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MOMENTS, CUMULANTS AND SOME APPLICATIONS TO
STATIONARY RANDOM PROCESSES

BY DAVID R. BRILLINGER*
University of California, Berkeley

The paper ranges over some basic ideas concerning moments and
cumulants, focusing on the case of random processes. Uses of moments
and cumulants in developing large sample approximate distributions, in
system identification and in inferring causal connections of a network of

point processes are presented.

1. Introduction. Moments and cumulants find many uses in main
stream statistics generally and with random processes particularly.
Moments reflect the parameters of distributions and hence, as via the
method of moments, may be used to estimate distributional parameters.
Moments may be employed to develop approximations to the statistical
distributions of quantities, such as sums in central limit theorems and asso-
ciated expansions. Moments may be used to study the independence of
variates. Moments unify diverse random processes, such as point
processes and random fields, and diverse domains, such as the line or

space-time.

2. Ordinary case. One can begin by asking: What is a moment? To

provide an answer to this question, consider the case of the 01 valued
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variates X, Y, Z. For these variates
E{XYZ} = Prob{X=1,Y =1,Z =1}

This provides an interpretation for a (third-order) moment in terms of a
quantity having a primitive existence, namely a probability. Higher-order
moments have a similar interpretation. One can proceed to general ran-
dom variables, by noting that these may be approximated by step (or sim-
ple) functions, see eg. Feller (1966), page 107.

Next one can ask: What is a cumulant? One answer is to say that it
is a combination of moments that vanishes when some subset of the vari-
ates is independent of the others. Suppose for example that X is indepen-

dent of (Y, Z). The third order joint cumulant may be defined by

, cum{X,Y,Z} = (1

E{XYZ})-E{(X)E{(YZ}-E{Y}E{XZ) - E{Z}E{XY) +2E{X}E({Y}E({Z)}
By substitution one quickly sees that this last expression vanishes in the
case that X is independent of (Y, Z).

Expresion (1) gives one definition of a joint cumulant. An alternate
way to proceed is to state that that cumulant is given by the coefficient of

i3ofy in the Taylor expansion of

log[E (e} X +BY+12) }]

supposing one exists.

Taking the log here converts factorizations into additivities and one sees
immediately why the joint cumulants vanish in the case of independence.
Streitberg (1990) sets down a sequence of conditions that actually

characterize a cumulant. These are:

1. Symmetry
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cum{X, Xy, -} =cum{Xy, Xy, - - }
2. Multilinearity

cum {0X |, X,, - - } = acum {X{, X5 -}

cum (X +Y 1, X5, < - Y =cum{Xy, -+ -} +cum{Yy, -~ }
3. Moment property, if the moments of X and Y are identical up to order
k
cum {X} = cum {Y}
4. Normalization, in the expansion in terms of moments
cum{Xy, -, X} =E{Xy - X3+ oo
5. Interaction, if a subset is independent of the remainder
cum{Xy, -+ X} =0
Cumulants provide a measure of Gaussianity. If the variate X is nor-
mal, then
cump {X} =0 2)
for k >2. (Here cum, denotes the joint cumulant of X with itself &
times.) Putting (2) together with the fact that the normal distribution is
determined by its moments, provides a particularly brief proof of the cen-
tral limit theorem. Namely suppose that X, X,, - - are independent
and identically distributed with E{X} =0 and var{X} = 1. Suppose all
moments exist for X. Consider
S, =X+ - +X)"\n 3)
Then '
L1
cum {S,} =n cum (X} / n?
which tends to 0 for k > 2, as n tends to infinity, and in consequence S,

has a limiting normal distribution.
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An error bound may be given for the degree of approximation of the
distribution of a random variable by a normal, via bounds on the cumu-
lants. In Rudzkis et al. (1978) the following result is developed. Con-

sider a variate Y with mean O and variance 1. Suppose that

H(k!)1+v
leum {Y}1 < —_—Ak—z
for some v = 0, H = 1, then in the interval 0 < u < &/H
18H

sup|Prob{Y <u} - ®0u)l £ -—8——
u

where

§==|==

71 6
In the case of a sum, such as (3), one can take A = Vn for example.

1/(1+2
1 [\EA} 1(142v)

3. Time series case. Consider a stationary time series X (z) with
domain ¢ =0, +1,+2, --:. If the k—th moment exists, from the sta-
tionarity, the moment function

E {X(t+u1) R X(t+uk_1)X (t)}
will not depend on ¢, nor will the associated cumulant function

ck(ul, T, uk—])

= cum {X (t+u,), - - - X (t+uy_1).X ()} “4)

The Fourier transforms of these ¢, (.) give the higher-order spectra of the
series. These functions may be estimated given stretches. of data.

It was indicated, by property 5 above, that a joint cumulant measures
statistical dependence. This suggests formalizing the intuitive notation that

values at a distance in time are not strongly dependent via

Z z |ck(ul, ---,uk_l)l < o 3)

Uy Ug-1
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for k =2, ---. It is now direct to provide a central limit theorem for

sums of values of a stationary time series. One has

cumk{f‘,X(t) I NT )
1

=3 o Tt s ) I T
h 7

=3|S - Ty, | I TH?
tlu, Uy
=Y c(u) k =2
u
and

-0 k>2
following (5), giving the limit normal distribution.

Another aspect of the use of cumulants is that a calculus exists for

manipulating polynomials in basic variates. Suppose that
Y =g(Xy, ""XL)

=Zai1---iLX§1 e X[ ©)

One has directly from (6) lthat
E(Y*}=3B,, ... m EXT" -+ X*)
but perhaps more usefun;l, there are rules due to Fisher, see Leonov and
Shiryaev (1959), Speed (1983), providing an expression
cumy (Y} =2 Ys cum{Xj :jeoq} - cum{X.j 2 j eop}

where 6 = (0;, ° -c-;, Cp) is a partition of subscripts into blocks and the
Y, are coefficients.

A time series analog of an expansion, like (6) for ordinary variates, is
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provided by the Volterra expansion

Y(t)=ag+ Y a(t-u)X )+ S ay(t-upt-u)X DXy + -+ A7)

Uqpur
Using the Cramer representation of the process, namely

X(t) = [ e"*dzyM)
(7) may be written

ag + [ €"MA,(dZy W) + [[ "D 4,0 MdZy O)dZy () + - -

in terms of the Fourier transforms of the a;(.), a(.), - - . This form
often simplifies the development of particular analytic results.
Consideration now turns to the use of moments and cumulants in the
identification of nonlinear systems. In the case of a polynomial system
like (7), Lee and Schetzen (1965) develop estimates of the functions

aq(.), ay(), - via empirical moments of the form

T-1
LS X@4up -+ X@+u)¥ @)
T t=0
for the case that the input, X (.), is Gaussian white noise.

For the case of stationary Gaussian input and a quadratic system

Y(t)=ag+ Y a(t-u)X W)+ Y ay(t—uqpt—u)X(u DX (uy) + noise
u Uiuy
Tick (1961) developed an estimation procedure as follows. Define the

cross-spectrum and cross-bispectrum via

cum {dZX (7\.) ,dZ Y (}1)} = 5(;\.+l.l)fXY ()\.)d M o8

cum {dZy (\y),dZx (Ay).dZy (A3)} = (A At A xxy (A A)d Ad Ayd Mg
respectively. One has

| frx@) =AM xx M)
f}D{Y (_ll’—}‘Q) =2A 2(-?"1’—M)f}0{ (ll )fﬂ ()VZ)

relations from which estimates of the transfer functions, A, may be
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2 M; ot i) a hybrid process X (7;) and a line process, for example.
J

6. An example. In this section second-order moments and cumulants
are employed to infer the causal connections amongst some contemporane-
ous point processes.

Consider the stationary bivariate point process (M, N) with points T,
and v, respectively. In what follows an estimate of the product density of

order 2 will be needed. The parameter is defined via

pyn (@) dudt = E {dM (¢t+u)dN (t)}

= Prob{dM (t+u) =1, dN () = 1}
This last suggests basing an estimate on the count

#mk-y,—um%} @®)
for some small binwidth #. Details are given in Brillinger (1976). One
result is that it appears more pertinent to graph the square root of the esti-
mate. In the case that the processes M and N are independent, one will

have pyn () = py Py Which possibility may be examined via the statistic

(8).

The suggested estimate will be illustrated with some neurophysiologi-
cal data. Concemn in the experiment was with auditory paths in the brain
of the cat. To collect data, microelectrodes were inserted with location
tuned to sound response. Data was recorded when the neurons were firing
spontaneously. Also responses were evoked experirnentélly by 200 msec.
noise bursts, that were applied every 1000 msec., via speakers inserted in
the ears. The firing times of 8 neurons were recorded. Figure 1 provides
the data itself for 4 selected cells, 2 in the case with stimulation, 2 when

the firing is spontaneous. Each horizontal line plots firings as a function
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of time since stimulus initiation in a 1000 msec. time period. The
stimulus was applied 505 times in these examples. In the stimulated case
one notices vertical darkening corresponding to excess firing just after the
stimulus has been applied. Neurophysiologists speak of locking. In the
spontaneous case no locking is apparent. There is some evidence of non-
stationarity in this case.

Figure 2 provides the square root of a multiple of (8). The horizontal
dashed lines are +2 standard errors about a horizontal line corresponding
to independence in the stationary case. One infers that the cell pairs are
associated in each case. However in the stimulated case one has to wonder
if the apparent association of units 6 and 7 is not due to the fact that the
cells are being stimulated at the same times.

Fourier techniques provide one means to address this concern. Write
—i AT,

di) =Y e
k
Ty =3 M
!
for the data 0 < t,, 7y, <T. For A # 0 one has

E{df;(MdfM)} = 2rT frw)
with f) (.) the cross-spectrum given by

1 _;
Fun®) = E:—j e Mg ) du
A useful quantity for measuring the association of M and N may now be
defined. It is the coherence,

IRy 12 = 1 f a2 1 Fagg M )
with the interpretation

lim lcorr {df (M), dF (M} 12

T oo
It satisfies 0 < IRM,\,(?\.)I"Z < 1, with greater association corresponding to
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values nearer 1. Figure 3 provides coherence estimates for the cell pairs
of Figure 2. This evidence of association is in accord with that of Figure
2. The dashed horizontal line provides the 95% point of the null distribu-
tion of the coherence estimate.

To return to the driving question of how to "remove" the effects of
the stimulus, one can consider the partial coherence. This has the interpre-

tation

lim \corr {df, — 0df, dF - BdI}1?

B Aad

with o, P regression coefficients and S referring to the process of stimulus
times. Suppressing the dependence on A the partial coherence is given by

lRMN IS |2 where

Ryn — RusRsy

V(1= 1Ryq 12)(1=1Ryg 1%
Figure 4 provides the estimated partial coherence of neurons 6 and 7 in

Ryn s =

the stimulated case. The level apparent in the top graph of Figure 3 has
fallen off substantially suggesting that the association evidenced in Figures
2 and 3 is due to the stimulus.

For interests sake Figure 5 provides the coherence estimate for neu-
rons 3 and 4 in the case of applied stimulation. One might wonder if they
would become more strongly associated in the presence of stimulation.

The results do not suggest that this has happened.

7. Conclusions. In summary, moments and cumulants may be
employed to develop approximations to distributions, approximations such
as the normal or the Poisson. They may be employed in system
identification. - They may be used to infer the "wiring" diagram of a col-

lection of interacting point processes.
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The approach presented is nonparametric, not based on special sto-
chastic processes described by finite dimensional parameters. Brillinger
(1991) provides a variety of references concerning the work pre 1980 on

higher moments and spectra.

Acknowledgements. The neurophysiological data were provided by
Alessandro Villa. Terry Speed mentioned the Streitberg (1990) result.
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Figure Legends

Figure 1. Rastor plot of the firing times of 4 neurons in successive 1000

msec. periods. There are 505 horizontal lines of firing times.

Figure 2. The square root of a multiple of the quantity (6). Were the
processes independent and stationary then about 5% of the values should

lie outside the band defined by the two horizontal dashed lines.

Figure 3. Estimated coherences of cells 6 and 7 in the stimulated case and

3 and 4 when the firing is spontaneous.

Figure 4. Estimated partial coherence of cells 6 and 7 "removing" the

effect of the stimulus.

Figure 5. The estimated coherence of cells 3 and 4 in the case of stimula-

tion.
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