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ABSTRACT

This paper, an interim report of a2 con-
tinuing development effort aimed at understanding
the statistics of severe seas, presents  a
new development of the statistical distribution
of extreme wave amplitudes in which no restrie-
tions limit applicability. Thig paper provides
functicnal formulation for the extreme value
salution of the general stationary case,
specific expressions for the statiocnary Gaussian
case, and a method for obtaining specific
equations for non-Caussian wave states. It
is shown that extreme wave crests are inde-
pendent of spectral shape in the Caussian
case, but that extreme wave heights are not.

It is concluded that new advances in extreme
value theary are providing a new understanding
of severe seas.

IRTRODUCTLON

Extreme ocean waves of severe seas have
a profound influence on the design and operation
af offshore structures. These waves can
dominate, for example, the maximum losds en-
vironmentally induced on submerged structural
mambers and dictate the minimum elevations
that platform decks must be above mean warer
level. A proper understanding of the statistics
af extreme waves is therefore essential, par
ticularly as the offshore oil and gas industry
moves into harsher oceanic regions.

The purpose of this paper is te enhance
the understanding of the maximum waves of
severe seas by presenting a new development
of the statistical distribution of extreme
wave amplitudes. This development is based
on new techniques in the field of extreme
value theory and, like most previous work,
Creats the seaway as a stationary random

Beferences and illustration at end of paper.

process. Unlike past work, no serious restric-
tions are placed on the develapment, making

the resulting expressions applicable to wave
conditions of arbitrary spectral shape, i.e.,
to wider—-band spectra of severe, chaotic seas
as well as to narvow-band spectra of near-
regular swell.

The new development yields functional
formulation for the general stationdry case
and agsumes the random ocean's surface to he
Gaussian to permit specific formulas. Comments
on obtaining specific equations for non-Gaussian
wave states are offered to complete the dis-
cussion.

HISTORICAL BACKCROUND

In a classic study published in 1944-45,
5.0. Hice investigated the statistical prop=
erties of random noise arising from the shot
effect in wacuum tubes and the thermal agita-
tion of electrons in resistors. Although the
study was aimed principally at understanding
the probability distributions associated with
the maxima of electrical signals and signal
envelopes, by presenting expressions for the
expected number of zero crossings and maxima
per unit time, Rice laid a foundation upon
which much of today's extreme ocean wave theary
i5 baged,

Im 1952, Longuet—Higgina? introduced one
of the first statistical distributions of
extreme wave heights, based upon a sample of
W available wave amplitudes and upon the as-
sumption that the wave spectrum consiated of
a single narrow frequency band. That study
led to the well-known equation

i =0.707 H¥In B ...ouvunn.. (1}
max 8

where Hmax is the expected value of rhe maximum
wave height in a sequence of N waves, and H,
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Derived under assumptions that limit
applicability just te wave amplitudes in
separate stretches of data that follow a
Rayleigh distribution, Equatjgn | has been
used contimually by ocean engineers, meteo-
rologists and naval architects angd has heen
demonstrated by Borgman® and Goda”, among
cther investigators, to be a good approxi-
mation to reality for various conditions.
On the other hand, aner investigators, in-
c¢luding Haring et al.” and Jahns and
Wheeler™, have demonstrated that observational
data can also depart markedly from Equation
1.

By combining the previous works of Longuer-
Higgins and Rice, Cartwright and Longuet-Higgins
in 1956 developed an expression for the staris-
tical distribution of maxima in terms of the
bandwidth of the wave spectrum. Unfortunately,
their development is based upon the assumption
of statistically independent wave amplitudes.

In 1973, nchis applied order statistics
to the problem te obtain a solution for the
extreme value of wave maxima. Of interest,
Ochi's solution is not functienally related
to the spectral bandwideth; however, the deri-
vation assumes that the successive maxima
(wave peaks) of the random process have the
same probability density function and are
mutually independent., As is the case with
carlier work, these assumptions restrict
proper application of the results to a limited
range of wave states, i.e,, to wave states
with very narrow covariance functions only.

The development presented herein owvercomes
the difficulty of requiring independent wave
zmplitudes by applying new techniques in the
tield of extreme value theory.

EXTREME VALUE THEORY

As shown by Che theorem of Gnedenkng,
only three different statistical distributions
of maxima can exist for independent and identi-
cally distributed random variables with non-
degenerate distributions in the limit. These
three distributions are:

Type I: Glxy=expl-expl-x)) for all x
Type LI1: G{K}=L'xpll—':qu ] ax0, x>0
Type ILL: Gixl=expl-x)" ax0, x50

Classical extreme value theory provides the
necessary and sufficient conditions far the
above general limit laws ta hald,

Leﬂdhetturlﬂ, in a recent work, has shown
that the same three laws also apply under
rather general conditions to the asyvmptotic

vals of time, rather than just to sampled
data as CDTﬁidered by Gnedenko., Following
Leadbetter ", let X(t) denote the statistically-
stationary ocean surface displacement for the
time interval O0%t=T, and let HT denote the
extreme wave crest elevation of X(t) {i.e.,
the maximum value of X{t)) during OSLET {see
Figure 1). Following the continuous-case
analogy to the theorem of Gnedenko, if there
exist normalizing constants ap#l and by such
that ap{Mp-br} has a non-degenerate limiting
distribution function G{x) as T approaches
infinity, then

Plag-b) e xfaelxr (2)

and G(x) has one of the three extreme value
farms.

£l
Application of Equation 2 allows a new

understanding of maximum wave startistics.

EXTREME WAVE CRESTS-GENERAL CASE

Ler W(T} be the number of upcrossings at
the level u=0 by the stationary process X(t)
in the interval (0,T), and let y be the statis-
tically expected (mean) number of u-upcrossings
per unit time, i.e., p = E[U{1}],

In the general case,
oo

po=Jeplu,zldse
-]

where p i3 the joint probability density EuTc
tion for X(t) and its devivative X'(e). o~
15 indicative of the mean time bBetwesn con-
agcubive upcroagings (or downcrossings) at

the lewvel u.

Using p to scale rtime, let
T = T”

be a dimensionless parameter squalling the
expected number of u-upcrossings in the in-
terval {0,T).

Suppose u=up = xfap + by with TOL-Flupl)lar
= -ln Gix} as T approaches infinity, where
Flugl is the distr[buLian function of ur, then
as shown by Leadbetter!

P {HTpr) wexp (=t} = Glx)
Further, letting 7= exp (-x), it follows that
F (aT{MT—bT}T i+ exp (-exp{-x})

under the condition that the values of ¥(t)
are asymptotically independent in a certain
sense {distributional mixing), i.e., collec-
tions of segments of X{t} are at most only
weakly dependent for large scparations in L.
(See Leadbetterl? for derails). of importance
te offshore woark, this condition places no
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restrictions onthe applicability of Equation
& to ocean wave problems.

If HT denotes a level such that
P

P{MTEHT’QJ =l-a {n

where n is the probability, or risk, of My
exceeding M , then from Equations 6 and

7 T.a

Mp - Cfap*tbp (8)
where

r =(ln 1/(1n l—lﬁ:n] .................. (9)

, .
Equation B.defines the maximum wave crest
amplitude during the interval (0,T)} with risk
of exceedance o for stationary conditiaons
and is applicable to both Caussian and non-
Gaugssian wave states. Consequently, provided
the normalizing constants ap and by (or xfaptbrl
can be evalvated, which requires a formulation
for the expected number of upcrossings at
the arbitrary level u, Equation 8 is very
important for both design and operational
problems.

EXTREME WAVE CRESTS-GAUSSIAN CASE

It has been assumed so far that-X{t)
is statistically stationary. In this section,
it is assumed further that ¥(t) iz also Gaussian
with a zero mean.

As shown by Ricel, the mean number of

u-upcrossings per unit time for a Gaussian
process can be eatimated by

u ={A2f-:r]' exp (-u2/2d)

................ (107

whera
g = cl{o) = Zstfjdf .................... (11}
Ay = =c"(0) -Ei-zslldeE ,,,,,,,,,,,,,,, (129

5(f) equals the spectral density at frequency
f.

Lf Ciriln r approaches zero as r approaches
infinity, the results of Leadbetterl? are
applicable to the discussion and it follows
from Equations 4, 8 and 10 that

Liap + by =av 20In T+ L) ..., (13)

T

where

T, = Tdafo=0 (14)

with N being the number of wave cycles within
time T.

Eewriting Equation 13,

i.e., the maximum crest amplitude during the

interval (0,T) with risk of exceedance o for

Gaussian stationary conditions. The corres-

ponding mean of the large sample approximation

to the distribution My is given by =y= 0.577%
(Euler's numberg.

As shown by Equation 15 when expressed
in terms of the number of wave cycles, the
extreme crest elevation during time T is in-—
dependent of spectral bandwidth. Although
equivalent im form 50 formulation by Cartwright
and Longuet-Higgins' and Ochi®, Equation 15
represents to the authors' knowledge the first
extreme value solutien for the Gaugsian case
in which successive wave crests are not assumed
to be independent. Indeed, Equation 15 is
derived under the assumption that Cl{r)ln r
approaches zero as r approaches infinity, a
condition on the covariance function which
always should be met by the random seaway.

Equation 13 is an exceedingly useful ex-

pression for offshore engineering work due
to 1ts easy application te gcean wave problems.

EXTREME WAVE HEIGHTS-CAUSSIAN CASE

The field of ocean waves is, to a certain
degree, unique among the physical sciences
since it is one of the few fields concerped
with values of successive crests and troughs
(i.e., heights). Most branches of physical
sciences, at least those that attract astatis-
ticians, usually are concerned just with peak
values (i.e., amplitudes). Thus, extreme value
theories presently in existence are geared
to crest-to-mean statistics only and are not
particularly well suited for attacking the
general crest-to-trough problem.

The extension from extreme wave amplitudes
to extreme wave heights, however, is triwvial
for very narrow-band conditiens. In this case,
the extreme wave height Hp during the interwval
{0,T) is approuimated by

HT = 2 My [16})

which implies that the expected walue of the
large sample approximation to the distribution
af HT ig

H'T,u= z ul.,a ........................ (17

aor from Equation 15

Hy = 0.707 H_ o L A (181

taking H, = 40 to be the usHal approximation
to significant wave height.




Lquatioens Lb=1l8 are based on the assumptions
that the maximum crest and the minimum trough
are equal and ocecur successively, which tends
to be the case for very narrow-band conditions.
For wider-band conditions, however, the maximum
crest and the minimum traugh tend fo occur
at some interval apart. Indeed, as the hand-
width of the wave spectrum increases, the
probability of the maximum crest, minimum
trough and maximum wave height occurring during
the same wave cycle diminishes, Equation
L7 is therefore not necessarily correct for
wave conditions with non-narrow bandwidrhs
and sheuld be replaced by the more general
expression

HT,QE z HT,Q ........................ (19

applicable to stationary Gaussian cases of
arbitrary bandwidth,

It follows that Equation 18 should be
replaced by

HTruﬁﬂ.?U? H +In T *In [/ nl{1/(1-a)} ]

utilizing Equation 9. The inequality of
Equation 20 depends upon the spectral shape

af the wave state, with the difference between
Equations 18 and 20 increasing as the bandwidth
increases., The nature of this inequality

and the corresponding variation in risk are
presently under investigation by the authors.

While the maximum crest amplitude is
independent of spectral bandwidth, it iz clear
from Equation 20 that the maximum wave height
is not. Consequently, it is desirable ta
express offshore problems in terms of wave
amplitudes, rather than wave heights, and
thus avoid this problem. In engineering analyses
using deterministic design waves, for example,
it is suggested that all parameters determining
surface profiles*be based on design maximum
crest elevations.

EXTREME WAVE CRESTS-NON-GAUSSTAN CASES

For severe seas and other types of wave
conditions in which nonlinear processes are
important, the seaway can become clearl non-=
Gaussian. To illustrate, Haring et al.? analyzed
376 hours of storm records collectad on the
Continental Shelf and found the distributions
of surface deviations about the Eean ta be
non-Gaussian. Jahns and Wheeler” showed that
substantial deviations from the Gaussian A8 & 1mp -
tion also can occur in shallow water. Thus,
to understand the statistics of extreme maxima
for these important wave conditions, non—Gaussian
cases must be addressed.

For an important class of non—Gaussian
processes, it is possible to estimate extreme

maximum values in the same manner described

in the previous sections. Let X(t) be non—
Gaussian, and suppose Y(t) = giXlel)) is BGaussian
with a zeros mean for some increasing functio

¥y = glx) with g{0)} = 0 and an inverse x = g ly)
= hiy}, so that X(t) = hiv(t}), (As an example,
i glx) = 1n(1+Bx) = v, then hiy) =[ exply)-1]/a
= x.} Letting HE be the maximum value of ¥(t)
in the interval (0,T), it folleaws that H% = g{H¥J
and H¥ = h(nﬁ). All comments made under the
Gaussian assumption obviougly apply to HT_
Hence, replacing 5 with QY,

Mt bl VI TT) (21)
4

Actual expressions of glx) for extreme
wave stalistics are not considered known at
the present by the authors; however, plausible
functional forms could be discerned by plotting
wave data on normal probability paper.

Equation 21 as well as other approaches
are being given sericus consideration ta gain
further insight into the statistical nature
of severe seas.

SUMMARY AND COMCLUSLONS

This paper has attempted ta clarify ex-
isting knowledge of ocean wave statistics by
offering a new development of the statistical
distribution of extreme wave amplitudes. 1In
s¢ doing, the following has been concluded:

1. The statistical distribution of wave
maxima follow a Type I distriburion
in the limit, with a. and bT lor
w/ap+by) being determined from con-
sideration of the expected number
of upcrossings at some arbitrary
level,

2, The maximum wave crest amplitude
during time T and with risk af ex-
ceedance @ is given for the general
stationary case by Equation 8. OF
importance to offshore work, there
are no known reatrictions that limit
applicability of Equation 8 to ocean
wave problems.

3. The maximum crest amplitude for the
stationary Gaussian case is given
by Equation 15. Equation 15 repre-
gents to the asuthers' knowledge the
first extreme value solution for
Gaussian wave conditions in which
guccessive crests are not assumed
to be independent. Consequently,
the equation is applicable to wave
states of arbitrary spectral shape,
including wider-band spectra of chaotic,
Severe seas as well as narrow-band
spectra of near-regular swell.
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L The extreme wave crest elevation
during time T with risk o iz inde-
pendent of spectral shape for the
Gaussian case; however, the extrems
wave height is nmot. It is therefore
concluded that it is preferabls
to formulate engineering design
problems in terms of wave amplitudes
vice wave heights.

What does the information presented in
this paper mean from a practical standpoint?
Clearly, an offshore platform must be designad
ao that waves will not slap the underside
of the structure's vulnecable deck. This
paper has presented [ormulation necessary
to determine the midimum elevation of the
deck above mean water level so that sufficient
space is available for the maximum crest eo
pass underneath. Further, the maximum forces
and moments on submerged structural members
are dominated by the wave—induced velocities
and accelerations of the water particles,
During the design phase of a structure, these
loads are calculated based on a design maximum
wave. As discussed in this paper, due tao
the uncertainties introduced by the spectral
bandwidth aof the seaway, the maximum wave
height is not necessarily twice the wvalue
of the maximum wave crest; thus, if design
forces and moments are calculated without

taking this fact into consideration, difficultias

could ococur (e.g., overestimating the maximum
horizontal drag force by 10-30% during static
analysis),

The statistics of ocean waves are still
not completely understood, expecially for
non-aussian conditions, but this paper, an
interim report of an ongoing developmant
effort, has intreduced certain new techoniques
from the field of extreme value theory to
the field of wave statiatics. These techniques
are providing the statistical tools necessary
to approach the problem of extreme ocean waves
and, coupled with the continuing effort, have
the potential of providing further insight
inte the statistical properties governing
SEVEre Seas.

NOMENCLATURE

4. = Normalizing constant
b,. = Hormalizing constant

Clr) = Covariance with lag t
f = Wave frequency

FiuT} = Distribution function of u
G{x) = Statistical distribution of maxima
H = Expected value of maximum wave
max ;
height
H = Bignificant wave height

H; = Extreme wave height during
interval {0Q,T)
H,. = Extreme wave height during
the time T with risk of
exceedance g

HT = Extreme wave crast elevation
during the interval (0,T)
M., = Extrems wave crest elevation
during the time T with risk
of exceedance o

X R .
Hr = Maximum value of non-Gaussian
v ¥it) during interval (0,T)
Hr = Maximum value of Gaussian Y(t)

during interval (0,T)
N Humber of wave cycles
r = Time lag
:| =

S(f Spectral wave density
= Time
= Interval length
1'D = Dimensionless parameter
u = Arbitrary level
g = ,w.,-"a,r - hT

ULT) = Mumber of uperossings at the
level u>o
®x = Variable

E(t) = Random ocean surface displacement
X'0t) = First derivative of X(t)
¥(t) = Cavssian transformation of

non-Gaussian X{e)

z = Variable

n = Risk of exceedance; exponent of
atatistical distributions of
Cnedenko

= Constant

Dimensionless risk parameter

Second moment

= Expected number of u-uperossings
per unit time

Fera TR
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Fig. 1 - Sample wave profile.




