,42], point pro-
cesses [12,17,25,30,46], moment functions
[22], inverse problems [36], bootstrap [27],
and sensitivity analysis [38].

The smoothness-priors approach to non-
stationary data [26] leads to plausible
plots of time-varying frequency content
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of seismic signals. Reference 31 presents
maximum-likelihood state-based methods
for handling the data of reflection seismol-
ogy; Reference 13 indicates how the EM
method may be employed to deconvolve
pulses hidden in seismic traces. The non-
Gaussianity of seismograms is taken ad-
vantage of in higher-order moment analysis
[15]. Researchers [33,34,35,23] have carried
out a variety of likelihood-based analyses of
earthquake times as a point process∗ . An
important conceptual development is the
systems approach of breaking down a cir-
cumstance into components as in problems
of seismic risk analysis [11]. References 7,
8 present a variety of statistical analyses of
earthquake data.

1.6 The Literature

The principal journals of the field include
the Bulletin of the Seismological Society of

America, Journal of Geophysical Research,

Geophysical Journal of the Royal Astro-

nomical Society, Geophysical Research Let-

ters, and Mathematical Geology.
The field of seismology has always been

remarkable for the speed with which the
data are shared. Nowadays catalogs and
waveforms may be obtained directly from
many sites through the Internet. One list
of computer addresses is given in Refer-
ence 29.
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