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Abstract

Risk analysis, that is the problem of estimating the probabilities of rare
and damaging events, unifies the geosciences. One can mention the risks
from: floods, earthquakes, forest fires, space debris. The probabilities may
be fed into the computaion of insurance premiums. The Poisson process
often plays a prominent role, while marked point processes have a basic
function. Various ways to collect and extrapolate data will be described
and examples from various fields will be presented. The topic unifies the
environmental sciences.

1 Introduction.

1.1 Risk.

Risk may be defined as the probability of some hazardous event or catastrophe,
the chance something bad will happen. In many cases huge amounts of money
are involved [24]. The principal concern is low probability - high consequence
events, events that lead to damage, loss, injury, death, environmental impair-
ment for example. Often the work is done as an aid to decision making. In
consequence risk models and risk management pervade modern technical life.

A common tool in the work is a catastrophe model. These have been defined
as: a set of databases and computer programs designed to analyze the impact of
different secenarios on hazard-prone areas [24]. In practice these models combine
scientific risk assessments of the hazard with historical records to estimate the
probabilties of disasters of different magnitudes and the resulting damage to
affected structures. The information may be presented in the form of expected
annual losses and/or the probability that in a given year the claims will exceed
a certain amount.

Risk analyses may be required by the government. The end result may be
a rate rather than a probability. To cite a specific example a Core Damage
Frequency (CDF) value of 10−4 per reactor year is the value endorsed by the
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Nuclear Regulatory Commission in a Staff Requirements Memorandum as a
benchmark objective for accident prevention [26]. This rate is the probability
of damage to a reactor core within a year. Its units may be viewed as number
of events per year. See [11].

The field of risk analysis cuts across the environmental sciences. Here we
focus on some geophysical risks, risks of things like: landslides, avalanches,
earthquakes, floods, huricanes, tornadoes, forest fires, space debris, sea storms,
and hail storms, ...

A formal risk analysis often includes: i) estimation of probabilities, ii) de-
termination of the statistical distribution of damage and iii) preparation of
products like formulas, graphics, hazard risk maps. There is extensive use of
computing science, substantive subject matter and statistical methods.

A pair of revealing examples are provided by the papers of Fairley, [12], and
Miller and Leslie, [21]. The Fairley work is concerned with the probability of a
spill of liquified natural gas during its importation at U.S. ports. In particular
the paper makes the case for describing risks by probabilities not by their recip-
rocals i.e. return periods, ( the mean interval between events). The Miller-Leslie
paper concerns the probability of a ship hitting the Tasman Bridge at Hobart,
Austalia. In both these papers there is careful evaluation of the probabilities of
component events.

1.2 Some basic concepts.

The tools of risk analysis include: statistical methods, substantive background,
computer software and hardware. The products include probability estimates,
hazard maps, decisions.

Among the pertinent statistical concepts are: borrowing strength, forecast-
ing, (marked) point processes, Bayes Theorem, influence diagrams, uncertainty
estimation, distributions, models (extreme value, threshold, Poisson, binary re-
sponse, nonparametric and nonparametric methods).

Ideas from systems analysis and computing science also prove extremely use-
ful in risk analyses. These include: box and arrow diagrams, software packages,
simulation, decision tools, GIS, visualization, and data base management.

Both statistics and computer science often adopt the strategy of breaking
the problem down conceptually.

2 Some examples of risk analyses.

2.1 Example 1 - Amazon Floods.

The first example concerns the risk of floods on the Amazon River. A renewal
model is employed for the times of events, in part because the data set is small.
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Manaus is a city well up the Amazon in Central Brazil. At a dock the
river’s height has been recorded daily since 1903. Also there are newspaper
records and journals that may be consulted to determine the dates of some
earlier floods. [31]. Of official concern is the question of whether the risk of
flooding is increasing. Increased flooding will eventually occur because of the
deforestration taking place ibid.

The top panel of Figure 1 provides the dates of floods. There were 21 of them
during the period 1892 to 1992. The definition take for a flood, when specific
measurements were available, was that the stage exceeded 28.5m. In the panel
the dates are indicated by points along the x-axis and points of increase in the
cumulative count function N(t). To estimate the hazard function one needs a
distribution function for the times between events. The histogram of the times
between successive floods is given in the middle panel of Figure 1. The long
tail suggests the use of a Pareto distribution with p.m.f. p(u) = Cα/uα, u =
1, 2, 3, ... . The domain is integers because the data employed are years. The
curve fit by maximum likelihood is superimposed in the second panel. It is
assumed that the times bewteen events are independent, i.e. the point process
is renewal.

The bottom panel provides an estimate of the hazard as a function of time
since the last year of the data employed in our analysis, 1992. Approximate
90% confidence intervals are also indicated. These were obtained by working
with the logit transform and employing the delta-method.

More details of the analysis may be foiund in the papers [31], [3].

2.2 Example 2 -Great Earthquakes in California.

The concern of this example is probabilities for future great earthquakes in
Southern California. Once again a renewal process is employed, i.e. the times
between events are assumed i.i.d..

Pallett Creek is a location northeast of Los Angeles that is astride the San
Andreas Fault.. It has interesting geological structure. In the early eighties
the paleogeologist Kerry Sieh dug a trench that crossed the San Andreas Fault
there [29]. The trench showed an interesting structure - a number of sedimentary
layers were visible. There were breaks in the layers and Sieh inferred that these
were due to great earthquakes. For most of the breaks he was able to collect
samples of material that could be dated by radiocarbon (RC) methods. Sieh
carried out further studies. The estimated dates of earthquakes whose presence
he inferred are shown in Figure 2.

The analysis here is interesting for: the small number of data points involved,
the presence of a missing value, an open interval and substantial measurement
error. In order to obtain estimates of risk a renewal process with a Weibull
distribution is hypothesized for the intervals between the events. The Weibull

3



1892-1992 Manaus floods (> 28.5m)

year

1900 1920 1940 1960 1980

5

10

15

20

• • • • • • • • • • • • • • • • • • • • •

0 5 10 15 20

0

1

2

3

4

5

6

Intervals between floods - discrete Pareto fit

years

co
un

t

Probability of flood in u years from 1992

approximate 90% CI’s
u, years from 1992

pr
ob

ab
ili

ty

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Panel 1 is a step function counting the number of floods since Jan-
uary 1892. The dashed line’s slope provides the rate of events. Panel 2 is the
histogram of the intervals between floods and a fitted Pareto. Panel 3 is the
estimate of the hazard function and approximate 90% confidence intervals.
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density is

Prob{interval ≤ x} = 1 − exp{−(x/α)β−1}, x > 0

Measurement error from the radiocarbon dating is modelled as additive normal
with mean 0 and s.d. estimated at the RC laboratory. The missing date for an
event meant taking one of the available intervals as the sum of two Weibulls.
The open interval starts at the last event. It occurred in 1857. Numerical
integration was employed to determine the density of a Weibull plus an inde-
pendent normal and the one for the sum of two Weibulls. The reasonableness
of the Weibull assumption was assessed by the Weibull hazard plot given as
the middle panel of Figure 2. Maximum likelihood analysis was employed to
estimate the parameters. More details may be found in [30].

The bottom panel of Figure 2 gives the estimated risk as a function of years
into the future from 1988. The figure also includes approximate 95% marginal
confidence bounds.

2.3 Example 3 - Earthquake Damage.

Cornell [10] is the seminal paper on seismic risk assessment (SRA). His definition
of the subject is a variant of the following:
Seismic risk assessment - the process of estimating the probability that certain
performance variates at a site of interest exceed relevant critical levels within a
specified time period as a result of nearby seismic events.

The approach presented here is one of breaking the problem down concep-
tually into manageable parts: a) damage, b) site, c) attenuation and d) event
locations, times and sizes. These parts are illustrated in Figure 3.

In computing risks generally and seismic risks particularly two probability
results are basic:
Bayes Rule

P (ABC...) = P (A)P (B|A)P (C|AB)...(1)

Total probability theorem

P (A) =
∑

k

P (A|Bk)P (Bk)(2)

[34] is another fundamental paper. Figure 3 shows the corresponding series and
parallel structure for two possible events.

In the presentation we work backwards from a structure at a site to the
locations, times and sizes of earthquakes. (Two events are illustrated in the
Figure.)
a) Damage. There are a variety of ways to describe and estimate damage. An
important method uses the Modified Mercalli Intensity (MMI). One reason for
its importance is that values may be derived from historic accounts. Another is
that it refers to damage directly.

MMI values are given by roman numerals I to XII (and sometimes 0 referring
to no impact.) The scale is ordinal increasing with increasing severity of damage.
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Figure 2: Panel 1 estimated dates of the Pallett Creek events; panel 2 Weibull
hazard plot with the vertical lines indicating twice the RC dating s.e.’s; bottom
panel the estimated risk. 6
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For example the definition of MMI VIII includes: ”Damage slight in specially
designed structures; considerable in ordinary substantial buildings; ...” [7].

There are values that have been proposed to convert MMI values into damage
percentages for different types of structures. The following is an example of a
so-called damageability matrix given in [23]. The entries are loss ratios per risk
category in %.

MMI VI VII VIII IX X
residential .4 1.7 6 17 42
commercial .8 3 11 27 60
industrial .1 .7 3 11 30

Figure 4 shows some of the MMI-values obtained following the Loma Pri-
eta event of 17 October 1989. Th two large bays are San Francisco Bay and
Monterey Bay. Only some of the observations are plotted to avoid overstriking.
The epicenter of the event was near Santa Cruz California. (Arabic numerals
are plotted rather that Roman for convenience.) See also [32].

Next we seek a spatial distribution for the MMI values. Ordinal data are
conveniently handled by postulating the existence of a latent variable ζ and cut
points ai such that the MMI value at location (x, y) is given by

Ix,y = i if ai < ζx,y ≤ ai+1

Continuing we postulate a model

ζx,y = fx,y + εx,y

with fx,y deterministic and smooth and with εx,y having an extreme value distri-
bution. The use of the extreme value distribution is plausible given the nature of
destruction. It and the corresponding cloglog link mean that the function glm()
may be used for the computations, see McCullagh and Nelder [20], Chapter 5.

In [5] fx,y is estimated using the generalized additive models fitter gam() of
Hastie and the smoother loess() of Cleveland [9], on data from the Loma Prieta
event employed. Figure 5 provides the estimate of f . One see a general dying
off of the function values as one moves away from the epicenter, except for a
rise near San Francisco. This increase is associated with reclaimed land.

b) Attenuation. Next a relationship describing the fall-off in energy with dis-
tance as it passes through the medium is needed. This general fall-off is apparent
in Figure 4. Following Joyner and Boore, [17], consider the attenuation form

log(−log(1 − Prob{I = i})) = αi + βd + γlog(d) + δM(3)

where d is the distance of the observation point to the epicenter of the event
and M the event’s magnitude. This was fit to the Loma Prieta data. (As only
one event was involved δ could not be estimated separately of the αi.). The
results are given in Figure 6. In the case of MMI VIII one sees a very rapid
fall-off with distance.
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Figure 4: A sampling of MMI values observed for the Loma Prieta Earthquake.
The circlar dot represents the epicenter of the event.
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Loma Prieta event: estimated surface
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Loma Prieta prob{ I = i | source distance }
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Figure 6: Fitted probabilities of the indicated MMIs as a function of distance
from the epicenter.

c) Event locations and times. One imagines a marked spatial-temporal point
process of earthquake locations, times and sizes, (xi, yi, ti, Mi). In California
many faults have been located. In Figure 3 just two sources have been hypoth-
esized, but there could be many. One uses the total probability theorem (2).
In an expression like (3) one might take d to be the distance to the nearest
point on the fault from the site. Faults have been modelled as line and plane
segments with event magnitude related to their size. There are many geological
fault maps to work with.

Commonly renewal processes are employed to model the sequence of times.
The intervals between events might be assumed exponential, Weibull or lognor-
mal.

As an example of a fair premium computation, consider a commercial build-
ing 25km from an epicenter and an event like Loma Prieta. For this case the
estimated expected loss is

.8 ∗ .102 + 3 ∗ .389 + 11 ∗ .475 = 6.47%

and so the fair premium would be 6.47% of the amount insured.
See [2] for further details concerning this example.

2.4 Example 4 - Forest Fires.

In this example we turn to the problem of predicting the occurrence of forest fires
as a function of place and time. Let occurrences be denoted by (xj, yj, tj), j =
1, 2, 3, ... . One has a point process in space and time.
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Figure 7: Locations of fires in Oregon during 1989-1996

To illustrate the idea consider Figures 7 and 8. Figure 7 shows the locations
of forest fires in Oregon during the period 1989-1996 that occurred in Federal
lands. These lands are indicated in Figure 8.

Consider voxels (x, x + dx]× (y, y + dy] × (t, t + dt] and let

Nx,y,t = 1 if a fire in the (x, y, t) voxel

= 0 otherwise

For convenience suppose that dx, dy, dt = 1. (In the data and computations
dx, dy = 1km and dt is 1 day. Letting Ht denote the history of the process
up to time t, consider the probability

Prob{Nx,y,t = 1 | Ht} = px,y,t

In the work a logit model was assumed, specifically

logit px,y,t = g1(x, y) + g2(d) + ζ

with (x, y) - location, d - day of the year, ζ year effect. The g functions are
assumed to be smooth in the computations and are represented by spline func-
tions. The spatial term, g1, involved a thin plate spline and the day term, g2,
was a spline with period one year. The function took the form

g1(x, y) = α + βx + γy +
J∑

j=1

δjr
2
j log rj
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where for nodes (xj, yj) the distance is r2
j = (x − xj)2 + (y − yj)2, [27]. The

Splus function make.rb() of Funfits, [13], was employed in the computations.
Logit models have been used previously in estimating fire risk, see for example
[19].

The data set for Oregon was very large, 578,192,400 voxels and 15,786 fires.
To be able to carry out exploratory data analyses a sample of the data used.
All the voxels with fires were employed, but only a sample of those where no
fires occurred. The sampling fraction was π = .00012 This lead to 58094 cases
for the analysis.

With the logit link, conditional on the sample one had a generalized linear
model (glm) with an offset of log 1/π. This meant that standard glm computer
programs could be used for the analysis. (The new logit was logit p′ = logit p + log(1/π).)

The results are provided in Figure 9. One has estimates of the functions
g1, g2 and the effects ζ. The ζ are assumed fixed, but in work in progress
they are random. Examining the top panels one sees fewer fires in SE Oregon,
as could have been anticipated from Figure 7. In the thin-plate computations
60 nodes were employed and they were taken to be 10km apart throughout
the region. From the bottom left panel of Figure 9 one notes a definite day
effect - more fires in the summer. From the bottom right panel there appears
to be a definite year effect. The year effect values are relative to 1996 as 0.
The horizontal line is at 0. Also in the bottom panels of the figure are ±2 s.e.
bounds.

One can get estimated probabilities for a nominated region and times by
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est region.

adding voxel values. This is done for the Umatilla Forest and the results are
presented in Figure 10. (This region is the green area within the rectangle of
Figure 8. Also in the bottom panels of the figure are ±2 s.e. bounds.). The
count of fires in the region will be approximately Poisson following the Hodges-
Le Cam result [14]. This may be used to obtain estimated probabilities of, for
example, the number of fires in a specified time period exceeding a specified
count.

The above results are elaborated upon in [6], [28]. Currently the work is
involving other explanatories, random year effects and extensions to other states
of the U.S. . An example of a meteorological variable is moisture level, see Figure
11.

2.5 Example 5 - Space Debris.

The space near the Earth has been described as a veritable garbage can. There
are now in orbit millions of pieces of debris. These result from space activities
over the last 45 years. More than 200,000 of the pieces are between 1 and 10cm
in size. They orbit at speeds of several kilometers per second and can cause
substantial damage if they hit another object. In designing shielding for a space
object it is important to know the risks of collisions, [25], [15], [1].

An example of a question that arises is: What is the chance of some 1-10 cm
piece of debris passing through the 11000m2 cross-section of the International
Space Station space in the next 15 years? We will consider a simple variant.

There is considerable scientific knowledge of the physics of orbits dating back
to Kepler and Newton, see [33]. It may be used to estimate risks, [16], [8], [18].
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Figure 11: Moisture level for a week in July 1994
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Figure 12: A three dimensional representation of the orbit of an object showing
the elliptical orbit in the plane of rotation.

Figure 12 is taken from the NASA site www-istp.gsfc.nasa.gov/stargaze/Smotion.htm
. It shows the character of orbits and sets up some notation. In the figure: X is
the direction to the Vernal Equinox, N is the direction of the Ascending Node,
Ω is the Right Ascension, P is the point of Perigree, i is the inclination, ω is
the argument of Perigee . A basic aspect of the motion of an orbiting object is
that it takes place in a plane and is elliptical, [33] and [22]. This is illustrated
in the Figure.

For the moment considerations and notation are restricted to the case of
the plane. Figure 13 shows a quarter of an orbit. The Earth is at the focus,
O, and at time t the object is at P which will be described by (ft, rt) using
polar coordinates with ft, the true anomaly. A related angle is Et, the eccentric
anomaly. These variables are illustrated in Figure 13. The elliptical orbit may
be represented as

rt = a(1 − e cos Et)

where a is the semimajor axis and e the eccentricity of the ellipse. The ellipse
is swept out as Et varies. In terms of Figure 13 the object is at (φt, rt) where
φt = ω + ft.

The equations of motion may now be written

cos ft = (cos Et − e)/(1 − e cos Et),

sin ft =
√

1 − e2sin Et /(1 − e cos Et)

17
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Figure 13: The solid line represents a quarter of an orbit. The point O, the focus
of the ellipse, represents the Earth. The point P is the position of the object on
its orbit. The angle f is the true anomaly. The angle E is the eccentric anomaly.
The dashed line is the circumscribing circle.
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n(t − T ) = Et − e sin Et

The last is Kepler′sEquation. The constant n is the mean motion and P = 2π/n
is the period.

The paper [4] considers the rate of objects passing through a patch of space
and develops results using traditional statistical methods. Previous researchers
had used ergodic arguments in most part. In this 2-dimensional case a patch is
defined, in polar coordinates, by

{(φ = a(u), r = b(u)), u ε U}(4)

It is shown in [4] that the expected rate of objects passing through the patch is
∫

E

∫
U

p

(
a(u) − atan(

√
1 − e2sinE, cosE − e), t − 1

n
(E − esinE)

)
δ (a(1 − cosE) − b(u))

·|a′(u)aesinE − b′(u)
√

1 − e2

1 − ecosE
| du dE(5)

where p(ω, T ) represents the joint density of ω and T and δ is the Dirac delta
function.

Consider the particular case of a line segment poining directly at O. It may
be represented by φ = φ0, r = r0 + u with 0 < u < ε. Suppose that ω
is uniform on (0, 2π) and independently T is on uniform (0, P ), i.e. the initial
conditions are random. The rate function is then

a
√

1 − e2

r0

1√
(r0 − q)(q′ − r0)

ε

πP
(6)

where q, q′ = a(1 − e), a(1 + e), q < r < q′, 0 ≤ φ < 2π. This quantity does
not depend on t, nor does it depend on φ0, as could have been anticipated. The
function is graphed in Figure 14 for the case of eccentricity .6 . The function
depends strongly on r. One sees higher rates at the extremes, q, q′, of the orbit
with the highest at q.

In reality there are many orbiting objects. Their effects are superposed.
They, i.e. their initial conditions, may be independent or they may be dependent
as they result from the same breakup.

There are also important explanatories, such as solar pressure, drag, to in-
clude in a model.

3 Discussion and Conclusions.

The demand for risk analyses is growing generally, in part because costs of
replacing destroyed structures are growing and in part because of the steady
increase in the population living in hazardous areas. Statistical methods are
basic to risk assessments. This is obvious because probabilities and data are
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involved. It is also the case because statistics adds important things to what
the engineers and scientists tend to know and do on their own. Statisticians add
things like efficiency results, extensions to different data types, and uncertainty
analyses.

What have we learned from the examples presented? There are difficulties
and opportunities. There are solutions and there are lots of open problems. The
stochastic approach is highly effective.

What do the 5 examples have in common? - They are seeking probabilities
and distributions. What do the solutions have in common? - Data and subject
matter are basic. What are the products for each example? - Estimated prob-
abilities. Which methods play an important roles? - Stochastic modelling and
CI construction.
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