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1. Introduction

Statistics is concerned with data collection, data analysis, data reduction,
data modelling and inference. Its primitive concept is that of data. Statis-
tics is part of the methodology of science — pure and applied. It is per-
tinent to the various goals of science proper: explanation and understand-
ing, prediction and control, discovery and application, justification-
classification. Two things at the heart of science are observation and
inference. Inference may be deductive, arguing from the premises to con-
clusions, or what is the major process in science, inductive, intuiting
from the specific to the more general.

Statistical inference is concerned with making statements that go be-
yond the data collected. Its traditional paradigm is that of from the sample
to the population or parameter. The strength of statements made depends
on the situation at hand. There are several schools of statistical inference.
The schools are often in conflict; however, these days, their chosen prin-
ciples are fairly clear.

By now statistics has amassed quite a collection of procedures for
drawing inferences from data; however, with the passage of time, the
data of concern has gotten steadily more complex. This essay is concerned
with statistical inference in general and for random process data in par-
ticular. In barest detail & random proeess is an indexed family of random
variables (or chance guantities). In operational use a random process
is a random funection, or random measure, or random generalized function
with domain that is temporal or spatial or spatial-temporal. Its values
have coordinates. Its realizations are: curves, surfaces, shapes, figures,
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sequences and the like. It relates to situations where things move and
change.

We begin with an example of statistical inference for random processes
taken from our own experience. The example is one with a precise experi-
mental setup yet, apparently, inferences may not be drawn from direct
examination of the data or after the realization of new experiments. Rather,
a statistical concept of some subtlety is required to unravel the situation.
We remark that the statistician is concerned with the probabilistic con-
ceptualization of natural processes. At the same time he is a guardian of
a colleetion of tools that bring order to complex data sets, tools which
have had real successes. The remaining sections of the paper reflect these
two aspects. Scientific investigation and modelling are discussed in general
terms. Process data analysis and its aims are discussed in particular
terms.

Though it is not brought out specifically in the paper, mathematics is
always present for the statistician. Sometimes, especially in the theory of
random processes, his work is indistinguishable from mathematics. At
other times mathematics is a potent heuristic aid for planning data col-
lection and analyzing data at hand.

2. An example

A sequence of nerve impulses, or spike train, is a common form of neur-
ophysiological data. The times of the pulses correspond to the times at which
a particular neuron fires off. The heights of the pulses are nearly constant
and, provided the experimental conditions are reasonably fixed and the
experiment is not continued too long, the character of the spike train
is not seen to be evolving with time. It appears that this kind of data may
be reasonably modelled as a piece of a realization of a stationary point
process on the real line. Such a process may be defined as a random process
whose realizations N(-) are non-negative integer-valuned Borel measures
on R with the (stationarity) property that the probability that N(I, ¢
= gy eeey N(Ig+1) = ng does not depend on ¢ for I, a Borel subset of
Rand K = 1,2, ... Suppose that the observed times of consecutive pulses,
for a given spike train, are t,,...,%,. Then a key role is played in thc
example by the empirical Fourier transform

d(l) = jexp{—iltj} = fexp{—-i).t}N(dt),
i=1 7

whore 1 = R and T is the obhservation domain.
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In our example, spike trains could be recorded simultaneously for threc
neurons A, B, C of Aplysia californica. It was “known” that neuron A
was driving neurons B and C. It was not known whether there was SO
separate connection between neurons B and C and this was the scientific
question of interest. (Details may be found in Brillinger et al., Biol. Cyber.
netics 22 (1976), 213-228.)

A useful statistic for measuring the degree of association (at frequency 4
of two empirical spike trains, A and B, is the sample coherency

Ban(2) = FanW) V F s s ()

where f,5(4) is obtained by averaging values of d 4 (u)dy(u)for uin a neigh-
borhood of 2. Provided the same averaging is employed in forming f, , (4).
fe(4) one has ]RAB(}.) [*< 1, with values near 1 corresponding to strong
association. The Figure shows the functions |R,y2, |Ryol2, |R,0l? for one
particular set of experimental data and the spike trains are indeed “found”
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to be associated in pairs. The issue is whether the association of neuron
B and C results totally from their both being driven by neuron A, o
whether they have some assoclation (conneetion) beyond that. To the ex
tent that relationships involved are well enough captured by quadratic stat
istics, one can address such questions by partial coherencies.

The sample partial coherency of trains B and C given train A is

RBC-A = (RBC"“ RBA‘RAC)/ l/(l “‘ [RBAIZ)(l“' IRCAlz)'

Onc has [Rpg.|2<1, with values near 0 corresponding to weak associ
ation of trains B and C having “removed” the effects of train A. Th.
Figure presents this function for the given data. There is the stronges
suggestion of no direct connection between neurons B and C.

To formalize this “strongest suggestion” the 5 per cent significanc
line is given in each plot, as the horizontal dashed line. Were there n
separate connection of B and C, the probability of this line being exceede
at a given frequency would be (approximately) 0.05.

The situation now reached is typical of what happens in science an
what statistical inference has to offer. The hypothesis (of no direct connec
tion) eannot be verified absolutely; hence it is given an opportunity t
show itself false. What has happened is that the data have shown them
selves compatible with the hypothesis up to the limits of the inherent vari
ation present. Probability has been used to formalize this last.

3. Scientific investigation

In an earlier paper on our topie, (J. Royal Statistical Society A 130 (1967
pp. 457-477) M. S. Bartlett sets up a “ladder diagram” of scientific en
quiry of the following form:

(Theory) (Practice)

model <> planning /design
deduction - data collection
induction <« data analysis

new model < new planning/design

Things are initiated by some idea, question or problem. Then one move
down and across the steps as work progresses. (Similar schemata hav
been given by G. E. P. Box, J. American Statistical Association 71 (1976
pp. 791-799, and H. Mohr, Structure and Significance of Science, Springe:
Verlae (1977).) Deduetions from the model play a broad role and a narro




Statistical Inference for Random Processes 1057

one. Broadly they may be predictions that science and technology use to
make progress. Narrowly, they may be used just to validate the mode)
with extant data. (Statisticians have been much concerned with this
last.)

An essential feature of the whole investigative procedure is its cyclie/it-
erative character: ... deduction to induction to deduction to ...

4. Process data

Commonly the term process has referred to a phenomenon which showed
a continuous change with time. However, the idea has been substantially
abstracted with the time parameter allowed to be discrete, multidimen-
sional, set-valued and function-valued amongst other things. Further,
any requirement of continuity has been directly adapted to the situation
at hand.

Process data refers to information that has been derived by obser-
vation of the process at some collection of “time” values. The informa-
tion will often have numerical form; however, its values can lie in some
general structured space. We shall write process data as {¥ (), e T},
T denoting the observation domain.

In using the term we have in mind things like: the recorded arrival
times of individual photons collected by a telescope aimed in some direction,
stereoscopic photographs from a distance of some land or sea surface, the
collection of time series recorded at an array of sensors after a pulse of
energy is input to the earth, measurements of X-ray absorption by the
head as a function of the direction of a submitted X-ray beam, the distribu-
tion of earthquakes through space and time. In discussions of process
data it is usual to work in situations for which the number of realizations,
7, of the process ¥ (¢) is much less than the dimension, p, of the obser-
vation domain T. Multivariate data analysis, in contrast, concentrates
on the case n > p.

Thanks to the dramatic advances in equipment and instrumentation
during the past 30 years, researchers have effective tools for dealing
with the collection of many sorts of process data, e.g. ultrafast phenom-
ena and spatial-temporal fields. Issues arising are: data selection (aux-
iliary variates?), data storage (device, structure), data retrieval, data dis-
play, data auditing and flagging. Particular aspects of the process of inter-
est affecting how this is done are: data type, data frequency content /dy-
namic range/information content and whether one is working in real-time
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or off-line. It is clear that digital computers are important. Optical com-
puters are now beginning to play an important role as well, e.g. in data
smoothing and Fourier transforming.

As indicated in the ladder diagram, the model, deductions from the
model and the design of the investigation affect data collection. We shall
return to these stages later.

5. Aims of process data amalysis

A time series, Y (1), is a particular type of process for which ¢ and Y (1)
are real-valued. J. W. Tukey, Directions in Time Series (Eds. D. R. Bril-
linger and G. C. Tiao), Institute of Mathematical Statistics (1980), has
listed the following aims of time series analysis:

1. discovery of phenomena,

modelling,
preparation for further inquiry,
reaching conclusions in statistical terms,
assessment of predictability,
description of variability.
These apply to the general process case as well. Having in mind the great
variety of process data, we may also mention: control, classification,
establishing causation, description of relationship, summarization, re-
moval of concommitant variation, measuring degree of association, signal
reconstruction and enhancement, questioning conformity of theory to
data, focusing information, precise measurement of constants, compara-
tive analysis.

The neurophysiological example that we presented earlier was con-
cerned with reaching conclusions; however, the technique employed,
Fourier analysis, is well-suited to discovering unsuspected phenomena.

We have available today a broad collection of methods for meeting the
aims above. Various factors enter into the choice of method for an intended
analysis. One of the most important is the degree of urgency involved in
the situation at hand. A second is the computing facilities available.

SO L

6. Methods for process data analysis

At the operational level the methods available for process data analysis
depend upon the type of process of concern; however, there do exist
a number of techniques of quite broad applicability. We shall concentrate
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on these. Further any technique employed will depend intimately on the
aim of the analysis.

Manipulations possible for process data depend upon the particula
character of the process under study as well as the computational and in-
strumental facilities available. Linear forms in the data are by far the
most common. They may be real-valued or function-valued. Included are
Fourier and other transforms and least squares projections. In many case:
they are chosen to have high information content.

It is clear that one can contemplate working with quadratic and othe:
polynomial forms in the data. This has proved to be successful on many oc
casions. Great advantages of such forms are that they may be manipulatec
directly and that computational devices for their evaluation are ofter
available.

The step away from polynomial forms is a long one. Experience anc
insight have sometimes suggested particular statistics to work with
Alternatively, models of the situation of concern have proved a rich source
We will return to the eoncept of model shortly.

Things computed and displayed are located at several levels.Some things
are the primary goals of the work. Other things are intended to indicate the
uncertainty (or instability) of those primaries. Yet other quantities are
evaluated to examine and challenge assumptions (the model) that drove
the analysis.

Among specific methods applicable to process data are: spectrum analy-
8i8, smoothing, inversion, likelihood, Kalman-Bucy, -clustering, re-
expression, dimensional reduction, contingency, analysis of variance, least
squares, simulation. Specific algorithms exist for their application to many
types of data. However, there are continual difficulties that arise in prac:
tice and complicate the use of the algorithms. These include: missing data.
out-of-line data values, measurement error, concomitant variation,
extra structure in the data, artifacts, heterogeneous data, censored data
biased collection procedure, jitter, discretization error. A broad variety
of procedures now exist for dealing with these difficulties.

7. One important method

In a surprisingly large number of situations, the Fourier transform pro-
vides a meaningful method for handling process data. Tt is broadly defined.
flexible and has useful mathematical, statistical and computational prop-
erties. We have alreadv indicated the form of the Fanrier ftransform
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of some point process data. Tt instead we had planar data on a continu
ous process, it would take the form

A(Ryy 29) = [ [ T (1, )exp {— i (Asty + Agta)} At dts,
iy

T denoting the domain of observation. In many situations it turns out to b
helpful, and sometimes even cruecial, to insert a convergence factor, y
forming for example

ST vty ) ¥ (1, ) exp {— i (At, + Agta)} dtydty,

the support of ¢ being contained in T, y being approximately 1, but taper
ing off to 0 as it approaches the boundary of T. The last expression ex
tends quite directly to the case of a generalized (Schwartz—Bruhat) proces.
over an abelian locally compact group.

It should be no surprise that the Fourier transform of process data i
useful for handling convolutional relationships. (Indeed, this was one rea
son for its use in the example of Section 2.) It is also useful for examining
a process for phenomena at “frequency” 1. One way this is done is vis
the periodogram, |d(4)|%, or some smoothed form of this last. The fiel
of seismology provides two pertinent examples. Consider the suite of timu
scries recorded by an array of seismometers. Following an earthquake ¢
seismic signal may move across the array. A periodogram type analysi
of this data ecan be used to estimate the direction of the source of the seis
mic energy and the velocity with which it is travelling (and this may be
done for individual temporal frequency bands). By doing this analysi
for successive time periods, changes in the cnergy source may be note
and associated phenomena viewed. Aki and Chouet, J. Geophysics Res. 8!
(1975), pp. 3322-3342, provide an example wherein, following an explosion
Fourier analysis first shows energy coming from the appropriate directior
with the expected velocity, this is then followed by energy arriving fron
all directions with various velocities — apparently the result of back
scattering. Bolt et al., Barthquake Engincering and Struct. Dynam. 10 (1982)
pp. 561-573, provide another example of this sort of analysis. In thei:
case, records from a nearby earthquake were processed. The apparen
direction of the source of seismic energy was seen to shift with time. Thi;
may have been the first experimental measurement of a seismic dislocatior
moving along a rupturing fault. In each case, Fourier analysis allowed on
to “discover” .the presence of suspected scientific phenomena.

One tremendons statistical advantace of emnloving Fonrier analvsi:
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is that, in the case of a stationary process, the problem is turned into onc
involving independent identically distributed random variates.

8. Modelling

An ubiquitous concept in the work of statisticians (and indeed of al
researchers) is that of model. A variety of meanings are attached to the
word. (Some of thesc are reviewed by P. Suppes, Synthese 12 (1960)
pp. 287-301.) It is often taken to mean a theory. With a model at hand, muet
of a researcher’s work becomes deductive and manipulative. The greatest
difficulties lie in creating pertinent models. Statisticians end up with ¢
schizophrenic attitude to them. This is well illustrated by two statements
of G. E. P. Box: “Statistics is or should be the art and science of building
scientific models which (necessarily) involve probability.”, “Since all models
are wrong the scientist cannot obtain a ‘corrcet’ one by excessive elab
oration.”

Workers have developed a number of methods for assessing, impartially.
the strength of evidence for or against a particular model, (i.e. for mode
validation) and for estimating the values of quantities characterizing ¢
given model (parameters). Much work with models is concerned with in-
vestigating them theoretically and examining their goodness-of-fit em.
pirically.

The vast majority of statistical analyses rest on a probability mode.
of a process under investigation. Consideration of a random entity allows:
all of probability theory to be brought to bear on problems —in particu-
lar, for example, results concerning special random processes. In the
case of a system (that is, a structure consisting of possible inputs, an oper-
ation and corresponding outputs) there now exists an immense literature
concerning identification given data consisting of pieces of (process’
input and corresponding pieces of (process) output. An essential practica.
distinetion arises between situations in which the scientist can select (some
of) the inputs and those where they are outside his control. Anothe
distinction is whether the model is mechanistic (based on specific descrip-
tion of the natural components involved) or empirical (based on regular-
ities that caught the researchers eye). The former is the fundamental one.

9. Statistical inference

A statistical inference is a map from data to an uncertain conelusion.
The logic involved is multi-valued. The procedure is inductive. Statements
made are correct only in some average sense. The statistician usually pro-
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ceeds by building a chance model for the situation. Questions that aris
include: is the constructed model adequate for the data? how shouls
subjective information be incorporated? in what form should the con
clusions be stated and what is then their meaning? are there importan
unmeasured variables? what is the goal of the work? on what shoul
probability statements be conditional? how is a better model to be dis
covered? what parallel models should be considered? how should fact o
preliminary analysis be inecorporated? how should costs be inclu
ded?

Uncertain conclusions drawn after a data analysis have various form
and levels. At one extreme one has what Mosteller and Tukey, Data Analy
sis and Regression, Addison-Wesley (1977), call a “concealed inference’
wherein the data are so strong that no formalism or arithmetic are re
quired to come to a solid conclusion. Indeed, the very goal of experimen
tation is to end up with such certain conclusions. At another extreme
a conclusion involves but an elementary indication of the suspected vari
ability (stability) of some primary entity derived from the data at hand
In between one has a broad collection of inference forms and tools. W
mention: tests of significance, confidence regions, likelihood graphs, pos
terior distributions, tolerance regions, standard errors, distance measures
prob-values, fiducial probabilities, sensitivity analyses, simulations.

One of the major contemporary works on statistical inference for randon
processes is that of U. Grenander, Abstract Inference, J. Wiley (1981)
It is worth indieating some of the distinctions he recognizes and problem
and procedures that he highlights. By his choice of the term “abstrac
inference” he deliberately leaves ambiguous whether he means the sampl
space (set of possible observations) or parameter space (values for quan
tities characterizing the probability distribution at hand) or both to b
“abstract”. In the work he discusses each case. For inference he employs
linear methods, likelihood based estimates and direct methods (the latte:
being based on common sense estimates). Classical statistical inferencs
falls from the first two, once the appropriate structure is set up. To dea
with the fact that classical procedures sometimes fail if the paramete:
space is too large, Grenander introduces the “method of sieves” —em
ploying the classical procedure over a subset of the parameter space. The
method is like Tihonov regularization and, for example, leads to spline
in the case of nonparametric regression. Related circles of ideas include
penalized maximum likelihood, Courant regularization, Bayesian estima.

tion, ridge regression, and Stein estimates.
Tn the analveie nf mranoce Aata throa citnatinme raanirine Aifforand
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statistical techniques, occur in practice: the signal-like situation, the
noise-like situation and the mixture of signal and noise situation. In the
signal-like case records for the same circumstances differ chiefly by measure-
ment noise, e.g. images under the same conditions, identical utterances
by one individual. In the noise-like case realizations have quite different
appearances, e.g. the roughness of two pieces of road surface, turbulent
fields generated in repetitions of an experiment. The third case is a hybrid.
e.g. an carthquake recorded near a sea storm. In the signal-like case inter-
est often is to estimate the signal. Smoothing or deconvolution operations,
including regularization, may be invoked. In the noise-like case interest
lies in the population from which the realization came and, for example,
what may be sought is a description of the variability present or of other
underlying characteristics. Difficulties arise if one uses a technique devel-
oped for one case, with another. Comparison of signals requires generaliz-
ation of classical ANOVA.

So-called inverse problems fall into the signal-like case. These include
the problems of computerized tomography, image reconstruction and earth
modelling. They may often be formulated as: y = X6--¢, with v, 0, ¢
lying in abstract spaces, with X a known operator and with y also given.
The problem is to estimate the signal 6. Difficulties arise because of the
presence of the noise ¢ and because X is often unbounded. The Tihonov
regularization approach chooses as estimate the valuc of 6 minimizing
ly — X 0|+ a||8]; for some scalar a and 6 lying in some normed space.
In & number of cases the estimate may be written 6 = (X'X +ad) 'X'y,
for 4 an operator.

Photon correlation spectroscopy provides an example of a noise case
where one is interested in describing the variability present. In one appli-
cation, similar particles suspended in a liquid are in motion with differing
velocities. It is desired to estimate the distribution of velocities. To do
this, the liquid is illuminated by a laser beam. The motion of the particles
induces Doppler shifts of the laser frequency, specifically the autocovari-
ance function of the scattered light is proportional to 14-alb(u)]* at
lagw where a is a constant and b(u) = [ L(sinugv) jugv]f(v)dv, f(v) being
the desired velocity distribution and ¢ a known constant. The autoco-
variance may be estimated from a photo-multiplier record of the fluctuat-
ing light. The function f(v) may be estimated by regularizaton. One
reference is Frost and Cummins, Science 212 (1981), pp. 1520-1522. They
measure sperm motility.

It seems fair to say that once a stochastic model has been set down
much of the work of statistical inference proceeds in a regular manner.
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The book by I. V. Basawa and B.L.S. Prakasa Rao, Statistical Inferen
Jor Stochastic Processes, Academic Press (1980) contains many results f
& broad array of random processes. Difficulties arise on two fronts. Firs
many of the results are based on approximations, so they need study i
any particular situation. Second, and more importantly, there is the prot
lem of obtaining a reasonable model. In seeking a model the researche
typically turns to substantive theory and exploratory data analys
(using J. W. Tukey’s term). At some point the researcher has to have a
insight. This is a subconcious act and there is little likelihood that it ca
ever be made mechanical, but with today’s marvellous visnal displa
devices and growing collection of exploratory data tools, environment
for insight can be set. Process data typically involves an element of chang
or movement, making visual displays especially appropriate.

10. Planning and experimental design

We conclude with a few comments on planning /design issues for proces
data. The distinetion between experimental and observational data i
crucial. (In the system case—the distinction between chosen and natura
input.) The quality of inferences that may be drawn depends dramaticall;
on which type of data is at hand. With observational data one has alway
to be concerned that some unsuspected or “hidden?” variable was control
ling the situation, not the variables that showed themselves. Through th:
choice of factors to vary, through the design of input, through the use o
randomization a researcher can validate his statistical inferences and mak
efficient use of resources.

Once again many situations may be studied via the model Yy =X0+4¢
provided one is flexible in definitions. Taking X such that X'X is the iden
tity has long been known to be an effective plan in elementary experi
mental design. In the case of a process system, this leads to taking as inpw
things like: Gaussian white noise, a homogeneous Poisson, pseudorandon
binary noise and a train of chirp signals. A noteworthy phenomenon i
that stimuli developed for experiments in one substantive field find use
in other substantive fields. We mention the chirp signal moving fron
radar to exploration seismology, the sinusoid moving from power engin:
eering to laser spectroscopy, white noise moving from mechanical engin:
eering to nuclear magnetic resonance spectroscopy. An additional benefit
of employing random stimuli is that hidden variables are neutralized.

as in traditional statistical experiments.
In the ecase of a nanlinaar avetam anlyr a fow inmnt nranoaccae hasra hoorn
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studied extensively. N. Wiener argued for the use of Gaussian white noise
in the case of polynomial systems. It has led to satisfactory results ir
a number of physical situations.

11. Epilogue

Taking note of the site of this Congress and the site of the next, it would
be remiss not to make specific mention of Jerzy Neyman. His following
words are as true today as they were some twenty years ago: “Currently
in the period of dynamic indeterminism in science, there is hardly a serious
piece of research which, if treated realistically, does not involve operations
on stochastic processes. The time has arrived for the theory of stochastic
processes to become an item of usual equipment of every applied statis
tician.” J. Amer. Statist. Assoc. 35 (1960), pp. 625-639.
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