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Abstract

A statistical network is a collection of nodes representing random variables and a
set of edges that connect the nodes. A probabilistic model for such is called a sta-
tistical graphical model. These models, graphs and networks are particularly useful
for examining statistical dependencies amongst quantities via conditioning. In this
article the nodal random variables are time series. Basic to the study of statistical
networks is some measure of the strength of (possibly directed) connections between
the nodes. The use of the ordinary and partial coherences and of mutual informa-
tion is considered as a study for inference concerning statistical graphical models.
The focus of this article is simple networks. The article includes an example from
hydrology.
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1 Introduction

Science concerns relationships. The question that usually arises is what is the
form of some relationship. A lesser question is how strong is a relationship. The
work presented considers the use of partial coherency, and of coefficients of mutual
information as measures of the strength of association of connections.

An example involving river flows measured at a succession of dams along the
Mississippi River is presented. Here the nodes are in series and the edges are
directed. The locations of the dams are provided in Figure 1.

Basic books discussing statistical graphical models include Cox and Wermuth
[7],Whittaker [22], Edwards [9], Lauritzen [18]. The paper has the following sections:
Mutual Information, Networks, Results, Discussion and Extensions.
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Figure 1: The locations of the 10 dams along the Mississippi River some of whose
flow rates are studied.



2 Mutual Information

2.1 Continuous Case

The field of information theory provides some concepts of broad use in statistics.
One of these is mutual information. It is a generalization of the coefficient of
determination, corr{X,Y}?, and it unifies a variety of problems.

For a bivariate random variable (X,Y") with density function p(x,y) the mutual
information (MI) is defined as

_ o) log— P&y

where S is the region p(x,y) > 0.
As an example, for the bivariate normal the MI is given by

1
Ixy = — §l09(1 - Pxy)

where pxy is corr{X,Y}.

The coefficient Ixy has the properties of:

1). Invariance, Ixy = Iyy if the transformation (X,Y’) — (U, V) has the form
U= f(X),V =g(Y) with f and g each 1-1 transforms.

2). Non negativity, Ixy > 0.

3). Measuring independence in the sense that Ixy = 0 if and only if X and Y
are statistically independent.

4). Providing a measure of the strength of dependence in the senses that i)
Ixy = c0oif Y = ¢g(X), and ii) Ixz < Ixy if X is independent of Z given Y.

The property 3) that Ixy = 0 only if X and Y are independent stands in strong
contrast to the much weaker correlation property of p%-.

The estimation of entropy
There are several methods that have been used.

Nonparametric estimate

Suppose one is considering the bivariate random variable (X,Y). Supposing
further that p(z,y), is an estimate of the density p(z,y), for example a kernel
estimate, then a direct estimate of the entropy is

0% " p(id, j6) log p(id, j6) = E{log p(X,Y)} for & small

]

In the same way F{log px(X)}, E{log py(Y)} may be estimated and one can
proceed to an estimate of the mutual information via expression (1). References to
the type of entropy estimate just described and some statistical properties include:
Joe [16], Hall and Morton [14], Fernandes [10], Hong and White, [15], Granger et
al [13].

Difficulties with this form of estimate can arise when px(.), py(.) are small. The
nonparametric form also runs into difficulty when one moves to higher dimensions.

A sieve type of estimate is presently being investigated for this situation, in par-
ticular an orthogonal function expansion employing shrunken coefficient estimates.

Parametric estimates of entropy



If the density p(x,y|f) depends on a parameter § that may be estimated reason-
ably then an immediate estimate of the entropy is provided by

/p(x,ylé) log p(z,y|0) daxdy

Another form of estimate is based on the likelihood function. Suppose one has
a model for the random variable (X,Y") including the parameter 6, (of dimension
v). Suppose the model has the property that X and Y are independent when
6 = 0. When there are n independent observations the log likelihood ratio for the
hypothesis § = 0 is

n

I p(zi, yil0)

§ og

" px(z)py (vi)
with expected value

nlxy

This suggests the use of the loglikelihood ratio statistic divided by n as an estimate
of Ixy. A further aspect of the use of this statistic is that its distribution will be
approximately proportional to x2, where v is the dimension of §, when X and Y’
are independent.

Partial analysis.
When networks are being considered the conditional mutual information is also
of use. For a trivariate ranom variable X, Y, Z one can consider

Ixy|z =

///p(x,y, z) log % drdydz

Its value for the trivariate normal is

1
—§l09(1 - p%{Y|Z>

with pxy|z the partial correlation of X and Y having removed the linear effects of
Z.

2.2 Processes

A disadvantage of MI as introduced above is that it is simply a scalar. As con-
sideration turns to the process case, i.e. functions, it seems pertinent to seeks to
decompose its value somehow.

1. Time-side approach
The entropy of a process is defined by a suitable passage to the limit for example
as
limr oo E{log p(z1, T2, ...,27)}

where p(x1, ..., z7) denotes the density of order T'. To begin one can simply consider
the mutual information of the values Y (t + u), Y (¢) or of the values Y (¢t + u), X (¢).
This leads to a consideration of the coefficients

Iyy(u) and Iyx(u)



i.e. mutual information as a function of lag u. References to this idea include: Li
[19] and Granger and Lin [12].

2. Frequency side approach
Similarly it seems worth considering the mutual information at frequency A of
two components of a bivariate stationary time series. This could be defined as the
mutual information of dZx(\) and dZy (). Because these variates are complex-
valued a 4-variate random variable is involved. In the Gaussian case the MI at
frequency A is
~ log(1 — |[Rxy(WP)

where |Rxy (\)]? is the coherence of X and Y at frequency A. The overall informa-
tion rate is -

— [ togl1 - RGP
Granger and Hatanaka [11].

In the general case for each frequency one might construct an estimate, Ixy (),
based on kernel estimates of the densities taking empirical FT-values near \ as the
data. A difficulty that arises is that the random variables are complex-valued, i.e.
the situation is 4-dimensional.

The way to estimate the MI, suggested above, is to fit a parameteric model and
then to use the loglikelihood ratio test statistic for a test of independence.

A novel way, also being pursued, is to use first recurrence time estimates of
entropy Ornstein and Weiss [20] and Wyner [23].

3 Networks.

In crude terms a network is a box (or node) and line (or edge) diagram and some
of the lines may be directed. Some simple 3- and 4-node networks are shown in
Figure 3. In our work a box corresponds to a random entity, to a random variable,
to a time series or to a point process. In studying such models the methods of
statistical graphical models provide pertinent methodology. Typically these models
are based on conditional distributions. See the books by Edwards [9], Whittaker
[22], Lauritzen [18], Cox and Wermuth [7].

If A, B, C represent nodes a question may be as simple as: Is the structure
A — B — C appropriate or is it better described as (A, B) — C? One the
other hand the question may be as complicated as: What is the wiring diagram of
the brain?

Figure 1 shows the locations of dams of a network along the Mississippi River.
Since the bulk of the water flows south an elementary graphical model for this
situation is: Dam 1 — Dam 2 — ... — Dam 10. Of course there are other
sources of water, such as entering rivers and rainfall to be taken note of. The figure
and the data to be analyzed are taken from

www.mvp-we.usace.army.mil/projects/lock_dam.html

One reference to the approach of this paper is Brillinger [3].



4 Results

4.1 Mississippi River Flow

The waters of the Mississippi River flow from Minnesota in the north of the United
States to the Gulf of Mexico. Flooding along the river has long been a concern, and
the U.S. Army Corps of Engineers has constructed a series of locks for flood control
and as an aid to navigation. The waters flowing may be viewed as a system added
to by precipitation and by flow from entering streams and runoff and reduced by
evaporation, absorption and diversion.

The basic data employed in the study to be described are the daily water flow
rates as recorded at a succession of dams along the river. The data are daily from
1960 on and were obtained from the WWW site:

www.mvp-we.usace.army.mil /lock_dam.html

Figure 1, taken from that web site, shows the locations of the dams. Entering
streams may be seen. Consider for example the logarithms of the flow rates,
Ya(t), Ya(t), Y5(t) at Dams 2, 4, 5. Their locations may be seen in Figure 1. One
sees the bulk of the waters passing from Dam 2 to Dam 4 and then onto Dam 5.
One sees the Zumbo River entering between Dams 4 and 5 and the three other
rivers entering between Dam 2 and Dam 4. The logarithms of the flow rates are
taken as the basic variables.

This situation will be studied as providing a useful test bed for studying the
effectiveness of the partial coherence and mutual information parameters.

Figure 2 presents the results of a partial coherence analysis focusing on Dams
2,4, 5. The top right panel provides the estimated coherence functions of Dams 2
and 5. The horizontal line gives the approximate upper 95% null level under the
null hypothesis of zero coherence. One sees high coherence at the low frequencies.
The bottom right plot is the estimated partial coherence function of Dams 2 and 5
having removed the linear time invariant effects of Dam 4. Once again the horizontal
line gives the approximate upper 95% null level under the null hypothesis of zero
coherence. One looks for more than about 5% of the values lying above these lines.
In the partial coherence case one sees not too much activity. In this situation the
partial coherence could have been anticipated to be negligible because of Dam 4’s
being so close to Dam 5, i.e. highly effective in blocking off the direct effects of
Dam 2. As an aid to understanding this analysis one can consider the model

Ya(t) = / alt —w)Ya(uw)du + ()

Yilt) = / b(t — u)Ya(u)du + n(t)

with e and 7 noise processes. The partial coherence estimated is then the coherence
of the processes € and 7.

The analysis is now extended to 4 series. Figure 3 provides the estimated partial
coherences of Dams 3 and 5 having removed the effects of Dam 4 and of Dams 2
and 4 having removed the effects of Dam 3 and also that of Dams 2 and 5 having
removed the effects of Dams 3 and 4. The required formulas may be found in
Brillinger [2]. The networks contemplated in the analysis are the parallel and series
ones. Logically the series structure is appropriate.

All three of the partial coherences appear weak. This is consistent with the series
structure of the graph as was anticipated. Had there been parallel links through



Dams 3 and 4 instead of the serial ones then the partial coherences 35|4 and 24|3
would not be expected to be near 0 generally.

As a further example the MI of series 2 and 5 was estimated as a function of
frequency A\, actually the MI’s of the two real parts of the frequency components and
of the two imaginary parts. These estimates are graphed in Figure 4. Approximate
2.326 s.e. limits are obtained by randomly altering the phases of the empirical
FT components, following the procedure of Braun and Kulperger [1]. In the plots
one notes some apparent association at the lower frequencies. This could arise, for
example, from the occurrence of snow or rain storms affecting the segments of the
river at the same time.

An estimate of the full MI is currently being developed following the discussion
of Section 2 .

A point process analysis of this situation is developed in Brillinger [4]. These
data are also considered in Brillinger [5].

5 Discussion and extensions.

The coefficient of mutual information is a unifying concept extending second-order
quantities that have restricted applicability. Its being 0 actually implies that the
quantities involved are statistically independent. Another important advantage is
that the MI pays no real attention to the values of the process. They can be non-
negative, integers or proportions for example.

The MI is useful when one wishes to make inferences stronger than: ”The hy-
pothesis of independence is rejected.” and more of the character ” The strength of
connection is I.”

During the work the plot of the function Ixy (M), appear more useful than simple
scalars Ixy. Both parametric model-based estimates and nonparametric estimates
of mutual information have been mentioned and computed.

A number of extensions are available and some work is in progress. One can
consider the cases of: point processes, spatial-temporal data, local estimates, of
learning, of change, of trend, and of comparative experiments. Brillinger [6] contains
related ideas and examples from neurophysiology.

One needs to develop the statistical properties of other estimates of MI such as
the estimate based on the waiting time and the sieve estimates.
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Figure 2: Estimated partial coherence of log(flow rate) at Dams 2 and 5 given those
at Dam 4. The horizontal line gives the approximate upper 95% null level.
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Figure 3: The estimated partial coherence of log(flow rate) at Dams 3 and 5 given
Dam 4, Dams 2 and 4 given Dam 3 and Dams 2 and 5 given those at Dams 3 and
4. The horizontal lines give the upper 95% null level.
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Figure 4: The top panel provides an estimate of the MI of the two real parts of the
Mississippi river flows at Dams 2 and 5. The bottom panel similarly refers to the
two imaginary parts. The dashed line gives the upper 95% null level.
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