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Abstract

This work presents an exploratory data analysis of the trajectories of deer and elk moving

about in the Starkey Experimental Forest and Range in eastern Oregon. The animals’ movements

may be a6ected by habitat variables and the behavior of the other animals. In the work of this

paper a stochastic di6erential equation-based model is developed in successive stages. Equations

of motion are set down motivated by corresponding equations of physics. Functional parameters

appearing in the equations are estimated nonparametrically and plots of vector 9elds of animal

movements are prepared. Residuals are used to look for interactions amongst the movements of

the animals. There are exploratory analyses of various sorts. Statistical inferences are based on

Fourier transforms of the data, which are unequally spaced. The sections of the paper start with

motivating quotes and aphorisms from the writings of John W. Tukey.
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1. Introduction

The 9rst task of the analyst of data is quantitative detective work, : : : His second

task is to extract as clearly as possible what the data says about certain speci9ed
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parameters. His later tasks are to assess the contributions of these statements from

all causes, systematic or whatever : : : Often the purpose of good analysis is not so

much to do well in catching what you want but rather to do well : : : in rejecting

what you don’t want. (Tukey, 1971)

The problem of interest this work presents is the description of the movement

of free-ranging animals. In particular, the paths of radio-collared Rocky Mountain

Elk (Cervus elaphus) and mule deer (Odocoileus hemionus) moving in the 7700 ha.

Starkey Experimental Forest are studied. The details of the experiment are provided in

Rowland et al. (1997). Models of movement are useful tools to study the ecology of

animal behavior and to test ideas concerning foraging strategies, habitat preferences,

and the dynamics of population densities. The description of movement is a complex

problem owing to the array of biological and physical mechanisms that control how

animals move on large landscapes.

Questions of interest include: How to describe the deer movements? How to describe

the elk movements? How do their movements di6er? How do the animals interact? Are

there some surprises?

Various exploratory data analyses have been carried out in the course of the work,

but only the particularly enlightening ones have been presented. A model of a stochastic

di6erential equation (SDE) driven by a process with stationary increments is developed.

At the outset Brownian motion was considered for the driving process. However, this

would have implied that the solution of the SDE was Markov and the analysis as well

as the biology contradicted this possibility.

2. A model

Data analysts regard their models as a basis from which to measure deviation, as

a convenient bench mark in the wilderness, expecting little truth and relying on

less. (Tukey, 1979)

The approach developed in the work is to assume that the animals are moving in

accordance with bivariate stochastic di6erential equations of the form

dr(t) = �{r(t); t} dt + �{r(t); t} dV(t) (1)

with r(t) a 2-vector representing the location of an animal of concern at time t. Here �

and � are parameters and V is a random function driving the movement. The parameters

and the process V control the direction and speed of motion. With E{dV(t) | r(t)}= 0

and var{dV(t) | r(t)} = I dt one has the interpretations

E{dr(t) | r(t)} = �{r(t); t} dt and var{dr(t)|r(t)} = �{r(t); t}�{r(t); t}′ dt:

Later in the paper it will be assumed that the process V has stationary increments.

Commonly it is assumed that V is a Brownian or a LKevy process, but this would

imply that the process r(t) is Markov.
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There are explanatory variables to include in the model. The permanent spatial ones,

such as the fence and foraging areas around the reserve, lie in the functions �()

and �().

3. The data

You must ‘sit lose’ to data, to results of analyzing data, and to interpretations of

these results, if you are to get full value of any of them. (Tukey, 1961)

Elk and telemetry data of the period 9 April to 15 May of the years 1993, 1995, 1996

are studied. The data from 1994 were studied in Preisler et al. (1999, 2001), Brillinger

et al. (2001a,b, 2002). The numbers of deer in 3 years are 5, 30, 8, respectively, while

the corresponding elk numbers are 30, 19, 45.

The data are spatial-temporal. The animals are labeled by m = 1; : : : ; M , and their

locations are recorded at times, tmk ; k=1; : : : ; Km for the mth animal. Also available are

various explanatory variables describing forest vegetation and topography suspected to

inOuence animal movement. Other habitat features such as distance to road and distance

to hiding cover may be derived. The locations are denoted rm(t) = {Xm(tmk); Ym(tmk)},

corresponding to the Universal Transverse Mercator (UTM) coordinates of the kth time

measurement of the mth animal.
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Fig. 1. Elk and deer tracks for 1 month. The paths are sampled in time, hence the straight line segments.
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Fig. 1 provides examples of the tracks of one of the deer and of one of the elk.

One sees that these two particular animals did not move too much over Starkey, but in

studies of the elk over a whole summer period, Preisler et al. (1999, 2001), Brillinger

et al. (2001a,b, 2002), some of the elk are found to visit widely spread locations.

4. EDA

: : : I hope that I have shown that exploratory data analysis is actively incisive

rather than passively descriptive, with a real emphasis on the discovery of the

unexpected : : : (Tukey, 1973)
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Fig. 2. Parallel boxplots of the square roots of the elk and deer speeds by hour of the day.
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Fig. 3. Estimated location densities for the elk and the deer at noon.

Many good techniques are simple and direct, with transparent relevance, for ex-

ample the box-plot and the scatter-plot. (Mallows and Tukey, 1982)

To begin the analysis some time domain plots are provided and then some spatial

ones. Fig. 2 is a parallel boxplot of the square roots of estimated elk and deer speeds

by hour of the day. The groups of animals appear substantially more mobile around

0500 and 1800 h and less active at night and mid-day, with the deer somewhat less

mobile. These observations are consistent with previous studies that have described

strong dawn and dusk movements by elk and deer between foraging areas and hiding

cover.

In preparing these plots animal speed was estimated by dividing the distance between

two successive locations by the di6erence of the corresponding observation times. For

stability the observations with time di6erences between 0.08 and 2:5 h were used.

It was felt that this gave some stability to the results without biasing them over-

whelmingly. With further assumptions the bias might be corrected for to a degree.

The square root re-expression is employed in the plots to de-emphasize the e6ects of

stragglers.

Fig. 3 provides kernel density estimates of the animals’ noon locations based on

all the data available. Noon was picked as, following Fig. 2, the animals’ were less

mobile then. There are di6erent hot spots, i.e. locations of congregation, for the deer

and the elk. There is a large area in the south-west that the deer appear to avoid.
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5. Fourier analysis

Though I was unaware (or slightly aware) of it at the time, it is now clear to me

that spectrum analysis, with its challenging combination of ampli9ed diQculties

and forcible attention to reality, has done more than any other area to develop my

overall views of data analysis. (Tukey, 1984, p. xxxix)

According to model (1)

ṙ = �{r(t); t} + �{r(t); t}V̇

and an animal’s velocity depends on location and time. Suppose, to motivate the anal-

yses of this section, the velocity process, ṙ is stationary, as would be the case if the �

and � did not depend on t and V̇ was stationary.

Fig. 4 provides plots of the X and Y coordinates of the velocities (r(tm;k+1) −
r(tmk))=(tm;k+1 − tmk) at the time points tmk , for the elk of Fig. 1. There is a gap when

the measurements were not collected. Despite some apparent reduced variability at the

outset acting as if the processes are stationary does not appear unreasonable.

In the analyses to come the following Fourier transform of the process is

employed

dT(
) =

∫ T

0

h(t)ṙ(t) exp{−i
t} dt: (2)
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Fig. 4. Estimated velocities in the X and Y directions for one of the elks as a function of time.
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Here −∞¡
¡∞ and h(t) a taper function to handle gaps in the time period

of data collection and to control leakage as necessary. This Fourier transform has

convenient large sample statistical properties in the case of a stationary mixing pro-

cess, see Appendix B. For the mth animal it may be approximated by

dT
m(
) =

∑

k

h(tmk)(rm(tm;k+1) − rm(tmk)) exp{−i
tmk} (3)

for animal m. In many stationary cases such Fourier transforms are approximately Gaus-

sian and independent for distinct frequencies 
. The periodogram matrix at frequency


 is now de9ned as

1

2�
∫

h(t)2 dt
dT
m(
)dT

m(
)
′
:

This periodogram was computed for each animal and year. Assuming the processes

have a common spectral density matrix, one can use averages over the individual

periodograms as an estimate of it. The estimated power spectra are then, approxi-

mately, multiples of chi-squared. Were the series rm white noise the spectrum would

be constant, and the periodograms’ values would Ouctuate about a constant level see

Appendix B.

Figs. 5 and 6 provide the results for the elk and deer, respectively. Also, approximate

95% marginal con9dence limits about the mean periodogram values are provided by the

dashed lines. The bottom panel provides the estimated coherence and an approximate

upper 95% null level.

For a bivariate stationary time series (X; Y ) with a sampling spacing of 1 the co-

herency may be de9ned as

lim
T→∞

E{dT
X (
)dT

Y (
)}=
√

E{|dT
X (
)|2}E{|dT

Y (
)|2}:

The coherence is the modulus-squared of the coherency.

In the case of the elk one notes the presence of strong peaks corresponding to

a circadian rhythm of period 1 day. (The vertical axis is on a log scale.) Such a

rhythm was suggested by Fig. 2. In the case of the Y -component, for both the elk

and the deer, there is a fall-o6 in power with increasing frequency. This suggests

autocorrelation beyond that of the 24 h period and complicates the interpretation of

the estimate. The result for the X -component is consistent with white noise. (One

reason for this is that because of the physical locations of the LORAN transmitters

and receivers used to estimate the locations there is much more noise in the estimated

value of the X -coordinate.)

Looking at the bottom panels of Figs. 5 and 6, the coherence estimate suggests that

the X and Y components are not related in a linear time invariant manner. This would

follow for the process (1) were the � appearing diagonal and the components of the

process V unrelated.
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Elk: X-spectrum estimate
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Fig. 5. Estimates of the spectrum of the X and Y coordinates and their coherence for the elk. The dashed

lines provide approximate 95% bounds.

The models to be employed subsequently will include a 24 h period, speci9cally t

of (1) will be replaced by 〈t〉, the time of day, in � and �.

The computations leading to Figs. 5 and 6 were carried out using expression (3) di-

rectly. It is worth noting that JWT had some ideas on how to compute an
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Deer: X-spectrum estimate
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Fig. 6. Spectrum estimates for the deer.

approximate FFT for irregularly spaced data, see his letter reproduced in Appendix A.

(A recent reference is Dutt and Rokhlin (1993).) The basis for the approximate 95%

bounds in the 9gures is the approximate normality of the Fourier transform (3), see

Appendix B.
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6. Smoothing

We need techniques that will help us see what the data are saying, even when

they don’t follow a straight line. (Tukey, 1977, p. 207)

The main tasks of pictures are then: to reveal the unexpected, to make the complex

easier to perceive. Either may be e6ective for that which is important above

all: suggesting the next step in analysis, or o6ering the next insight. (Tukey,

1975)

There are a variety of methods to approximate SDEs, Kloeden and Platen (1995).

A naive approximation to (1) is provided by writing

{r(tk+1) − r(tk)}=(tk+1 − tk) ≈ �{r(tk); tk} + �{r(tk); tk}Zk =
√
tk+1 − tk (4)

k=1; 2; : : : with t1 ¡t2 ¡t3 ¡ · · · observation times and the Zk satisfying E{Zk |r(tk)}=

0; var{Zk |r(tk)} = I.

In terms of the individual components (X; Y ) of r one has been led to the model

TX

Tt
= �x(X; Y; 〈t〉) + noise;

TY

Tt
= �y(X; Y; 〈t〉) + noise: (5)

If the drift function components, �x(:); �y(:), are smooth and unknown, one has a

nonparametric regression problem. Here estimates of the functions were calculated via

the function gam() of Hastie (1992) making use of the function lo() of Cleveland

et al. (1992). Following (4) the weights tm;k+1 − tm;k were used for the mth animal and

its kth di6erence.

Analyses are done separately for the deer and elk and are presented in Fig. 7 for

the time 0500. This time was selected because, following Fig. 2, the animals were

particularly active then. As indicated previously the observations with 0:08¡tk+1 −
tk ¡ 2:5 h are used in order that the instantaneous velocities may be approximated

reasonably. The plots are in the form of vector-9elds with the length of an arrow

is proportional to the estimated speed at that location. Its angle corresponds to the

estimated direction of movement. The directions of arrows at di6erent times of day

may be compared with maps of habitat showing features such as locations of roads,

streams or foraging areas. The 9gure may also be compared with Fig. 3. The movement

vectors at 0500 h (Fig. 7) may also be used with the density estimate at 1200 h (Fig. 3)

to visualize the morning movements of the elk and deer. All three variables, x; y; 〈t〉,
in the drift term appear signi9cant implying the dependence of drift on location and

time of day.

It may be useful to plot only arrows whose lengths are “signi9cant”. This is done

in Brillinger et al. (2001a) with uncertainties estimated by a jackknife procedure that

involves dropping groups of animals.
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Fig. 7. Vector 9eld estimates for the elk and deer.

7. Residual analysis

The use of residuals is an art where some physical scientists long maintained a

signi9cant lead on most, if not all, statisticians. : : : Many of the more powerful

forms of statistical analysis developed since 1920 can be formulated in terms of

residuals. (Tukey, 1961)

The iterative and interactive interplay of summarizing by 9t and exposing by

residuals is vital to e6ective data analysis. (Tukey and Wilk, 1966)

The models need not 9t perfectly or even adequately to prove usefully insightful.

(Tukey and Wilk, 1966)

Fig. 8 provides the logarithm of the mod-squared residuals after 9tting the function

�(r; 〈t〉) to the elk data displayed as parallel boxplots against time of day. The results

suggest that the 24 h rhythm needs to be present in the noises of model (5) in addition

to in �. One notes that the peaks in the plots occur near the same locations as those

of Fig. 2. Hence, the model

Tr

Tt
= �(r; 〈t〉) + �(r; 〈t〉) · noise

is next 9t.
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Fig. 8. Parallel boxplots of log(mod-squared of residuals) versus hour.

After the new 9tting the residual spectral estimates for deer became consistent with

an assumption of white noise so the 9gures are not presented. For the elk, Fig. 9

provides the analog of Fig. 5. The X -spectrum daily component is seen to be much

reduced; however, the Y -component while reduced, remains. Initially this was puzzling.

When attention turned to examination of the sampling times, tmk , considered as a point

process, it was found that they contained a daily variation. Fig. 10 provides their

average periodogram.

To gain some understanding of this note that the spectral density matrix of a process

V sampled at the times of an independent stationary point process N is given by

c2
N fVV(
) +

∫

fNN (
− �)fVV(�) d�; (6)

where cN is the point process’s rate and fVV is the spectral density matrix of the

process V, Brillinger (1984). If the process V is nearly white, then the expression is

nearly constant, see Appendix B. However, if it is not white the expression cannot be

anticipated to be near constant. (The words “nearly” and “near” are used here because

of the diQculties of de9ning white noise in continuous time.) Examining Fig. 9 this

appears to be the case for the Y -component of the elk. There appears to be a fall-o6

as the frequency increases.

The residuals have led to a puzzle and Fourier analysis has led to its possible

resolution, namely the driving process, V, is non-Markov.
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Elk standardized residuals: X-spectrum estimate
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Fig. 9. Estimates of the residual spectrum of the X and Y coordinates and their coherence for the elk. The

dashed lines provide approximate 95% bounds.

8. Dependencies amongst the animals?

To use FT does not imply that there are periodic phenomena. (There may be.)

(Tukey, 1980)

Consideration now turns to possible interactions amongst the animals. Perhaps the

deer are meandering independently of each other. Perhaps the elk are doing so. Perhaps

the deer are meandering independently of the elk. Fourier methods are employed to

examine these possibilities for one elementary dependence model.

To simplify the description of the methods consider the complex-valued series,

U (t) = Ẋ (t) + iẎ (t) for the deer and V (t) = Ẋ (t) + iẎ (t) for the elk, see Brillinger

(1973). Next consider a time series analog of the equi-correlated variables model of
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Periodogram of elk observation times
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Fig. 10. The average of the periodograms of the sampling times.

multivariate analysis. Speci9cally suppose that, up to a complex conjugate, the co-

herency of the (complex-valued) velocity of any two of the elk (or deer) is the same.

Further, assume that for any selected elk-deer pair the coherency is the same. There

are thus three coherencies: Ree for a pair of elk, Rdd for a pair of deer and Rde for an

elk with a deer.

This structure would result were there independent stationary processes !(t); "e(t)

such that

Ue(t) = !(t) + "e(t) (7)

for the elk, with e labeling the J elk. The random component process, !e, may be

viewed as representing time varying phenomena a6ecting all the elk simultaneously.

It corresponds to the random e6ect models leading to equi-correlated variables in an

analysis of variance context. It could include the e6ects of the day, e.g. a 24 h period.

A method of moments estimate of this coherency is

R̂ee(
) =





∑

j �=k

Xj XX k





/

(

(J − 1)
∑

|Xj|2
)

; (8)

where j and k sum over the J available elk and Xj denotes the approximate Fourier

transform of the velocities, (3). This estimate is real valued. Following laws of large

numbers and central limit theorems, when 
 �= 0 its approximate distribution for large

J in the case that ! is constant is that of

(|z|2 − 1)=J; (9)

where z is a standard complex normal variate, see Appendix B. This result may be

used to assess the signi9cance of R̂ee(
) and leads to the bounds in Figs. 11 and 12.

Similar remarks may be made about R̂d(
) for the deer. The taper function in (2) deals

with the holes that are present in the data.
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Fig. 11. Sqrt(abs(coherency)) statistics for deer–deer, elk–elk, deer–elk, respectively. The dashed lines cor-

respond to approximate 95% upper null limits.

Turning to the coherency, R̂ed(
), between an elk and a deer a method of moments

estimate is provided by

R̂ed =





∑

j; k

Xj XY k





/

√

JK
∑

|Xj|2
∑

|Yk |2; (10)

where Yk denotes the Fourier transform of the velocity of the kth deer. For large

J; K the distribution of |R̂de| may be approximated by that of a normal with mean

�=
(

4
√
JK

)

and variance (1 − �=4)=(JK), see Appendix B.
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Sqrt(deer equi-coherency) residuals

0.0

0.2

0.4

0.6

0.8

1.0

Sqrt(elk equi-coherency) residuals

0.0

0.2

0.4

0.6

0.8

1.0

Sqrt(|deer-elk equi-coherency|) residuals

cycles/day

0 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

5

cycles/day

0 10 15 205

cycles/day

0 10 15 205

Fig. 12. Sqrt(abs(coherency)) statistics for deer, elk, deer–elk residuals, respectively.

Fig. 11 presents the estimates R̂dd(
); R̂ee(
); |R̂de(
)| based on the Fourier transform

(3). The main structure apparent in the top two panels of the 9gure is the 24 h rhythm

already noted in Figs. 2, 5, 6.

Fig. 12 provides the corresponding quantities based on the residuals i.e. the series

having “removed” the 24 h period. Everything is Oat and there is little evidence for a

remaining latent component as assumed in model (7).

In summary, for the (contemporaneous hidden variable) model (7) no apparent de-

pendence is found amongst the elk, or amongst the deer or between the elk and the

deer beyond their common dependence on the time of day. This does not rule out other

types of dependence. It might be that the deer lag behind the elk, as in U (t)=V (t−&)
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for some &, for example. Further it is reasonable to anticipate the strength of depen-

dence between two animals depending on the distance between them. Such a model

will be constructed in later work.

9. Discussion and conclusions

In summary, data analysis, like experimentation, must be considered as an open-

ended, highly interactive, iterative process, : : : (Tukey and Wilk, 1966)

A number of questions of interest were listed in the Introduction. The 9rst two

concerned providing descriptions of the animals’ paths. This has been done to the

extent that now realizations of the paths can be generated, for example to use in

bootstrap computations. It appeared that the motion was not a Markov process, as it

would have been were the driving process of (1) Brownian. A non-Markov driver

surely had to be the case for there are irregular time lags in the animals’ behavior,

e.g. in respect of foraging bouts. Further an initial analysis was carried out to describe

the interactions, if any, amongst the animals. Non was found, but the model employed

was limited.

The EDA attitude has proved a powerful one with which to investigate this data

set of the paths of elk and deer in a large reserve. So too have the tools of smooth-

ing and Fourier analysis. All three of these technologies were favorite techniques of

John Tukey. In particular Fourier analysis has handled observations that were not made

simultaneously, nor equi-spaced and with enforced gaps. These are typical character-

istics of data obtained from animal telemetry studies. Smoothing played a central role

in estimating drift patterns. In other work the results are related to the habitat of the

Starkey area.
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Appendix A

The calculations made in Sections 5 and 8 use the Fourier transform of a function

observed at unequally spaced times. JWT suggested an approximate method for such

computations. It is presented below. Luckily modern computers are often so quick that

the Fourier transform can often be evaluated directly from the de9nition.
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There follows the text of a letter that JWT wrote to DRB January 22, 1980.

Dear David:

More to the cheaper calculation of

K(w) =
1

N

N
∑

1

eiwti :

Let 9rst

ti = mih+ (i

with mi integral and |(i|6 n=2. Then

K(w) =
1

N

N
∑

1

eiwmih(1 + iw(i − w2(2
i + · · ·):

Now put

k0(m) =
1

N

∑

mi+m

1;

k1(m) =
1

N

∑

mi+1

(i ;

k2(m) =
1

N

∑

mi+1

((2
i =2)

: : :

so that

K(w) =
∑

eiwmhk0(m) +
∑

eiwmhk1(m) +
∑

eiwmhk2(m) + · · · ;

which can now be calculated by a few FFTs.

If we want to use w’s up to wMAX and require to approximate eiw( to 1%, then

we can use the 9rst two terms for

|w(|6wMAX

h

2
6 0:14 ≈ 1

7

that is with

h6
1

3:5wMAX

not too far from (10)−1(�=wMAX). To meet the same constraint with the 9rst three

terms would require

wMAX

h

2
6 0:39
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or

h6
0:195

wMAX

:

The ratio of the numbers in the intervals is

0:39

0:14
= 2:7;

which is greater than the ratio of numbers of FFTs, namely 1.5, so that going as

far as the third term may easily be worthwhile.

Similar calculations give

terms = FFTs max |w(| ratio product

2 0.14 14

3 0.39 7

4 0.7 5.7

5 1 5

Suggesting that it may pay to go to 4 or 5 terms.

Regards, John

Appendix B

For elk j, write quantity (3) as Xj as in Section 8. Consider expression (8). It may

be manipulated to
((

∣

∣

∣

∑

Xj

∣

∣

∣

2
)/

∑

|Xj|2 − 1

)

=(J − 1):

Now when ! in (7) is constant the Xj will be approximately independent and identically

distributed. Laws of large numbers and central limit theorems will apply directly and

one sees that the large sample distribution is that of (9) as indicated. The large sample

distribution for (10) suggested in Section 8 follows similarly.

That (8) is a method of moments estimate of the coherency Rdd(
) may be argued

as follows. De9ne a process P(:) via

dP(t) = V (t) dN (t)

with V (:) the complex-valued process representing the velocity of a deer and with

N = {*k} a point process of measurement times. Now the empirical FT (3) is like

dT
P(
) =

∫ T

0

h(t)e−i
t dP(t): (11)

The properties of such FTs are developed in Brillinger (1972, 1973). To proceed

it will be assumed that the process P(:) is mixing and has stationary increments.
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Supposing further that its real and imaginary parts are uncorrelated, but with the same

autocovariance function, (Figs. 5 and 6 suggest this is not strongly contradicted), then

for large T the distribution of (11) is approximately

NC

(

0; 2�

∫

|H (�)|2 d�fPP(
)

)

with H the FT of h. The FTs, Xi ; Xj, for two elk will be approximately complex

normal with complex-valued correlation the coherency Ree(
) leading to the proposed

estimate (8).

Consideration next turns to the logic lying behind the model assessment via the

periodogram of the residuals. The spectral density matrix of a sampled continuous

time process was given as (6). Suppose now that the basic process is considered at

closely spaced times t= 0;±1; : : :, then the data may be represented as {N (t)V (t); t=

0;±1;±2; : : :} where {V (t); t=0;±1;±2; : : :} is the series and {N (t); t=0;±1;±2; : : :}
is a 0–1 valued series representing the sampling times, {tk}. N takes on the value 1

when the V observation is present and 0 otherwise. The nonzero values of NV are

the {V (*k)}. The series NV reOects the statistical properties of the series V and N .

For example if V and N are mutually independent and stationary with power spectra

fVV (
); fNN (
) then the process NV has power spectrum

c2
NfVV (
) +

∫ �

−�

fNN (
− �)fVV (�) d�

assuming further that V has mean 0 and that N has mean cN . This expression was

given in Bloom9eld (1970) and follows from Example 2.10.4 in Brillinger (1975).

From it one sees that if V is white noise then the spectrum of NV is constant. The

heuristics of this result are clear: if the series is white then the sampled values are

a separate selection and themselves white. One has a means of assessing whether a

sampled time series is white. (These remarks correct some inappropriate discussion in

Brillinger (2000).)
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