
Extending the Volatility Concept to Point
Processes 1

David R. Brillinger 2

Statistics Department, University of California, Berkeley, CA, 94720-3860

“So I think that in time series you can’t write in a definitive fashion. The
field is still going to have a lot of changes in it.”

T. W. Anderson quoted in DeGroot (1990).

Abstract
Volatility is a vague concept that can be made precise in a number of ways. This

paper investigates the concept for point processes in the time domain. There is review
of the time series case, then a volatility measure is developed. Next it is applied to some
biomedical data based, RR intervals. of the heart beating. It is seen in the work that in
some cases time series volatility might be generated by point process volatility.
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1. Introduction
Ted Anderson has been a statistical beacon throughout so many of our academic

careers. That light now includes the sparkling talk that he gave recently aged 90. This
paper concerns a concept from economic time series analysis, one of Ted’s many special-
ties.

Volatility is an important topic for time series analysis generally and for financial
series work particularly. It is a vague concept, capable of being formalized in a variety
of ways. One persistent notion is local in time variability, that is things are changing
a lot as time advances. Volatility has been measured by the local standard deviation,
σ(t), or the local variance, σ(t)2 for series such as the returns of a security or a market
index. Commonly, the higher the volatility the riskier the security, and thus volatility is
important information for a security owner or prospective buyer.

The study of volatility can lead to better forecasting of a series, to better understand-
ing of the past, and to better assessment of risk. For example in insurance considerations
the safety loaded pure risk premium can take the form

λ1p(t) + λ2σ(t) + λ3σ(t)2

where the λ’s are weights, p(t) is the fair premium, and σ(t) and σ(t)2, are volatility
measures at time t. One reference to the insurance case is Daykin et al (1994).

Another measure of financial risk is the Value at Risk (VaR). It has been defined as
the maximum expected loss over a specified time period with a given confidence level of
occurring. Losses in the time horizon are only to exceed the VaR only with prespecified
probability α, see Tsay (2002) or Bouchard and Potters (2003). Estimates of something
like σ(t) are required for VaR estimation.

The motivating consideration of this present work is the study of the concept of
volatility in the point process case. By a point process is meant a non-decreasing sequence
of time points, {τj}, j = 0,±1,±2, .... It seems worth studying an extension to point
processes for reasons including:

a) It appears that generally in the study of time series something more can be learned
about that case by studying point process analogs.

b) Point processes are the building blocks of many other processes. This has the
implication that volatility in a time series may be generated from volatility in a latent
point process. (This will be illustrated later in the paper.)

c) Point processes are an interesting data type in their own right.
d) The subject matters of finance and time series can be brought into the point process

case by imagining that there is a common cost associated with each event.
e) One might chose to replace the point process by a 0-1 valued discrete time series.
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Things desired in a study of volatility might include: description, detection, formal-
ization, prediction. In this work two measures are proposed, one a function of time and
the other a function of a point’s index number.

The investigation provided is partly empirical. There is study of a biomedical data set.
In fact there are many economic and financial empirical examples of volatility analysis
of time series, see Bouchard and Potters (2003), and Tsay (2002) for example.

The layout of the paper includes: discussion of the time series concept, then the point
process case. There is material on risk analysis and general discussion.

2. The time series case

2.1 Time series background

The work begins with reference to the development of the volatility concept in the
financial world.

On their website Merrill Lynch provides the following definition,

“Volatility. A measure of the fluctuation in the market price of the underlying
security. Mathematically, volatility is the annualized standard deviation of
returns.”

The definition refers to “returns”. For a financial entity they are defined as follows: for
t = 0,±1,±2, ... if Pt denotes the price of the security of interest at time the return is

Yt = (Pt − Pt−1)/Pt−1 (1)

This definition fits in with the usage of the word over many years. Return is also some-
times taken to be

log Pt/Pt−1

The two definitions are close if the values Pt are not changing quickly.
An empirical formula for volatility at time t is provided by

se{Ys | s near t}, (2)

or its square, with se denoting standard error.
In the time series case there are model-based formulas as well. Consider the GARCH(P,Q)

series Yt given by
Yt = µt + σtǫt, (3)

and

σ2
t = α0 +

P∑
p=1

αp[Yt−p − µt−p]
2 +

Q∑
q=1

βqσ
2
t−q (4)
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for t = 0,±1,±2, .... Here µt is the mean level, ǫt has zero mean, unit variance, and
the α′s, β′s are ≥ 0. The volatility has been defined as σ2

t , see Tsay (2002). Once the
α’s and β’s have been estimated an estimate of σt can be computed and fed into risk
computations. A further advantage of employing a GARCH model is that predictions of
future Yt values may be constructed.

In another approach, when time is continuous, one has

E[Y (t) − Y (t − h)]2 = 2[c(0) − c(h)] ≈ −2c′′(0)h2 (5)

for small h, provided the derivative exists.
The righthand side of (5) can be recognized as

2c(0)π2[E(#{crossings of mean})]2h2

for the stationary normal, see Cramer and Leadbetter (1967), page 194. This leads one
to consider the number of crossings of the mean level in the neighborhood of t as another
measure of volatility. The corresponding empirical measure is

#{crossings of mean|near t} (6)

which may be considered as a local measure of volatility.
If one now views the series {Y (t)} as locally stationary, then with this definition

volatility is getting at whether the local second derivative of the autocovariance function
at 0 changes much as one slides along the series.

Ghysels, Harvey and Renault (1996) presents a broad review of volatility analysis for
time series.

2.2 A time series example

A biomedical example is now considered. The MIT-BIH Atrial Fibrilation Database,
Goldberger et al (2000), contains a variety of cardiology data sets and analysis programs.
The data to be studied here are for case 04043. They are intervals between heartbeats.
The last 6000 RR intervals are studied in particular.

Thus one has a time series of interval lengths, {Xj} to work with, and the series
index, j, is the dimensionless beat number. The units of the intervals Xj are seconds.
Successive Xj are graphed in Figure 1. One sees scattered bursts of much higher vari-
ability interspersed amongst a background of approximately constant lower variability.
One can say that the series is more volatile during the bursts. The bursts are seen to
begin and end abruptly, i.e. there is no slow uprise or decay.

In the analyses presented the sequence of RR intervals, {Xj}, is converted to relative
changes in interval length by setting

Yj = (Xj − Xj−1)/Xj−1 (7)
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j = 2, ..., 6000. A different stretch of the 04043 data is studied in Tateno and Glass (2000).
These researchers work with the successive interval length differences, Xj − Xj−1 with
the goal of detection atrial fibrillation automatically.

The values Yj are graphed in the upper left panel of Figure 2. The series is similar to
Figure 1, but the local trends of Figure 1 have been reduced and the background to the
bursts is more orderly.

In Figure 2 the upper right panel shows the volatility measure (2), that is standard
errors of batches of 36 interval lengths are plotted. The bottom left panel provides the
zero-crossing value (6). This plot is very similar to the previous, but has more background
variability at its base.

Each of the the volatility panels does appear consistent with an intuitive notion of
volatility as extra variability and fits with the time series plot itself.

A number of GARCH models were fit, but none did well.

3. The point process case

3.1 Point process background

The material in the preceding section has been presented by way of intoducing results
for the point process case. Point processes are a common data type and are building
blocks of many time series processes. There are both parametric and nonparametric
forms of analysis available.

Suppose time is continuous, −∞ < t < ∞. One can denote a realization of the point
process by a non-decreasing sequence of time points, {τj}, j = 0,±1,±2, ..., or by a
non-decreasing function, N(t), counting the number of points up to and including time
t, starting at time 0, N(t) = #{τj ≤ t}. In the present case the τj are obtained by
summing the lengths of the beat intervals, as in

τj =
j∑

k=1

Xk (8)

The approach here is to view the point process as locally stationary, and thereby
imagine the parameters to be changing (slowly) in time.

The basic population parameters of point processes to be employed here are the rate
and the covariance density. To this end suppose that the points are isolated so that
there is at most one point in a sufficiently small interval. An algebra of increments and
delta functions may be employed in to develop expressions for population parameters,
Brillinger (1972). For example one sets

E{dN(t)} = pN(t)dt
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with pN(t) the point process rate at time t. Supposing one seeks a measure of local
dependence one can set

cov{dN(r), dN(s)} = [pN (r)δ(r − s) + qNN(r, s)]drds (9)

with qNN (r, s) the covariance density, and δ(.) the Dirac delta.
For h small one might consider var{N(t + h)−N(t)} as a measure of the variability

of a point process. Concerning it one has

var{N(t) − N(t − h)} =
∫ t

t−h

∫ t

t−h
[pN (r)δ(r − s) + qNN (r, s)]drds

≈ pN (t)h + qNN(t, t)h2 (10)

This will become pN(t)h for very small h.
Poisson variability shows itself in the presence of the term pN(t)h in (10). The Poisson

process is typically the standard against which other point processes are measured. The
qNN(t, t) term represents dispersion at time t. Depending on the sign of qNN(t, t) there
can be over or under dispersion. It is direct to set down examples, theoretical and
empirical, of each type of dispersion.

In the Poisson case the variance is the mean and so one could consider the rate pN (t),
as a measure of variability or volatility. In the case that pN (.) is a smooth function of
time pN (t) may be estimated by,

∫
k(t − u)dN(u)/

∫
k(t − u)du (11)

with k(.) a non-negative kernel vanishing outside a short interval including 0. The vari-
ance of this estimate in the case of (9) is,

pN(t)
∫

k(t − u)2du/[
∫

k(t − u)du]2 + qNN(t, t) ≈ pN (t)/h + qNN(t, t)

and one has been led to (10) divided by h, supposing k(.) integrates to 1.
As another method to be led to expression (10), suppose a time series has the form

∫
a(t − u)dN(u)

Then its variance at time t is
∫

a(t − u)2pN(u)du +
∫ ∫

a(t − u)a(t − v)qNN(u, v)dudv
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For the local rate extending over the interval (−h/2, h/2) this is approximately

a(0)2pN (t)h + a(0)2qNN(t, t)h2

and expression (10) shows itself again.
To tie in with the work of the previous section one can consider the discrete time

series, {Xj} of successive values Xj = τj − τj−1, j = 0,±1,±2, ... i.e. the interpoint
times. One can look for volatility in this interval series as in the previous section.

In summary, the discussion has led to pN (t)h+qNN (t, t)h2 as a measure of the volatility
near t. An estimate of pN (t) was given above at (11). There are several ways to estimate
qNN(.) in the stationary case, see Brillinger (1976). It seemed most convenient here to
proceed via a 0-1 time series approximation to the point process. A 0-1 valued series
may be obtained as follows. Set

Zk = 1 if k = < τj/h > (12)

for some j and for small h with < . > denoting the integral part of its argument for
k = 0,±1,±2, ..., see Brillinger (1987). To have the same time domain one rescales by
writing t = hk. The parameters of this 0-1 process relate to those of {τj} by noting that

Zhk =
∫ h(k+1)

hk
dN(u)

and so its variance is
∫ ∫

[pN (r)δ(r − s) + qNN(r, s)]drds ≈ pN (t)h + qNN(t, t)h2

and one is again led back to the desired expression (10).

3.2 A point process example

Consideration now turns to the R times or beat times, {τj}, of the cardiology se-
ries. Figure 3 displays various statistics. The upper right panel shows the running rate
computed as in (11), with k(.) uniform,. It is computed by splitting the τj values into
segments of 3.6 seconds in length. Surprisingly the plot is not that unlike the one of
Figure 1.

For the next computations it is convenient to replace the point process values by a
0-1 time series constructed as at (12).

The top right panel shows the rate, here called the local average, computed via the
0-1 approach and splitting the series into 201 segments of 176 points. The top two panels
are quite similar. The bottom left shows the running variance estimate computed as was
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the top right panel. It is surprisingly similar to the top left panel leading one to compute
the ratio of local variance to the local average. One sees underdispersion relative to the
Poisson. This occurs commonly with approximately periodic processes, as one has here.

4. Risk analysis
Risk is the chance of some unpleasant event occurring. In the present context it might

relate to too many points occurring in a brief time interval. With a statistical model that
probability can be estimated. An estimate might be simply the historical frequency.

One motivation for the work on volatility for point processes is that risk analyses do
arise for point process situations. One can mention earthquakes, wildfires and floods.

Volatility can be a warning that a process is out of control, that a risk has arisen, that
predictions have become difficult and that damage can occur if the volatility continues.
In a sense volatile periods are outliers and their occurrence needs to be studied and dealt
with

5. Extensions
Some problems remain. These include: automatic detection of high volatility, sta-

tistical properties of the estimates, extensions to the spatial case, the vector case, the
marked point process case, the long-tailed case, and the integer-valued case. One can
also consider random effect models.

A basic issue is how to display point process data to bring out the presence or absence
of volatility.

6. Summary and discussion.
The work has focused on two measures of local variability or volatility for point

processes. One measure is a function of time, based on the τj, the other is a function of
an index, j, based on the Xj = τj+1 − τj. The measures get at local behavior and appear
useful for prediction and process control.

They are computed for a biomedical series that displays bursts of activity and the
results appear in accord with one’s intuition.

It was also seen that volatility in a latent point process could be the cause of volatility
in a time series.
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Figure 1: 6000 RR interval lengths plotted against beat number.
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Figure 2: Upper left, the series Yt. The other panels provide the measures (2) and (6) of
volatility for the RR intervals as a time series.

10



0 500 1500 2500 3500

1.6

1.7

1.8

1.9

Running rate

time (sec)

ra
te

 (
be

at
s/

se
c)

0 500 1500 2500 3500
0.15
0.16
0.17
0.18
0.19
0.20

Local average, 0−1 based

time (sec)

lo
ca

l a
ve

ra
ge

0 500 1500 2500 3500

0.13

0.14

0.15

0.16

Variance, 0−1 based

time (sec)

va
ria

nc
e 

vo
la

til
ity

0 500 1500 2500 3500
0.80
0.81
0.82
0.83
0.84
0.85

Dispersion, 0−1 based

time (sec)

se
^2

/a
ve

Figure 3: Running rate of the point process of R times, τj, computed via expression (11).
The top right and bottom left are computed by splitting the 0-1 series into 201 segments
of 176 points. The bottom right is the variance divided by the local average, i.e. the
index of dispersion. One notes that it is always less than .86 .
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