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Some Examples of Empirical Fourier
Analysis in Scientific Problems

DAVID R. BRILLINGER University of California, Berkeley, California

“One can FT an ything—ofien meaningfully.”
J. W. Tukey

1. INTRODUCTION

As a concept and as a tool, the Fourier transform js pervasive in applied
mathematics, computing, mathematics, probability and statistics as well as
in substantive sciences such ag chemistry, geophysics and physics. This
chapter presents g review of such applications and then four personal ana-
lyses of scientific data based on Fourier transforms. Specific points made
include: Fourier analysis is conceptually simple, its concepts often have
direct physical interpretations, useful statistical properties are availabje
and there are varjoys interesting connections between the mathematical
and physica] concepts.

By Fourier analysis is meant the study of spaces and functions making




include: Wiener ( 1933), Bochner (1959, 1960) and Zygmund (1968). These
particular authors are concerned with functions on the line or on a general
Euclidian space. Works ofi extensions to general groups include: Loomis
(1953), Rudin (1962), Hewitt and Ross (1963), Katznelson (1976). More
recent books are Terras (1988) and Kérner (1989), the former particularly
addressing the nonabelian case, the latter Presenting a variety of historical
examples and essays on specific topics.

In contrast, the Fourier transform is of interest to statisticians because it
proves inordinately useful in the analysis of data and eases the development
of various theoretical results. Noteworthy contributions to statistics have
been made by Slutsky (1934), Cramér (1942), Good (1958), Yaglom (1961),
Tukey (1963), Hannan (1965, 1966), Priestley (1965), Bloomfield (1976),
Diaconnis (1988, 1989). Slutsky developed some of the statistical properties
of the Fourier transform of a stretch of time series values. Crameér set down
a Fourier representation (see Sec. 4.1) for stationary processes. The repre-
sentation admitted many extensions and made transparent the effect of a

practical applications, Priestley provided a frequency domain representation
to describe nonstationary processes. Bloomfield made complicated results
available to a broad audience. Diaconnis considered symmetric and permu-
tation groups and the analysis of ordered data.

Particular uses of the empirical Fourier transform include: the develop-

models (Whittle (1952), Dzhaparidze (1986), Feuerverger (1990)), the assess-
ment of goodness of fit of models (Feigin and Heathcote (1976)), and the
deconvolution of random measurements (Fan (1992)). Fourier analysis has
a special place amongst the tools of statistics for the concepts often have
their own physical existence.

There are special computational, mathematical and statistical properties
and surprises associated with the Fourier transform. These include: the
central limit theorems for the stationary casc with approximate indepen-
dence at particular frequencies, the existence of fast Fourier transforms,
(Good (1958), Tukey (1963), Cooley and Tukey (1965), Rockmore (1990)
the need for convergence factors, the ideas of aliasing.

Section 2 concerns some particular physical situations. Section 3
contains pertinent background from analysis. Section 4 contains stochastic
background. Section § presents analyses of four data sets from the
hatural sciences and the author’s experience. The examples highlight
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mwu..mxm.gm:.o:. shrinkage estimation, the method of Stationary phase, cen-
tral limit theorems ang uncertainty estimation. The first €xample, concern-

SCOpy, employs Fourier analysis to obtain physical insight into the behavior
of an input-output system, and then makes use of Cross-spectral analysis to
om:q:m.a the transfer function of the system. The periodogram of the resj-
duals is employed to assess the fit. The final example involves both wavelet
and Fourier analysis. It is concerned with the question of whether a micro-
tubule moves stead; ly or via Jumps. The Fourjer analysis is employed in this
case to obtain uncertainty estimates in the presence of stationary noise

Section 6 contains conclusions and indicates open problems.

2. SOME PHYSICAL EXAMPLES OF FOURIER ANALYSIS

Cycles, periods, and Tesonances have long beep noted in scientific discussions
of astronomy, vibrations, oceanography, sound, light and crystalography
amongst other fields. In technology oscillations occur often for example in
telephone, radio, TV and laser engineering. Natura] operations occur com-

For example Bazin et |, (1986) physically demonstrate the operations/
concepts of translation, linearity, similarity, convolution and Parseval’s
Gnoﬁs for the Fourier transform via diffraction experiments with |aser
light. The Fourier transform here is formed via a lens. Sce Goodman

An important example arises in radio astronoruy. Suppose there is -n
array of receivers, Suppose there js a small incoherent source, at great dis-
tance, producing a plane travelling wave, I ¥, (x,,1) denotes the radio field
measurement made gt time ¢ on a telescope located at position (x, ¥), then




E{Y(x+u,y+ 0,07y 1} = _. % f{a, BB ey ag @.1)

where (o, B) are the coordinates of the source of interest in the sky and f{«, 8)
isits brightness distribution as a function of (@, B). In other words, the Fourier
transform is the quantity observed. The result Eq. (2.1) is known as the van
Cittert-Zernike Theorem, see Born and Wolf (1964).

Linear time invariant systems abound in nature. They have the property
of carrying cosinusoids into cosinusoids. Nowadays in science there is much
concern with nonlinear operations and phenomena. Impressively, the classic
trigonometric identity

[cos M) = Lcos 227 + 4 (2.2)

is “demonstrated” in Yariv (1975) via a color plate showing red laser light
becoming blue on passing through a crystal. The crystal involved squares
the signal as in Eq. (2.2). A wavcelength of 6940 A (red) becomes one of
3970 A (bluc). Bloembergen (1982), Moloney and Newell (1989) discuss
such nonlinear aspects of light. The appearance of harmonics such as in
Eq. (2.2) leads to a consideration of higher-order spectra.

The Fourier transform is continually employed in the solution of cquations
of motion associated with physical phenomena and mathematicians have
focussed on consequent cycles and harmonics. For example, Hirsch (1984)
has remarked that “Dynamicists have always been fascinated (not to say
obscssed) by periodicity.” In that conncction Ruelle (1989) makes effective
use of the Fourier transform in the study of dynamic systems. specifically
addressing aspects of cliaos, periods and scaling.

The Fourier transform leads to entities with dircct physical interpreta-
tions. One can point to a variety of success stories of the application of
Fourier analysis. Michaelson (1891a, b) measured visibility curves, cssen-
tially the modulus of a Fourier transform, and after an inversion thereby
inferred that the red hydrogen line was a doublet. This inference of splitting
ultimately led to important developments in quantum mechanics. Tidal
components caused by the sun, moon and plancts have been isolated by
Fourier analysis, see Cartwright (1982), Bith (1974), Bracewell (1989). Katz
and Miledi (1971) inferred the mechanism of acetylcholine release via a
Fourier analysis. Bolt et al. (1982) saw a fault rupturing in an earthquake
by a frequency-wavenumber spectral analysis. Finally it may be noted that
R. R. Ernst received the 1991 Nobel Prize in Chemistry for developing the
technique of Fourier transform spectroscopy, see Amato (1991). A discus-
sion of a variety of other physical examples may be found in Lanczos (1966),
Béith (1974), Bracewell (1989).
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3. SOME ANALYTIC BACKGROUND
3.1 The Fourier Case

Consider a square integrable function i
i jar 8(x),0 < x < 2. In this si
Fourier analysis is buijlt upon the values , mple case

1 2 —ikx
= w’ab e " g(x)dx (3.1)
k=041, £2,..., and Fourier synthesis on expansions
o
glx) ~ ce'™
»W.W : (3.2)

The functions exp{ikx}, k= 0,41, 42 here
. ? ) 9 LY ~
and this connects Egns. (3.1) and 3.2). #1¢ orthogonal on 12m)

One important use of Fourier methods js the approximation of functions

If the values i k=0, 4] + K of E ] i
! , =S q. (3.1} are availabl \ i-
mation to g(x) is provided by & natve appros

MU cret (3.3)

However early rescarchers found that the approximation of Eq. (3.3) was

often improved by inserting multipjj £ i
i pliers, wy', such as | — %
€xpansion and employing ! I/ into the

K
X .
g (x) = wi epet™.
»W.J» (3.4)
instead of Eq. (3.3). Defining the kernel
X
wk(x) = MU A
k="K
Eq. (3.4) can be written
2
WXy~ x)g(x) dx (3.5)

eflect .on. the multipliers, in some cases, is to improve the approximation by
a:Su_:m.aoE: the more rapidly oscillating terms in the expansion. This idea
.o_. %Ev.:m down will recur below in the consideration om‘mr:.:_c.zm to
Improve estimates. The expression of Eq. (3.5) may be used to study directly
the efTect of the kernel function on the approximation. Timan (1963), Butzer




and Nessel (1971) are books specifically concerned with approximations

based on Fourier expressions.
In work with data valucs Y, observed at t=0,...,7 -1 one might

replace Eq. (3.1) with
1 Ai.mi.@
= eXpy ——— %,
T2 P T

having written &(2mt/T) = Y,. As referred to earlier there are fast algor-

ithms to evaluate this.
A second important use of Fourier analysis is in the study of time invar-
iant systems. A simple linear time invariant system is described by

oC
Y, = M 65Xy
=—o0c
i.c., a convolution. The response of this system to the input X, =exp{iAt} is
Y, = CA)X, (3.6)
with C(A) the Fourier transform

qﬁ\/v“ Mun” vafn.a

F=—0C

for 0 < XA < 27. This function is referred to as the transfer function of the
system. Cosinusoids, exp{iAt}, are seen to be carried into cosinusoids. A
variety of physical systems have this property (o a good approximation.

Nonlinear time invariant systems may sometimes be approximated by
Volterra expansions of the form

oG 20 20
Y, = M oo Xy + M M «\T,ﬂT.«\ﬂq\K.\ + -
f=—oc $=-0C s'=—_0
The input X, = exp{iAr} here leads to the output
C(A)e™ 4 DA, N ...

where C()) is given above and
bA\f .tv — MU Mml;al..\;. «N,q...«
b 5’

In such a nonlinear system one sees harmonics of the frequencics in the
input appearing in the output. The laser example of Sce. 2 involved a system
that was quadratic.

[l

Fourier analysis js useful in work with constant coefficient differential

equations. .;om.o show the occurrence of oscillations and are often cffective
models of physical systems. Consider for example the linear system

dS(¢)

with S(-) vector-valued and X(-) scalar, Supposing
S(r) = % €s(A) dA

and

X(0) = % €”x()) dA

by Fourier analysis one has the solution directly as
S(A) = (iM - A)~'Bx()

Supposing x(A) constant and the latent values, Hj» of A to be distinct this
may be written

mANv - M ﬁ\,&\.:i
J

for some vectors 2,.0nc¢ secs the occurrence of oscillations gt frequencies

AJM. ow\v One reference concerning such differential equations is Hochstadt

\ “NrRONY) dx

The method of stationary phase approximates this by

BNA" (No)imf4 \Ns.\Ak_k\‘;cck;ovw\*ﬂ»&.«.

where A, mm:mmom k'(Ag) = 0. References include Barndorff-Nielsen and Cox
(1989) and Aki and Richards (1980). The idea is that unless the k() is near

0 ”rn %GEE oscillating multipliers COs k(A),sin k(A) will give the integral
value 0,




3.2 The Wavelet Case

Wavelet analysis is enjoying a syrge of noio.S.no.EQ m:<mm.:mm:o: m.:& _mn
competitor of Fourier. analysis. It may be viewed as m.,.w::oq analysis SWH_
the sine and cosine functions replaced by other »..mS___am of Aozromo?wv
functions. There are many similaritics between F ourier m:a.smé_ﬁ analysis.
Consider the expansion in Eq. (3.2) with the ooﬂmm_m:a in .ma. @.:.. The
expansion is based on the fact that the sine and cosine ?:o:.o:m EOS%%
basis for L,[0,27). In wavelet analysis other systems of ?:n:ozw are use m
see e.g., Strichartz (1993), Benedetto and 185.2 (1994), .<<s<o ets m,_a o
practical importance because they can sometimes provide more parsi-
ious descriptions than Fourier ones, . .

EQ&MMM_MM o:w: focus on local versus global behavior and in particular
can pick up transient behavior. Basic is a AEozﬁ.J wavelet i.v.sozmmqo
only on say the unit interval [0, 1). Given a square-integrable function g(x),
one considers an expansion

f9= 3 3 Bl (3.7)
J=—0¢ k=-0c
with _
Y (x) = 272p(2x — k)
and -
B = [ 4a(v() ‘ (338)

i is te al and complete, see c.g.,
The family {y,(.)} is taken to be o:ro:o.:?_ ;
Daubechics A_m.cmv, Walter (1992, 1994), Strichartz (1993), wo:oao:w and
Frazier (1994). - - ] . ‘
The expansion in Eq. (3.7) represents g(-) in terms ‘.o_ ..::.o:ﬁwsm with
support individually on dyadic intervals [k/2,(k+1)/27) for j, k integers.
It mcm.m.nma an approximation

g =33 Buvu(x) (3.9)

Vst Jkl<k

to g(x). This may be written as

£5(x) Lsﬁ.«,%@ dy (3.10)
the kernel being

W) = 3 4 () (3.11)
Jk

; 4TI s Vsedse sanmay iy

This kernel will tend to a delta function in various n?n::-&m:nom. see Walter
(1992). Equation (3.10) can be used 1o study the degree of approximation
directly as could Eq. (3.5) in the Fourier case. Equations (3.10) and (3.1 1)
are wavelet analogs of Eqns. (3.4) and 3.5. ¢

In the case of a discontinuous function, as wij] occur in Example 5.4,

a particular wavelet analysis is especially suitable, namely Haar wavelet
analysis. This analysis is based on the function

Y(x)=1 foro<x <4
=1 for i< x<1
0 otherwise
In the Haar case the kernel js -
Walx,y) = 29(2"y - [27x]) e

with [] here referring to integral part and g,(x) of Eq. (3.10) a Iocal
mean, g (x) = 7]~ y g(¥)dy, x being in - the particular
I'=[m/2" (m+ 1)/2"), see Fine (1949), Waiter (1992). - - -/,
There are empirical versions of Eq. (3.8) for use when discrete time 4z R
Yit=0,...,T~1 are available. One computes for example '

.=
B = ﬂMU Vi Q\d.&

interval

ok

(3.15)
=0 o

transforms, there are fast wavejet transforms,
Strang (1993). Also ‘one can-write p2’ for above, with no real change in

analysis of Example M.N_mm,o—:m

P gl —izmx), T TR AR o
Insertion of multipliers, as in Eq. (3.4) for _ﬂaclﬁ mm_.u_hox_.im.:,w:' is
fundamental. This will be discussed later, ' -

;

Y

4, m._.OnI>m._._n_,m AND m._.>._._,m._._0m. _

_ . '
In this section' the a:u::.:.amcw_.nm:.m:mwgaaa s:.:cn&:aoa. A,

4.1 Stationary Processes

Fourier analysis is basic to dealing with stationary random processes. A
process, Y, is said to be sccond-order stationary if cov{Y,,., ¥,} exists
for fu= 0,£1,42,... and does not depend on ¢ In practice this

often appears 4 reasonable working assumption. In the case of




Y t=0,%1,42,... a second-order stationary process, following Cra-
mér (1942), one has the Fourier representation
Y, = _ e dz(A) (4.1)

with Z(-) a random function such that

CoV{dZ(A), dZ(u)} = §(A - p)f ()) dA dp
=T < A p <, f(-) being the power spectrum of ¥ and &(-) the Dirac delta
function. The Cramér representation has the advantage of taking one
directly to the Fourier domain and thereby making some operztions on
the process clearer. The series Y, may be vector-valued. Then the Cross-
spectral density matrix, (), is given by

cov{dZ()), dZ(1)} = 6(\ — (X)) dA dy
Cross-spectrum analysis is useful for system analysis, i.e., estimating for
example the transfer function of a linear time invariant system.

Higher-order spectra may be defined directly via Z(-), e.g., the bi-
spectrum f(A, 1) at frequency A, u is given by

cum{dZ(}), dZ(1n),dZ(v)} = n(A + pu + V) (A w)dX dy dv

where 7(X) is the 27 periodic extension of the Dirac delta function.

Empirical Fourier analysis, €.g., of residuals of a fit, provides a diagnostic
using in particular the result that if the process is white noise, the power
spectrum is constant in frequency, \.

Blackman and Tukey (1959), Bith (1974), Brillinger (1975) and Bloom-
field (1976) are books focussing on the empirical Fourier analysis of time

scries

4.2 Central Limit Theorems

In classic forms the central limit theorem is concerned with the distributions
of sums of independent random variables

Sr=Yo+ Y+ 4 Y,
and their approximate normality with variance To? for large T. It is usual to
assume that the Y’s are identically distributed.

At some point engincers began promulgating a folk theorem to the
effect that narrow-band noise is approximately Gaussian, [sec Leonov and
Shiryaev (1960), Picinbono (1960), Rosenblatt (1961)]. One fashion to for-
mulate this remark is as a statement that

Sr) =Yo+e Py 4o o0y, (4.2)
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0 m A< wﬁ._.,a,. m_uu_.oiamqo_w (complex) normal for each A, Under station-
arity m..a mixing assumptions for the series Y,, the variance of Eq. (4.2) is
approximately .

271 (2) (4.3)

with f()) the power Spectrum of Eq. (4.1) at frequency ), Surprisingly, the
values nw S7(A) at distinct frequencies of the form A = 27//T, are mvvmoi.
mately independent, Problems involving stationary mixing U,_dnnmmnm may
thus be converted into ones involving 3%355»8.5 independent normaj

random variables, Empirical Fourier transforms such ag Eq. (42) have

. Early work on the asymptotic properties of finite Fourjer transforms
includes that of Slutsky (1934), Leonov and Shiryaev ( 1960), Rosenblatr
(1961), Good (1963), Hannan (1969), Brillinger (1969), Hannan and Thom-
son (1971), Hannan (1972).

There has been some consideration of the cases of long range dependence
and stable distributions, References include: Rosenblatt (1981), Freedraan
and Lane (1981), Fox and Taqqu (1986), Yajima (1989), Shao and Nikias
(1993). ,::u” case of random generalized functions, which includes for
example point processes and random measures, is considered in Brillinger

In the case of wavelets and a model
Yi=g(t/T) +¢, (4.4)

s&.: & m::_.ozmQ .:om,mo having power spectrum f(\), under regularity con-
ditions, :.5 statistic G, of Eq. (3.13) may be shown to be asymptotically
normal with mean B and variance

2r
+/(0)

see Brillinger ( _ 996). The variance is the same as that of Eq. (4.4). Further
when the E.:n:onm @»C and . (-) are orthogonal, the coefficients @.\: m\%
are _mvvaox:s&n_w independent for distinct (,k) and (j ",k'). This last
results suggests that an estimate of /' (0) may be obtained b averagj

4 ng th
values ﬂ_@»_N\N, for which By = 0. ’ s e

4.3 Shrinking

Among surprises in working with Fourier transforms is the importance of
8=<2ma:.8 factors. These are the :_\m of Eq. (3.4). In Eq. (3.4) they shrink
the coefficients of the exp{ixk} towards 0 as increases. Such multiplicrs are




also important in the stochastic case, see: Tukey (1959), Brillinger (1975),
Bloomfield (1976), Dahlhaus (1984, 1939).

A related concept is shrinking. In a regression context Tukey (1979)
distinguishes three types of shrinking. Crudely: “first shrinkage™ cor-
responds to pretesting and selection of regressor variables, “‘second shrink-
age” corresponds t0 a type of Wicner filtering and “‘third shrinkage™
corresponds to borrowing strength from other coeflicients to improve the
collection of coeflicients. In this last case the multipliers are not meant for
attcnuating high frequencies, rather they are meant for attenuating un-
certain terms. A common characteristic is that the estimates become biased;
however, biased estimates have long been dominant in time series analysis.

Second shrinkage plays an important role in two of the examples that
follow. A particular second shrinkage estimate, introduced in Tukey (1979),
may be motivated as follows. Consider a classic simple regression model

y=08x+¢
with & an estimate of 8 and s an estimate of its standard error. Seek a

multiplier m such that mbx is an improved estimate of Sx. The mean-
squared error of the new estimate is

X E{(8 - mb)?}
which may be estimated by
X1 - m)?[p? — 5] + mts}

This is minimized by the choice m = | ~ $*/b%. One would prefer to take m
to be the positive part

(1 Iwu\\»mf AA.MV

This multiplier has the reasonable property of being 0 for b less than its
standard error.

In Sec. 3.1 convergence factors, wf, were inserted into trigonometric
expressions to obtain improved approximation. In Example 5.1 such multi-
pliers based on the reliability of estimated coefficients &, will be inserted to
obtain an improved estimate. To estimate &(x) of Eq. (4.4) one considers,
for example,

8(Y) =) " w(é/si)epe™ (4.6)
k
where s} is an estimate of the variance of ¢ and w(x) is a function that is
near | for large v and near 0 for small u. Examples of functions w(-) are
given in Fig, 1,

- - v e awe -'ln.nnlwr-rv hw

w.:_._axmum factor
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Figure 1, .Qz:ur of the multipliers Eqns (5.7) and Eq. (5.8), as a functions
of the amplitude of the estimate divided by its estimated standard error,

In work to obtain improved wavelet-based estimates, D -
ﬂo:w A._coov, Hall and Pati| (1995) create shrinkage om%hwwnom m_”wm—_wﬁ
multipliers, there referred to as “thresholders”. The estimates take the moz_m

WOl /54)Bab,

S.M _wmw (Bl /536) Bt (x) (4.7)

where s; is an estimate of var m\» and 0 < w(-) < 1.
. .:.68 are many classical references to selection of variables and pretest-
Ing, Le., first shrinkage. References to second shrinkage include: Whittle
(1962), dgo:%mo: (1968), King (1972), Ott and Kronmall (1976), Tukey
(1979), Nam_n (1983), Donoho and Johnstone (1990), Stoffer Cewwv Hall
w:a Patil A._wwuv, Donoho et al. (1995). References to third urz.w_nmmo
include: Stein (1955), Efron and Morris (1977), Copas (1983), Salch (1992,

5. EXAMPLES

In this Section four biological and physical examples are presented.

5.1 Electron _<=n..0mnov<

Electron S_.onOmnoE\ is a tool for studying the placements of atoms within
molecules. It js mainly carried out with crystalline (periodic) material, One




problem is to obtain iniproved images and that is the concern of the present
example. Glacser (1985), Henderson ct al. (1986), Hovméiler (1990) are
references describing the basjrs of electron microscopy.

In the planar case, the principal theoretical concept is the projected
(Coulomb) density distribution

N\Axﬁ u\v — M Nﬂ\_.»wwiQ_k.*w»‘_‘v\D AMC

ik

bk =0,£1,42, .. with (x,») planar coordinates and with A the period of
the crystal. The function V(-) is real-valued and has various symmetries,

The datum is an image, Y(x,p), with 0 < x < X, 0<y<7Y. The image
may be written as

Y(x,¥) = V(x,) + noise (5.2)

The empirical Fourier transform is

Y oox ]
n\:» ”,‘ ‘. M\ﬁk.u\v&luigi\C.v\DRH \\.v. Auwv
0 Jo
which may be written
A oA )
R .‘ M Y(x +mA, v+ nA)e2milhes kv, Adx dy (5.4)
o Jo mon
The synthesis corresponding to the analysis Eq. (5.3) is
M N\w\;mwi.?k.;._.v\b AMMV
hk

cMaAP 0<y<aA.,
There has been concern to form an improved image. In this connection
Blow-and Crick (1959), Hayward and Stroud (1981) introduced “multj-

pliers”, w(-), into expressions like Eq. (5.5), forming

5 5 pa o dmilhrky

V0o2) = 37wl 4oy, ) By pertmsiana (5.6)

hk
where the Gix are estimates of the standard errors of the \.n\..». This is a
second shrinkage estimate, Consideration of the mean-squared crror, as ip
Eq. (4.5), leads to the multiplier
~2

w(|F]/8) = TEIN ) (5.7)

VT QN QN 2
:AQVHWQ 1o 2/ +h 5 /]e v (5.8)

with 7 = IF|/3, and Dy, Iy modified Bessel functions, see Brillinger et aj,

(1989, 1990). It angd Eq. (5.7) are graphed in Fig. 1. These multipliers
approach | as the uncertainty approaches 0

Blow-Crick image
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&

o8 °
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Wiener image
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Finalimage, n = 42

Figure 2, Estimates of the basic cell of gﬁﬁ..o%oaovm_.z. The upper left
U.,ia_ is the naive estimate as shown in Eq. (5.5). The upper right panel is the
estimate Eq. (5.6) with the multiplier, Eq. (5.8). The bottom left panel is the
estimate Eq. (5.6) with the multipljer, Eq. (5.7). The last panel js Eq. (5.6),
with Eq. (5.8 » oblained by combining 42 individual images,




as a two-dimensional crystalline array within the cell membrane of
Halobacterium halobrium. Together with accompanying lipid molecules, it
is known as “purple membrane”. This crystal is based on a hexagonal
lattice. In Fig. 2 only the positive contours are shown. (Negative density
features signify the absence of atoms and thus have no direct usefulness
when the density map is interpreted.) The first panel of Fig. 2 shows the
elementary estimate of Eq. (5.5). The top right shows Eq. (5.6) with w(.) of
Eq. (5.7). The third, Jower left, shows Eq. (5.6) with w(-) of (5.8). The final

panel provides an estimate based on combining 42 individua] Images. This

Through the inclusion of the multipliers, the peaks have become
more substantial and better separated. Also, the estimates show better

and further details of the analysis may be found in Brillinger et al, (1989,
1990).

The Fourier transform is useful in this example firstly because of the
lattice periodicities and secondly for the central limit theorem result suggest-
ing specific estimates of the s, of Eq. (5.6) namely for 53, one takes the
average of the squared moduli of Fourier coefficients thought to be signal
free.

There are extensions to the 3D case, sce Henderson et al. (1990), Wenk et
al. (1992),

5.2 Seismic Surface Waves

Various sound waves are transmitted through the Earth following a scis-
mic disturbance, in particular surface (or Rayleigh) waves. These are
vibrations whose energy is trapped and propagated just under the sur-
face. The waves have sinusoidal form and are prominent in the later part
of a seismogram. For example see Fig. 3 for an event that was recorded

Consider modelling that part of a seismogram where the Rayleigh waves
occur. Let Y(x,7) denote the vibrations recorded at distance X from the
earthquake source, as a function of time 1. With a layered crust model the
theoretical seismogram is a solution of 4 system of differential equations
with associated boundary conditions and may be represented as

\ m»_.:-n»g.,.vwﬁ\/v dA

i/

3.8

3.6

velocity (kvsac)

34

3.2
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28
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Figure 3. The Siberia~Upsalla dynamic spectrum as a function of fre-
quency and velocity as computed from Eq, (5.] 1). The vertical trace is the
seismogram as a function of velocity.

Here, when x = ¢
% e MR(A) dA

Tepresents the vibrations at the earthquake source. The solution in Eq. (5.9)
comes from substituting a particular solution exp{—i(\t — kx)} into the

&.:mno::m_ equations and matching boundary conditions, see Aki and
Richards (1980). One writes k()) = A/e(A) with c(A) the (phase) velocity




with which the wave of frequency A travels. The functions k(-) and (")

depend on the transmission medium.
In the case that x is large one can use the method-of-stationary phase,
described in Section 3.1, to see the sinusoidal form of the waves. Specifically

for large x, Eq. (5.9) is approximately

R(A)exp{~i(At — k(A)x)} (5.10)
with )\, the solution of

d

7 {M—k(MNx} =0

that is &'(X,) = t/x = 1/U(),). Here U(\) is the group velocity, the velocity
with which the energy travels, at frequency A. The phenomenon of waves
with different frequencies travelling with different velocities, as occurs here,
is called dispersion.

Given an carth model, 8, that is a collection of layer depth, velocity and
density parameters, one can compute the group velocity U(A|6), see Bolt
and Butcher (1960), Aki and Richards (1980). For frequency A and param-
eter ¢ there may be several possible dispersion curves U,(A0),n=0,1,2,...
called modes. Dynamic Fourier analysis provides a way to sec these
modes, and is presented in Fig. 3. The concern of the example of this
section is to estimate 4.

The event studied originated in Siberia, 20 April 1989, and the trace was
recorded at Uppsala, Sweden. Figure 3 provides a grey scale display of
energy as a function of velocity and frequency. It is computed as

s 2

D his/S)Y(t — s)ei (5.11)

5s=-§
with 1 = xo /v, v velocity, x, distance to source and #(-) a convergence factor.
One sees waves of about 0.07 cycles/second arriving first. Figure 3 also
shows the dispersion curves U, (A|§) for one fitted earth modcl. Some further
details are given in Brillinger (1993).

The velocity-frequency curves, U,(A|0), may be inverted to frequency-

time curves A = \,(r]0). To estimate 6 one can then consider choosing 0, «
to minimize

2
> h Y(r) - _. e Ak RO\ Ja) dA

where « is some parametrization of the source motion. Onc approach is to
approximating the integral in Eq. (5.9), is to take R(-) piccewise constant,
linear in a. Figure 4 provides the results of such an analysis. Graphed are
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the series, the fit and the residuals. The standard errors might be computed
as in Richards (1961), focussing on the nonlinear parameters 6 and acting as
il the noise series was white. An improved estimation procedure is needed,
for the residual series of Fig. 4 suggests the presence of signal-generated
noise.

Even though this particular situation is clearly nonstationary, Fourier
analysis has been basic to addressing it. This is a consequence of the pres-
ence of dispersion. The example is also of additional interest since one has a
Fourier transform of two variables whose support lies on several curves, see
Fig. 3. This type of plot allows inference of the presence of higher modes
and assessment of the fit as well.

53 NMR Spectroscopy

Nuclear magnetic resonance is a quantum mechanical phenomenon
employed to study the structure of various molecules. In an experiment,
one creates a fluctuating magnetic field, X(1), encompasing a substance
and then observes an induced voltage, Y(r). Hennel and Klinowski (1993)
is one general refercnce.

If S(1) is a vector describing the state of the system at time 1, then the
fluctuations are described by the Bloch equations

das(t)
dr

=a+ AS(1) + BS(0) X (1) (5.12)

and the measurements by
Y (1) = ¢"S(1) + noise (5.13)

with ¢ depending on the geometry of the experiment. The principal param-
eters are frequencies of oscillation and decay rates. The parameters of
interest sit in the matrices A and B, see Brillinger and Kaiser (1992). The
entries of A and B have physical interpretatians, e.g., the diagonal entries of
A represent occupancy probabilities.

Equations (5.12) is intercsting for being bilinear. It can be solved, sym-
bolically, by successive substitutions, obtaining

S(r)

il

! ! ps
C+ % MICx(s) %; g AIBASICY (1) X (5) dr s + - - -

with C=—-A"'a, If A is written Ue*U™! with A diagonal, then the pulse
response, §(r), is seen to be a sum of complex exponentials and various of
their powers and products. The real parts of the entries of A will lead to the
decay of thesc components while the imaginary parts represent resonance
frequencies.
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The problem is to estimate the parameters of Eq. (5.12) and thereby, to

characterize the substance, Some of the parameters may be estimated by

me::._mﬂ and Kaiser (1992) present resuits from a study of 2 3-dibro-
mothiophene. The matrices A and B are 4 x 4 with noEv_oxém_:nm entries
The parameters include a coupling constant, J and frequencies w, and o .
In the experiment the input employed was a Sequence of pulses >

X(1) = Mu M;6(t ~ jA)

with A =1/150s, ¢ ip seconds and M; the m-sequence given by
M; = \5-_\5;1&\.;“3.1: starting at M;=—1forj= I...,12.

smooth {3 r(e ™z x (e~} .
A()) = =™ _ A 2 -1
() /#,E_J =Lrx(N)fyx(A)

smooth {| 3,

A

is given in Fig. 5. Theoretically its peaks are located at the frequencies

(Watwp)/240+4/02 + (wa —wp)?/2

and the widths of the peaks relate to a damping constant 7;.

In a more %S:ng.m:m_zm_.m the parameters of the model, including initjal
State values, were estimated by least squares seeking

min M [Y (1) - c"S(1)6)? (5.14)

O referring to the unknown parameters. In the computations the state vector
mAQ_S was evaluated recursively. Figure 6 shows the amplitude of :5.
Fourier transform of the data and of the corresponding fit. (It is ysual
to m.n_v: an unsmoothed estimate in the NMR literature in order to
obtain high resolution of peaks.) There is an intriguing small peak just
mcoxn 60 Hz which recurs when the time series s broken down into
oozz.mcocm Seégments. NMR researchers refer to such a phenomenon as
a “birdie”, but had no explanation for its source in the present case.

. .268. are extensions of the Cross-spectral approach to the 2,3,4,...and
higher dimensiona] cases, see Bliimich (1985).
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Figure 5. Results of a nuclear magnetic resonance study of 2,3-dibro-
mothiophene. The lop left is a segment of the input and below is the cor-
responding output. The right column provides the estimated amplitude and
phase of the (linear) transfer function,
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Figure 7. The top trace is the estimated movement of a microtubule as a
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panel provides a shrunken fit. The dashed lines provide approximate 42

standard error limits.
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Y(1) = ar +2(t/T) + noise (5.15)

1=0,....,T~ | withaa Parameter related to diffusiop motion and g(-) a
step function. The model in Eq. (5.15) will be approximated by

Y(O)=at+ M&.»&i.ﬁ\i + noise __,..“G._mv
: o \

in the present case is not so immediate, byt still all that one needs ard local
means. The least squares estimates arc obtajned by regression of ¥ A? the
b (t/T) and on ¢ made orthogonal 10 the ¢,. Further details on the fitting
are given in the Appendix to this chapter, -
Specifics may be' found in Malik' et al. (1994). The top panel of Fig, 7
provides a data trace. Next _._m an estimate ¢,(1/T) with w(u), of Eq.Y(4.7),
identically 1, The final panel'an improved estimate based on the multiplier
wu) = (1 - | /i) + The value of = 3 was chosen having in ming a search
for isolated Jumps for this particular data set. Also indicated are approx-
imate 2 standard error limits around the fitted Straight line. There js little
evidence for the presence of isolated Jumps. The construction of the stan-
dard error estimate is described in the Appendix to this chapter.

The Fourjer transform was used here to develop uncertainty estimates,

following on an assumption that the noise was stationary, .

the paper, that appear fruitful for more development,
Foremost among the topics calling out for further research is the theor-
etical and practical development of shrinkage estimates. The ideas are basic.




Lrrannges

The effects are substantial, see Fig. 2 for example. One wonders about
“optimal™ choice of the multipliers/shrinkage factors. Perhaps optimal
rates of convergence may be determined and then it be checked which multi-
plicrs lead to those. This paper has focused on second shrinkage. Berger and
Wolpert (1983) develop third shrinkage estimates in random function cases.
Lillestol (1977) studies time series in one case.

In both the surface wave and nuclear magnetic resonance examples,
examination of residuals suggests the presence of signal-generated noise.
Better estimates are needed. Either because the ones used are inefficient or
because the signal-generated noise is basic. In the latter case an appropriate
likelihood function needs to be developed. Thaka (1993) does this for one
case in seismology. If the noise is indeed nonstationary and autocorrelated,
then a novel form of uncertainty estimation technique will be needed. In the
casc of the “improved™ wavelet estimate, the uncertainty was estimated as if
the shrinkage factors were constant, see Appendix to this chapter. Perhaps a
useful bootstrap procedure could be developed, based on an assumption of
stationary innovations being present,

Quite a different type of problem is the following: devclop the aliasing
structure for higher-order spectra in the case of a process observed on a
lattice. This will be particularly complicated in the case of lattices in R” with
p > 1. Another problem in the case of image estimates, is how to visualize
the associated uncertainty. .

The Fourier transforms studied have all been scalar-valued. There are
central limit theorems for processes taking on values in a group. It would be
of interest to obtain corresponding results for group-valued Fourier trans-
forms, e.g., in the p-adic case.

7. DISCUSSION AND SUMMARY

The principal interest of the examples of the paper has been in problem
formulation and in addiessing particular scientific questions. In each of
the examples, an empirical Fourier transform has played a central role.
With its broad collection of wnderstood properties this transform has
assisted the analyses greatly. The usefulness of second shrinkage, analogous
to the use of convergence factors in Fourier approximation, is also note-
worthy.

The particular groups of the examples have been abelian. General group
theoretic ideas and empirical Fourier analysis have been discussed for other
groups. For the case of the symmetric group sce Diaconnis (1988, 1989) and
Kim and Chapman (1993). For the locally compact abelian case see Bril-
linger (1982). For p-adics see Bri inger (1992). The use of p-adics in signal
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processing is discussed in Gorgui-Naguib (1990). For other cases see
Hannan (1969). Key distinctions that arise are abelian versus nonabelian
groups, compact versus locally compact groups, and whether ¢ is jn a group
orYisina group.

There are other transforms that are useful in practice. These include: the
Laplace, Hilbert, Stieltjes, Mellin, with some work having been done for
abstract groups, see Loomis (1953).

..E.m case of lacunary trigonometric series is somewhat like the case of
point processes. Here the Fourier transform has a different form, e.g., for
point process data {7rj <1y < ... < 7n} it is given by .

N
M exp{~iAr;}
=

-0 < A<co. Such a transform is used in Rosenberg et al. (1989) for
example.

Unemphasized, but important, topics include: the Poisson summation
formula useful in understanding aliasing and the mmEv__.z.m theorem
Em:.:m: (1965)), abstract fast algorithms (Rockmore (1990)), spherical
functions (Terras (1988)), uncertainty principles (Smith (1990)).

i In conclusion we quote 1. B. Fourier (1822), Théorie Analytique de Ia
QE?.:\” “L” étude approfondic de la nature est la source la plus féconde
des découvertes mathématiques.” There is so much evidence in favor of this
remark today.
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APPENDIX

The estimate presented in the middle panel of Fig. 7 is oam:mé._nmﬁ

squarcs. (In many time series situations such estimates are asymptotically

eflicient.) . )
The model shown in Eq. (5. 16) is linear in « and the v,,. It may be written

Yy=Xvy+Za+e¢

taking Z= [t — 7] and X = [Xu], with Xy =1 for k/2" < ~.\ﬂ < Q«+.:\ﬂ
and 0 otherwise. It is seen to have the form of an analysis of covariance
model. The least squares estimates may be written

&= (Z'P2)~'Z'Py (A1)
7= (XX)"'X'(y ~ Za) (A2)
with P =1 - X(X'X)"'X",

2

Modeling and Inference for Periodically
Correlated Time Series

ROBERT B. LUND apd ISHWAR V. BASAWA The Universiy of
Georgia, Athens, Georgia

1. INTRODUCTION

This chapter overviews general modeling and analysis problems with
periodically correlated (PC) time series. The definition of a PC time series
is first presented and some properties of these series are discussed. A fre-
quency domain test to detect periodicities in the autocovariance structure of
an observed series is then presented. Next, periodic autoregressive moring-
average (PARMA) models are introduced as a useful class of PC time series
models; comparisons to seasonal Box-Jenkins models are made. The prob-
lem of parsimoniously fitting a PARMA model to a PC series is then

addressed. Moment, maximum likelihood, and estimating equation tech-
niques of estimation are considered; limit distributions of the parameter
estimates are discussed.

Due to the cyclic nature of solar radiation, tides, economic activities,
meteorological processes, elc., many observed time serieg exhibit a peri-
odic statistical structure. Accordingly, time series models with periodic
Properties have received much attention in the literature. Applications
of such models include studies in hydrology: Lawrance and Kottegoda
(1977), Vecchia (1985a and 1985b), Anderson and Vecchia (1993), and
McLeod (1993); meteorology: Hannan (1955), Monin (1963), Jones and
Brelsford (1967), Bloomfield et al, (1994) and Lund et al. (1995); eco-
nomics: Parzen and Pagano (1979); and electrical engineering: Gardner
and Franks (1975).
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