
Draft: 31 August 941An Application of Statistics toMeteorology: Estimation ofMotionDavid R. Brillinger1ABSTRACT Concern is with moving meteorological phenomena. Someexisting techniques for the estimation of motion parameters are reviewed.Fourier-based and generalized-additive-model-based analyses are then car-ried out for the global geopotential 500 millibar (mb) height �eld duringthe period 1-6 January 1986.1.1 IntroductionEarly in his professional career Lucien Le Cam was a statistician at Elec-tricit�e de France. His Fourth Berkeley Symposium paper, "A stochastic de-scription of precipitation", (Le Cam 1961), describes a conceptual stochas-tic model for (perhaps moving) rain�elds developed at that time. In partic-ular, Professor Le Camwas concerned with the development of river stream
ow following rainfall. The model involved a smoothing transformation ofa point process with direction and velocity of movement included. Therehave since been many references building on his work including: (Smith& Karr 1985), (Gupta & Waymire 1987), (Cox & Isham 1988), (Phelan1992).In this paper the focus is on velocity estimation of moving disturbances.To begin consider a number, N; of plane waves, gn(�nx + �ny � vnt),moving across a surface. The model of interest isY (x; y; t) = NXn=1 gn(�nx+ �ny � vnt) + noise (1)with (x; y) location, t time and the n�th wave having velocity vn and direc-tion cosines (�n; �n). The velocity is the parameter of particular interest inthis work. The functions gn(:) may be known up to a �nite dimensional pa-rameter, eg. g(u) = �cos(mu+�) or simply may be assumed smooth. The1University of California, Berkeley, USA



2 David R. Brillinger�rst case suggests employing Fourier techniques, while the second suggestsprojection pursuit regression techniques to study the velocities.The analyses presented here are for a worldwide spatial-temporal �eld.An interesting aspect is that, because the data are for the whole sphere,there is a basic periodicity in the x and y coordinates.The next section reviews some of the previous related work. In the follow-ing sections Fourier-based and smoothing-based techniques are applied to aparticular meteorological data set. One �nds that each of these techniqueshas its advantages, but that the standard errors of the velocity estimatesappear notably smaller for the smoothing-based technique.1.2 Some History(Briggs, Phillips & Shinn 1950) studied the behavior of radio waves re-
ected from the ionosphere. They were concerned with a randomly changingpattern moving across the ground. For example they were after drift veloc-ities. Time series were envisaged recorded via an array of 3 receivers, i.e.at 3 locations (x; y). With Y (x; y; t) denoting the signal recorded at timet and location (x; y), the basic parameter suggested to be employed in theestimation was the correlation functioncorrfY (x+ v; y +w; t+ u); Y (x; y; t)g (2)assumed not to depend on x; y; t. (Briggs 1968) extends the work and inparticular assumes the function (2) has the form�[A(v � Vxu)2 + B(w � Vyu)2 + Ku2 + 2H(v � Vxu)(w � Vyu)]with (Vx; Vy) denoting the drift velocities. Estimates of the Vx; Vy and theother parameters are obtained via nonlinear regression. (Briggs 1968) alsodiscusses the case where dispersion occurs, that is the velocity depends onthe wavenumber.(Leese, Novak & Clark 1971) study cloud motion via images taken froma geosynchronous satellite. They are interested in wind �elds. Pictures,Y (x; y; t), are taken at times t = t1 and t2. The basic criterion proposedis (2) with t = t1 and t + u = t2. The correlation is assumed to beindependent of (x; y) and the point, (v̂; ŵ), of maximumcross-correlation isdetermined. The speed estimate is thenpv̂2 + ŵ2=(t2�t1) and the directionestimate tan�1(v̂=ŵ ). These researchers found their procedure "Betterthan manual for speed". They noted that complications that could lead todi�culties of estimation included: growth, decay, rotations and layers.(Arking, Lo & Rosenfeld 1978) take a Fourier approach. They supposethat



1. An Application of Statistics to Meteorology: Estimation of Motion 3Y (x; y; t2) � Y (x� v; y �w; t1)The cross-spectrum of the two �elds Y (:; t2) and Y (:; t1) is then given byf21(�; �) � e�i(v�+w�)f11(�; �)where f11(:) denotes the spatial power spectrum of Y (x; y; t). The pair(v; w) are estimated from neighboring wavenumber, (�; �), data.(Marshall 1980) was concerned with speed and direction of storm rain-fall patterns. Data were available from a rain guage network, with sensorslocated at positions (xj ; yj), j = 1; 2; :::; J and measurements made attimes t = 0; 1; 2; :::. To carry through the analysis, the data were inter-polated to a grid. This researcher also took a maximum cross-correlationapproach, estimating for given u, the (v; w) maximizing (2) above. If thatextreme point is (v̂u; ŵu), the mean velocity of the storm is estimated bythe average of v̂u and ŵu. (Marshall 1980) used least squares to �t themodel h expf�a2r2 � b2s2gto (2), with r = v sin � + w cos � and s = w sin � � v cos �.(Brillinger 1985) indicated extensions of the results of (Hannan & Thomson1973) to provide large sample distributions for maximum cross-correlationestimates in the case of two time slices. (Brillinger 1993) is concernedwith estimating the joint distributions of several successive motions givenconsecutive locations of moving particles. (Brillinger 1994) is concernedwith the estimation of the travel times of the e�ects of cloud seeding. Inthat paper a conceptual model is built, analagous to that of (Le Cam 1961),for the transference of the e�ects, then both parametric and nonparametricestimation is carried out.In the study of problems such as those just described, critical distinc-tions that arise include: Is the number of sensors, J , small or large? Is thevelocity constant or dispersive? Is the number of time slices, T , small orlarge? The choices made a�ect the approximations to distributions of theestimates in important ways. When J or T are large, traditional asymptoticapproximations are available.References on the maximum cross-correlation approach are: (Burke1987), (Kamachi 1989) and (Tokmakian, Strub & McClean-Padman 1990).Estimation techniques, based on di�erential expressions of the motion, arereviewed in (Aggarwal & Nandhakumar 1988). (Carroll, Hall & Ruppert1994) investigate penalized least squares and maximum cross-covariancemethods for estimating the missalignment of a pair of images. Researchcontinues on this type of problem, into the circumstances under whicheach method is to be preferred.



4 David R. Brillinger1.3 The DataThe particular data studied here are a �ve day sequence of 0000 and 1200Greenwich Mean Time (GMT) geopotential analyses. These are spatiallyinterpolated estimates of the height of the 500 millibar (mb) pressure �eldacross the surface of the Earth. This quantity provides the thickness ofthe atmosphere between the sea level and the 500 mb level. It relates totemperature, being low for cold values and high for warm values. The datawere prepared by the National Meteorological Center in Washington andone reference to the method is (Dey & Morone 1985). The period covered is1200 GMT 1 January 1986 to 0000 GMT 6 January 1986. The time intervalbetween data is 12 hours and there are 10 time slices. The geopotential iscomputed on a 64 by 32 global grid, (64 equispaced longitudes and the32 latitudes 85.8, 80.3, 74.7, 69.2, 63.7, 58.1, 52.6, 47.1, 41.5, 36.0, 30.5,24.5, 19.4, 13.8, 8.3, 2.8 North and South). The data are based on manyobservations and are interpolated to this regular array. They are meant toprovide input values for numerical forecasts in particular.The measurements of 1200 GMT 1 January are graphed as contoursin an image in Figure 1. Values 5300 meters and below are indicated bydashed lines. One sees, for example, a depression over Hudson Bay. Furtherexamination of the 10 such images shows the depression to move eastwardand �ll in over the eastern Atlantic on 5 January.1.4 The ProblemThe problem of concern is how to estimate the velocity of a moving phe-nomenon, such as the 500 mb �eld whose initial time slice is graphed inFigure 1. This �eld could be denoted Y (x; y; t), but consideration will berestricted to motion along single latitudes. Denote the values along a givenlatitude, y, by Y (x; t)with t refering to time and x to longitude East. The model considered isY (x; t) = g(x � vt) + �(x; t) (3)with �(:) stationary noise. Here g(:) represents the moving shape and v itsvelocity. Because the Earth is a sphere, the function g(:) has period 360o.Fields that are periodic are considered in (Yaglom 1962), (Monin 1963),(Hannan 1964), (DuFour & Roy 1976).
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FIGURE 1.1. Contour plot of the 500 mb height at 1200 GMT 1 January1986.Contours at levels 5300 meters and below are indicated by dashedlines.Contours are spaced 100 meters apart.1.5 A Fourier ApproachFor the moment, let the longitude be expressed in radians, � = 2�x=360,rather than degrees. To reduce the e�ects of the presence of a �xed or slowlymoving disturbance, the process Y (:) analyzed is that of the di�erencesY (x; t) = Z(x; t+ 1) � Z(x; t)with Z(:) the original 500 mb values. The di�erencing operation enhancessmall features and makes the process values more nearly independent. Dataare available for � = 2�l=L; l = 0; :::; L � 1 and t = 0; :::; T � 1. A�rst analysis will be based on the empirical Fourier transformdTY (m;�) = Xl Xt Y (2�lL ; t)expf�i2�lmL gexpf�i�tg (4)L = 64; T = 9. Suppose the Fourier series expansion of g(�) isg(�) = Xk �kexpfi�kg0 � � < 2� with k wavenumber. Evaluating the Fourier transform ofg(� � vt) as in (4) one obtains
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0.5FIGURE 1.2. Lineal-temporal periodogram, jdTY (m;�)j2, of the data valuesY (x; t) at 6 northern latitudes.Units of the y-axis are cycles/day.�m �T (� + vm)with �T (�) = T�1Xt=0 expf�i�tgThe function j�T (:)j has principal mass near the origin, side lobes at3�=T; 5�=T; ::: and period 2�. By inspection jdTY (m;�)j2, as a function ofm;�, can be anticipated to have a ridge along �+ vm � 0.Figure 2 presents contour plots of jdTY (m;�)j2, the lineal-temporal pe-riodogram, for the 6 northern latitudes 36.0, 41.5, 47.1, 52.6, 58.1, 63.7 .Frequencies along the y-axis are in cycles/day. One sees principal peaksand suggestions of ridges, primarily at wavenumbers 5-10 and periods of3-10 days.The quantity dTY (m;�) is a double Fourier transform. In the estimation ofvelocity v, it is simpler to work with the following single Fourier transform
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ected in the numerical estimates and associated uncertainties givenin Section 1.7 .
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1.0FIGURE 1.4. Plot of the multiple R-squared criterion (6) for the generalizedadditive model �tting procedure.(Hayashi 1982) reviews space-time spectral analysis methods and theirapplications to large-scale atmospheric waves.1.6 A Nonparametric ApproachConsider again the model (3). In the case that the velocity v is known, butnot g(:), (3) is the simplest case of the generalized additive model, (Hastie& Tibshirani 1990), (Hastie 1992). In the case of unknown v, it is thesimplest case of projection pursuit regression, see (Friedman & Stuetzle1981). The function g(:) may therefore be estimated in a variety of manners,see the preceding references. In the present case, natural cubic splines withequi-spaced knots are employed, (Hastie & Tibshirani 1990).To start, v is viewed as known. Then g(:) is estimated, based on the datavalues (x� vt; Y (x; t)). As a measure of �t, multiple R-squaredR(v)2 = 1 � X(Y � ĝ)2 = X(Y � �Y )2 (6)
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1500FIGURE 1.5. The estimated functions ĝ(x) obtained via smoothing..is again employed. Its values are graphed in Figure 4, as a function of v,for the 6 di�erent latitudes. The peaks are much more prominent, but themaxima at the di�erent latitudes are seen to occur at similar locations tothose of Figure 3.Figure 5 graphs the estimates of the function g(:) for the 6 latitudes.In a search for periodicities, (Huber 1985) refers to such a technique as"A time series version of PPR (projection pursuit regression)".1.7 Uncertainty EstimationFor the moment it will be assumed that the noise process, �(:), consistsof independent 0 mean common variance normals. To begin consider theFourier procedure. The estimate maximizing (5) is maximum likelihoodand there are classic formulas to approximate the standard error. In thepresent case, since the only parameter of concern is v, the simple procedureof (Richards 1961) may be employed. It has the advantage that one candisregard the nuisance parameters. It involves expressing the estimates ofthe �'s, which are ordinary least squares, in terms of the parameter v andafter this substitution determining the maximizing value of v. Surprisinglythe second derivative of this likelihood of the single variable, v, may be



10 David R. Brillingerused to approximate the standard error of v̂. The values obtained are:Latitude oN velocityo/day s.e.o/day36.0 14.6 28.441.5 16.5 23.447.1 17.4 31.252.6 21.5 45.758.1 19.2 33.863.7 19.7 37.5These standard errors are large, compared to v̂, as might have been ex-pected from the broad peaks of Figure 3.In the case of �tting the model (3) with g(:) smooth, the results are:Latitude oN velocityo/day s.e.o/day36.0 13.9 5.941.8 17.3 7.447.1 18.7 14.052.6 22.8 16.658.1 19.4 10.463.0 18.8 10.6These standard errors are notably smaller. This second procedure is appar-ently more sensitive and will perhaps pick up the �ne features better. Thespline employed had 24 nodes and hence 25 linear parameters. The Fouriertechnique also had 25 linear parameters.1.8 Discussion and SummaryThe results of the two analyses, the �rst a parametric Fourier and thesecond a nonparametric, are broadly similar. Advantages of the Fourierapproach include: the model may also be examined by plots such as Figure2, periodicity is handled directly, the whiteness of the noise may be studiedand autocorrelation may be introduced into the model as necessary. Theadvantages of the generalized additive model approach include: the esti-mates are (apparently) more precise and an estimate of g(:) is provideddirectly.In interpreting the results one needs to keep in mind the possibility ofaliasing, i.e. that there is a disturbance going around the planet so quicklythat it appears to be moving slowly when sampled but every 12 hours.The model can be extended toZ(x; t) = f(x) + g(x� vt) + �(x; t)
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