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The result that in some circumstances finite Fourier transforms are
approximately normally distributed, has proved useful for suggesting a
number of probabilistic results and statistical procedures in the case of
ordinary time series. There has been some study for the case of a
stationary random function defined on a locally compact Abelian group.
In this paper the particular case of stationary random functions of p-
adic numbers is studied in some preliminary detail. Some interesting
simplifications occur. Certain sequences of Fourier transforms are found
to be asymptotically normal. An empirical spectral process, with time
parameter in a function space, is found to converge in distribution.
Another work studying process defined over a particular group is
Taniguchi, Zhao, Krishnaiah and Bai (1989).

1. INTRODUCTION

These days p-adic numbers are finding application in the fields of
error-free computation, see Gregory and Krishnamurthy (1984) and to
quantum mechanics and quantum field mechanics see Vladimirov (1988),
Vladimirov and Volovich (1989). A motivation for considering p-adic
space provided in the former is that “In the theory of superstrings...
which appeals to fantastically small distances of the order of 10-% cm.,
there is no reason to assume that the ordinary representations of space-
time are applicable”. P-adic numbers are also appearing in stochastic
circumstances, see Madrecki (1985), Michailov (1986), Evans (1988a, b),
(1989) and Vladimirov and Volovich (1989), Section 5. In this paper
central limit theorems are developed for finite Fourier transforms and
for a family of quadratic statistics based on a real-valued stochastic
process Y(#), with ¢ € @, the field of p-adic numbers.

For the case of a discrete time stationary mixing 0 mean stationary
time series ¥(f) with t € Z, as n tends to « the finite Fourier transform

d() = ")_;' exp {—iM}Y(?) (L.1)
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156 SOME ASYMPTOTICS OF FINITE FOURIER TRANSFORMS

A € (0, 27] is asymptotically normal with mean 0 and variance 2mnf(}),
f:(+) being the power spectrum of Y. A variety of references related to
this result may be found in Brillinger (1982). Among the uses of the
result are: (i) confidence intervals for the mean of a stationary process,
(ii) power spectrum estimates, (iii) higher-order spectrum estimates,
(iv) spectral measure estimates and (v) Gaussian estimates of a finite
dimensional parameter. In this paper a few analogs are developed for the
p-adic case.

Before studying random p-adic functions, some basic details of the
p-adic numbers themselves must be set down.

2. THE P-ADIC NUMBERS

2.1. Tue FieLp Q,

It is usual to carry out analysis of functions of real numbers or of
complex numbers. These domains are both locally compact topological
fields with many special properties and are distinguished by being con-
nected. There is a disconnected locally compact field that is currently

- enjoying concentrated study, the field @, of p-adic numbers. Here p is

any prime number. There are several methods to introduce the field of
p-adic numbers and the corresponding ring of p-adic integers.

In abstract fashion one can proceed as follows. Let p be a prime. Let
Z be the ring of integers and Q the field of rationals. For g, b0 Z
define the norm

|a/ bl, =p"™

with m the highest power of p dividing @ and n the highest power of p
dividing b. Finish the definition via 0], = 0. The (topological) field of p-
adic numbers, Q,, may now be defined as the completion of Q in the
metric defined by the norm |-|,. The operations of 4, —, X, [ carry over
from Q. This space is fundamental because a theorem of Ostrowski indi-
cates that any norm on @ is either the usual Euclidean norm or |-, for
some p, see Koblitz (1980). The ring of p-adic integers, Z,, is given by
the elements of Q, satisfying ||, < 1.

The p-adic numbers may be introduced in more concrete fashion as
follows. They are symbolic expressions of the form

t=typ™ + e P 4. (2.1)

with ;€ {0, 1,..., p — 1}, and m any integer, positive or negative. If
tm # 0 then the norm of this p-adic number ¢ is defined to be |}, = p~™.

For carrying out p-adic arithmetic it is convenient to represent f as

P™{tms tm + tns1Ps Im + tmiaP + tmi2p? .-

Jr. Comb., Inf. & Syst. Sci.
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Addition or multiplication of two p-adic numbers is then carried out
coordinatewise (mod p), adding 0’s on the left as appropriate. See for
example Borevich and Shafarevich (1966). The series of partial sums in
(2.1), which is a series of rational numbers, converges to 7 in Q.

By {t),, the fractional part of the p-adic number (2.1), is meant
= t:p!
{tp % P

evaluated as a real number lying in the interval (0, 1). (To simplify
notation, it will generally be written {f)> in what follows.) One has

O < p tlp
It is perhaps worth stating that the p-adics are not extensions of the
dyadics. For the dyadics there is no tying together of the coordinates.

2.2. INTEGRATION AND FOURIER ANALYSIS ON Qp

Q, is a locally compact additive Abelian group. An invariant (Haar)
measure therefore exists for Q,. It has the properties d(t 4 a) = dt and
d(at) = |a|, dt. The Haar measure of the Borel set 4 of Q, will be
denoted p(4). The measure will be normalized by u(Z,) = 1. The form
of Haar measure is given in Hewitt and Ross (1963), pages 202-203. To
illustrate it, consider first an integral over Z,. Since w(Z,) =1 it may be
considered an expected value. In fact writing t=1#% + tip + tLpt--...
and f(t) = g(to, t1, 2, - ) and taking (To, T, T2, ...} to be a sequence
of i.i.d. random variables T on the sample space {0,1,...,p— 1} with
equal probability of selection one has

[, 70) di = Efa(To, T Tav -3}
Supposing the integral of f{.) to be given by
| IQ () dt = lim I £t dt

ltl,<p".
the integral on the right may be represented as

fwyde=p [ fiors)ds
ltl<p” Isl»<1
reducing to an integral of the previous form.

Because of the group nature of Q, characters, A(?), providing a
Fourier analysis exist. These are the unit modulus, complex-valued,
multiplicative, continuous functions on the group. They have the form,
see Hewitt and Ross (1963), pages 400402, or Gelfand et al. (1969)

A(t) = exp (2mi{At))

Yol. 16, Nos. 2-3 (1991)
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158 SOME ASYMPTOTICS OF FINITE FOURIER TRANSFORMS

for A € Q, with {AtD, as before, denoting the fractional part of the p-adic
number Az. .

A variety of p-adic Fourier transform pairs have been determined,
see for example Taibelson (1975) or Vladimirov (1988). It is notable that
discs Fourier transform into discs, see (2.2) and (2.3) below.

For an integer n let U, = p~"Z, = {t : [t|, < p"}. Let
D) = .[u exp (—2miAy) df 2.2)

This Fourier transform may be evaluated and found to be
Dy =p for P, < p 2.3)
= 0 otherwise

A theory of generalized functions of p-adic variables has been deve-
loped, see Gelfand et al. (1969), Taibelson (1975), Vladimirov (1988).
This theory proves convenient in setting down succinctly a variety of
expressions and in carrying through Fourier analysis.

3. Ranpom FuNCTIONS OF P-ADIC NUMBERS

3.1. P-ADIC PROCESSES

Since Q, is a complete separable metric space, the stochastic process
Y(t, w)fort € Q,and o € 2, (2, 4, P) a probability space, is well-
defined as a map from Q,x £ to R. The work of this paper will be fur-
ther simplified by assuming that the process Y(-) is of second order,
that is

E{Y(1)} < o0

for all ¢e& Q,, see eg. Grenander (1981). It will be further assumed that
the realizations are real-valued and continuous in mean square that is

lixx'x E{Y(t) — Y(s)P} =0

The meaning of this last is that for given € >0 and f there exists
N = N(t, €) such that E{|¥(z) — Y(5)[} < e for |t — sl, < pV.In the case
that s, ¢t are rational, this last means that the numerator of t—s is divi-
sible by a (high) power of p.

‘Gaussian processes are those all of whose finite dimensional distri-
butions are Gaussian, In particular the standard Wiener process, with
parameter set Q,, is an additive process on the ring of Borel sets of O,
with the properties: (i) W(4) is Gaussian, (i) E{W(4)} =0 and (iii)
E{W(AW(B)} =14 N B. A4, B being Borel sets. Its ‘derivative” is
standard white noise with independent Gaussian values at each point.

Jr. Comb., Inf. & Syst. Sci.
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The Wiener process is uscful in the construction of other processes, €.g.
the Gaussian. linear process Y(t) = I a(t — u)W(du). Evans (1988a),

pages 414-415, employs a countable number of standard independent
normal variates to construct linearly a Gaussian process with covariance
function ,

cov {¥(s), ¥(1)} = max {|s[;, lt[z} — |s — 15
for any « > 0. This, perhaps, is the p-adic analog of a fractional Brownian

- field with covariance function [|si* + liz[l* — lis — t)e.

3.2. THE WIDE SENSE STATIONARY CASE

The 0 mean p-adic process Y(z) will be said to be wide sense station-
ary if
E{Y(t + w)Y()} = cov {¥(t + u), Y(1)} = c2(u)
for all t, u € @,. Following the remarks of the previous section, cx(4)
will be assumed continuous at z = 0. Under these conditions the auto-
covariance function and the process itself have spectral representations

ca) = IQ exp (2miurd) Fa(dd) G.1)
with F; a finite measure on @, and
Y(t) = I o, E¥P CGriCONZ(@) 3.2)

where Zy is a spectral process with the properties E{Zy(d\)} = 0 and
E{ZAdNZy(dp)} = (A + p)Fa(dd) du

see e.g. Kampé de Fériet (1949) or Neumann (1965). Here 3(2) is the
p-adic Dirac delta function. The process Zy will be complex-valued, but
since Y is real-valued it will satisfy Zy(dd) = Zy(—d}). (The overbar
denotes “complex conjugate™.) Given a stationary process, Y(.), other
stationary processes may now be constructed by linear time-invariant

filtering, e.g. I exp (2mitAD)A(N) Zy(dN) withI |42 F2(dA) << oo

To make things clearer some examples are presented.

ExaMPLE 3.1. The following Fourier transform pair may be found
in Taibelson (1975), page 22

M) =RG for A, <1
= 0 otherwise
and

o) = I o, EKP QT

Vol. 16, Nos. 2-3 (1991)
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160 SOME ASYMPTOTICS OF FINITE FOURIER TRANSFORMS

1—p!
= [ —p-a% for ju], < 1

1—pt
= —r:l’—ﬂTm S+ for lu}, > 1
Since f(.) is non-negative and integrable for @ < —1 this pair provides

an autocovariance and corresponding power spectrum. A Gaussian pro-
cess with these parameters may be represented

Y(t) = j exp (2mi<AS) W 2Z(dY) (3.3)
A<t
with Z(d)) a complex Wiener process. The unit correlation of the process
for |ul, < 1 may be puzzling at first sight, but examination of (3.3) shows
that the process Y(2) is periodic, that is Y(¢t + a) = Y(¢t) for ja, < 1.
ExaMpLE 3.2. P-adic valued random variables have  been considered
in Madrecki (1985) and Evans (1988c). Let » denote a realization of a
p-adic random variable with probability element F(dw) on Q,. Let ¢ denote
a random variable uniform on (0, 2n]. Leta be a real constant. Set

Y(t) = a cos 27tw) + ¢)
for t € Q,. Then the autocovariance function of the process, Y(.), is given
by
2
xtw) = 5 [, exp @riuoDF(d) + F(—d)]/2
14

And so one sees one can achieve a process with (second-order) spectral
measure proportional to the probability measure of any symmetric p-adic
random variable. By adding many independent realizations of this process,
one can achieve an approximately Gaussian process with general spectral

measure.

P-adic random variables may be constructed from ordinary ones in the
manner that Haar measure was constructed above. Let {M, Ty, Ty, ...} be
a random variate on the sample space ZxPXPX...whereP={0,1,...,
p — 1}. Then pM(To + Tip + Tsp? + .. .)is such a variate.

_EXAMPLE 3.3 Suppose Y(.) is Gaussian with Fx(dA) = f2(0)dA. Then
V() is square integrable. Let its Fourier transform be a(.). Then Y(.)
has a linear process representation

() = Ia(t — Wy W(du)
with W(.) a standard Wiener process.

3.3. FULL STATIONARITY AND MIXING
As is implicit in the last example, in the case that the process Y(.) is

Jr. Comb., Inf. & Syst. Sci.
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Gaussian, the first and second moments will suffice to define it. In the
general case more will be needed. In the approach of the present paper,
the additional detail will be provided by higher-order moments and
cumulants. To begin, it will be assumed that the spectral measure Fy(dA) is
absolutely continuous with respect to the Haar measure, Fo(dX) = fo(A)dA,
£2() the power spectrum at frequency A. In this case, because f(.) is non-
negative, ¢y(.) is absolutely integrable and one has the inverse relationship

£ = J’Q' exp (—2midAd)ea(u) du

The principal requirement for developing limit theorems will be:

Assumption 3.1 The process Y(¢), 1€ 0, is continuous in mean-
square, has zero mean and is stationary with moments of all orders
existing and cumulant functions

Culthr, -+« tmr) = cum {Y(t +w), ..o, Y+ ther), ¥ )
absolutely integrable fork =2, 3, ... .

Here “cum” denotes the joint cumulant of the variates indicated.
Properties of these quantities for random processes are set down in
Brillinger (1975), for example.

The cumulant spectra of the process are now defined as

ﬁC(Ah sy AIc—l)
= I . J. exp (—2mity - ... 4 Aeqtio i D)Ck(Uay « - o 5 Uk-1)dUy - - duy-1

with the further interpretation
cum {Zy(dh]), FOPRPO Zy(dl\k)} = S(Al + ...+ Ak)ﬁ‘(kl, cory l\k_l)dl\1 oo dAg

That these spectra are concentrated on hyperplanes results from the
assumed stationarity of the process.

4. A CENTRAL LimiT THEOREM

4.1. THE FINITE FOURIER TRANSFORM

Study now turns to a p-adic form of the finite Fourier transform (1.1).
An analog in the p-adic case is provided by

() = I 1, €KP (=2rIQD)Y() dr 4.1

where, for example, U, = p~"Z, = {t: |t|, < p"}. The Haar measure of U,
is u(U,) = p” and tends to infinity as n — co.

Vol. 16, Nos, 2-3 (1991)
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162 SOME ASYMPTOTICS OF FINITE FOURIER TRANSFORMS

The sequence of variates, corresponding to A = 0 in (4.1),
= dt
S, J'U. Y(r)

n=0,1,2,...provides an analog of the sample sums typically con-
sidered in central limit theory. It will be seen below that S, and d"(}) are
asymptotically normal as n — co.

4.2. Tne CUMULANTS

There are surprisingly simple expressions for the joint cumulants of
the variates d*(}).

Lemma 4.1 Under Asumption 3.1

cum{d*(Ay), . . .. d"(A)}
=D\ 4 ...+ M) .[V exp (—2milhuy + . . . + Ak-1D)

X Crmt(Biy e+ s U—)duy . .. duy_1 “4.2)
where V, = {uilp, - « - » [thk-1lp < P}
The proof of this and the other results may be found in the Proofs
section.
The cumulant is seen to be zero for |A; + ... 4+ A, > p~". For large

nand A + ...+ M, < p it will be approximately p7fi(As, ..., Ae-1)-
In particular

var {dQ\)} = p~ j exp (—2midud)ex()du = pfa()
|u], <p"
for large n

4.3. AsYMPTOTIC NORMALITY

Lemma 4.1 may be used to develop the following theorems.

THEOREM 4.1. Under Assumption 3.1 and non-vanishing of f>(-) at A=0,
the “‘sample sum” S, is asymptotically normal with mean 0 and variance
pf2(0) as n — oo, ’

Supposing the process has non-zero mean, ¢, this result may be used
to develop an approximate confidence interval for ¢; based on the sample
mean.

THEOREM 4.2. Under Assumption 3.1 and non-vanishing of fxA;), for
distinct A; # 0 the finite Fourier transforms d"(\y), . . . , d"(A;) are asymptoti-
cally independent complex normals with mean 0 and variances p"fy(A;) res-
pectively as n — o,

Morretin (1980) developed a result such as this for a general locally

* compact noncompact abelian group.

Jr. Comb., Inf. & Syst. Sci.
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4.4. QUADRATIC STATISTICS

An important statistic in the study of stationary processes is given by
the periodogram

sically con- I"(d) = p"ld"M)?
d d"(2) are It has, following Lemma 4.1, expected value
exp (—2miAud)ca(u)du
1 jul,<p"
mulants of This expected value is seen to tend to f2(A) as n—> .
A useful family of quadratic statistics based on the periodogram is
provided by
Jn(A) = I AN O)dA = p IW a(s — £)¥(s)Y(¢) dsdt = Ji(a)
“42) where A is the Fourier transform of @ and W, = {s, t:|s|,, |?|, < P"}.
In particular one might be interested in estimating the spectral measure
he Proofs F5(-) and consider for example
By(S) = I ") dx
S
For large . .
cevs Amt). for a compact set S. This estimate was proposed in Neumann (1965).
For large n the expected value of J°(4) will be approximately
J4) = I ANSHR) dr = f a(u)ea(u) du = Ka).
Further, by elementary computations
p" cov {.T"(a), .7;'(b)} ~ 2 I fj a()b(v)ca(w + u — v)co(w) du dv dw
) at A=0, + ”‘I a(Wb(v)cs(u + w, v, w) dudv dw  (4.3)
variance Under regularity conditions this last may be written
be used 2 j ANBNAH(Y? dh + j ANBNSQ, g, —) d dp.
€ sample
THEOREM 4.3. Under assumption 3.1 and assuming the a(-) absolutely
;S;')’tf?_’ integrable, finite collections of quadratic statistics J#(a) are asymptotically
iptoti- . ~ :
) res- normal with mean E{J"(a)} and covariance given by (4.3).
Under the given assumptions, E{J~"(a)} —> J(a) as n — o and the speed
| locally of convergence may be controlled by introducing further regularity
conditions.
Syst. Sci. Vol. 16, No. 2-3 (1991)
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164 SOME ASYMPTOTICS OF FINITE FOURIER TRANSFORMS

5. A FuNCTIONAL CENTRAL LiMIT THEOREM FOR
QUADRATIC STATISTICS

Dahlhaus (1988) lists some of the applications of the asymptotic
normality of quadratic statistics in the case of ordinary time series and
goes on to indicate more resulting from convergence in distribution of
Jr(d) — J(A) as a stochastic process with time parameter A. These include
estimating a finite dimensional parameter by maximizing an approximate
Gaussian likelihood. A second reference is Doukhan and Leon (1989).
Now some results are indicated for the time parameter in a locally com-
pact abelian group, such as Q).

Henceforth in the paper the process ¥(-) will be assumed Gaussian
to simplify the development. Define a process

Xr(a) = pi(H(a) — EGH(a)}]
for the time parameter a € £, a space of functions. Suppose,
AssuMpTION 5.1. £ is a totally bounded subset of Li(Qp)-

The L, norm of a(-) will be denoted p(@). A condition for total
boundedness will be indicated below.

Concern will be for the comvergence of the sequence of processes
{X"(a),ac E}toa Gaussian process, X(+), with mean 0 and covariance
function

cov {X(a), X(B)} = 2 m a(ub(e)cs(w -+ 1 — v)cx(W) du dv dw  (5.1)

Special interest derives from the general nature of the time parameter, 4.
Because the process Y(-) is now assumed Gaussian, the ¢,(+) term drops
out of (4.3). The technology of Pollard (1984, 89) will be employed.

AssuMPTION 5.2. The process {Y(1), t € Q,} is zero mean stationary
Gaussian with absolutely integrable autocovariance function and sample
paths bounded for ¢ in U,, for n sufficiently large.

The results of Evans (88a) may be invoked to obtain conditions under
which sample paths are continuous for the process segments {¥(¢),
t € U,} and so boundedness in sup norm occurs.

For given 8 > 0 one introduces the covering number of &, namely
N(8) = NG, p, £), equal to
inf {m : there exist functions ai, . .., am € = with infi pla — ai)) < 8
foralla s £}

Now for y > 0, that can be arbitrarily small, set
¥(n) = 2 exp {—n?/[4p(02)(cz(0) + vl (5.2)

Jr. Comb., Inf. & Syst. Sci.
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If N(-, p, £) is finite, then & will be totally bounded, sece Pollard
(1989), Section 3. Write H(u) for Y- N(u)*/u]. It increases as u decreases.
Let

3
K@) = I \ H(u) du

The following assumption is needed concerning it.

ASSUMPTION 5.3. £ is a permissible subset of L;(Q,) with K(1) finite.

Here “permissible” is the notion that Pollard (1984) introduced to
step across measurability issues. .

_This form of assumption is also made by LeCam (1986).

Let U,(Z) denote the set of real, bounded functions on & that are
uniformly continuous with respect to the metric p. This will be the space
in which the sample paths of X* and its limit lie.

The following definition may be found in Pollard (1989), Section9,
for example. _

DEFINITION 5.1. The sequence of processes {X"(d), a € E} is said to
converge in distribution to the process {X(a),ac E}if

E*{g(X")} — E{g(X)}
for every g € Uy(E). (Here E* stands for the outer expectation.)

Now the principal theorem of this section may be stated.

THEOREM 5.1, Under Assumptions 5.1, 5.2 and 5.3, the process X* con-
verges in distribution to a process X. The limit process is concentrated on
U,(E) and is Gaussian with mean 0 and covariance kernel (5.1).

Under further regularity conditions one can bound the difference

E{;‘(a) — J(a)} and study the limit process centered at .TZa).

It may be worthwhile to conceptualize the result in other fashions.
LeCam (1986), Section 16.7, in an empirical process context indicates the
existence of a Gaussian process Zj with the same mean and covariance
as an X7 and an X7 with the same law as X, but on the same probabi-
lity space as Z7 such that {sup |X3(a) — Zi(a):a € £} —>0 in probabi-
lity. Such a result appears the more useful in thinking about finite n
approximations. See also LeCam (1989).

6. DISCUSSION AND EXTENSIONS

It would seem that Theorem 5.1 may be extended to the nonGaussian
case in the mamnner of Dahlhaus (1988), with a change in the covering
numbers requirement. This paper has been concerned with the case of
a real-valued process. Extensions to the complex-valued and r-vector-
valued cases are immediate. As concern is with the details of a particular

Vol. 16, Nos. 2-3 (1991)
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166 SOME ASYMPTOTICS OF FINITE FOURIER TRANSFORMS

case, results have not been phrased in terms of time parameter in for
example a local field, although some such extensions are directly avail-
able. Following Chapter 3 in Gelfand ez al. (1969) there may be interest-
ing extensions to the groups of adeles and ideles. In a later paper
extensions to p-adic valued processes will be set down.

RPU—— L L R

PROOFS

Proof of Lemma 4.1. One sees that the cumulant in question is
given by

I. .. I exp (—2mil\t + ... 4+ MOVt 1= Lhs + o o 5 k1 — i) Aty o . Ay
{tde<p"
The result follows on making the change of variables yj=t; — t;, t = ;
Forj=1,...,k — | and noting that the region {|t[,, [u; + ?[, < p*} is
equivalent to the region {|[,, [u;|, < p"} following the (unusual) proper-
ties of the p-adic norm. '
Proof of Theorem 4.1. See the proof of Theorem 4.2.

Proof of Theorem 4.2. One simply notes, following expression (4.2),
that the joint cumulant of order & is o(p") and so when the standardiza-
tion p—™2 is introduced tends to 0 for k = 3,4, ... .

Proof of Theorem 4.3. Arguing exactly as in the proof of Theorem 2
of Brillinger (1968) one has that, under the indicated conditions,

cum {Jn(ay), . . ., J(ar)}

is o(p~"*-1), In consequence the standardized cumulants of order greater
than 2 tend to 0 and the asymptotic normality follows.

Next we note the following theorem of Pollard (1989), Section 10.

THEOREM A.1. Let {X"(a) : a € E} be stochastic processes indexed by
a totally bounded pseudometric space (£, p). Suppose: (i) the finite dimen-
sional distributions of the variates {X*(a)), . .., X*(ax)} converge in distri-
bution for each k; (ii) for each € > 0 and n > O there is a & > O such that

lim sup P*{ sup |X"(a) — X"(b)| >m}<e (A.D)
pla—b)<8

Then there exists a Borel measure P concentrated on U,(Z), with finite
dimensional distributions given by the limits of (i), such that X* tends to P
in distribution.

The difficult step in the proof of Theorem 5.1 will be to verify the
equicontinuity condition (A.1). The next theorem sets an approach up.

The following theorem is proved just as Theorem 1 in Bentkus ef al.

Jr. Comb., Inf. & Syst. Sei.
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(1975), with a slight twist to be mentioned after the statement. (See also

. Statulevicius (1977).)

THEOREM A.2. Under Assumption 5.2, re the process Y(.), -and assum-
ing that a() is absolutely integrable, for any y > 0

Prob {(J"(a) — EJH@} > 3} < exp {—Diyp"[[4(D: + M (A2)
where Dy = 1/[p(@)p(c2)] and D, = p(a)cx(0).

The twist is that in Bentkus e @l (1975), in expression (19) one
bounds out the term “k = 1°° rather than the term «“j =1, From the
theorem follows

COROLLARY. Under the assumptions of the theorem, for any n >0,
Prob {|X"(@)] = 70(@)} < 2 exp {—7*/[4p(c2)(c2(0) + P "))} (A.3)
forn=1,2.

Proof of Theorem 5.1. Theorem A.1 will be employed. That the finite
dimensional distributions converge to the appropriate Gaussian distri-
butions follows from Theorem 4.3. It remains to demonstrate (A.1). We
will proceed more or less in the fashion of Dahlhaus (1988), who more
or less follows Pollard (1984), Section VIIL.2.

Write c(r) = a(t) — b(t), then X"(@) — X"(b) = X"(c). From the
Corollary to Theorem A.2

Prob {{X"(c)| > mp(c)} < ¥(n)

for n sufficiently large, where ¥(.) is defined by (5.2). Next, arguing as
in Lemma VII.2 of Pollard (1984), under the stated conditions and noting
that the assumed boundedness of Y(.) on U, means that X"(.) has conti-
nuous sample paths for » sufficiently large,

Prob {{X"(c)| > 26K(p(c)) for some a, bin = with p(c) < ¢} < 2¢ (A4)

forall0<e< 1.

Now

Prob { sup |X"(c) > 7}
p(c)<8
is bounded by the sum of
Prob {|{X"(c)| > 7 and n > 26K(p) for some a, b with p(c) < &}

and an expression of the same form, but with the “>26" replaced by
¢>26". Following (A.4) the first probability is bounded by 28, which is
<e for 8 < ¢/2 and the second is bounded by Prob {5 < 26K(8)}. Noting
Assumption 5.3 this last will be 0 for sufficiently small 8.

Noting the dependency of the right-hand side of (A.3) on n, another
possible route to the equicontinuity condition would be via the “restricted
chaining” approach of Pollard (1984).

Vol. 12, Nos. 2-3 (1991)
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