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A meandering hylje∗

David R. Brent S. Charles S.
Brillinger Stewart Littnan

Abstract. Hawaiian monk seals (Monachus schauinslandi) are endemic to the
Hawaiian Islands. The species has been declining for several decades and
now numbers around 1300. A key hypothesis accounting for the decline is
poor growth and survival of young seals owing to poor foraging success
Consequently, data have been collected recently on the foraging habitats,
movements, and behaviors of Hawaiian monk seals throughout the Hawaiian
Islands Archipelago.

Our work here is directed to exploring a data set located on the west side
of the main Hawaiian Island of Molokai in our search for a stochastic model
of a seal’s journey. The work proceeds by fitting a stochastic differential
equation (SDE) that mimics some aspects of the behavior of seals by working
with location data collected for one seal. The SDE is found by developing a
potential function. The estimated times of locations are irregularly spaced
and not close together leading to some difficulties of analysis and interpreta-
tion. Synthetic plots are generated to assess the reasonableness of the model
and suggest departures from it.

2000 MSC codes: 60J60, 62G08, 62M10, 70F99.

Key words and phrases: ARGOS satellite locations; Hawaiian monk seal; Po-
tential function; Spatial locations; Stochastic differential equation; Synthetic
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1 Introduction

Tarmo Pukkila has made many contributions to statistics in general and to
time series specifically. Figure 1 below shows a particular bivariate time series
that will be studied in this paper. We would like to be able to apply some of
Tarmos work on ARIMAs to the analysis of this series, but the series is seen
to be plagued by various complications including: outliers, unequally spaced
time sampling intervals and does not look like any of the usual ARIMAS.
What gives some hope in developing an analysis, as we shall see, is that a

∗Finnish for seal.
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great deal is known about the series context. However surely at later stages
Tarmo’s work will be applicable and probably applied.

Populations of virtually all pinnipeds (i.e., seals and sea lions) were re-
duced substantially, and some nearly extinguished, during the 1800s and
1900s by commercial sealers and whalers, poachers, and human fishers who
have considered these predators to be competitors for shared marine re-
sources (Reeves et al. 1992; Reeves and Stewart 2005). Most species however,
have recovered from those residual small populations and are now rela-
tively robust. There are exceptions however. The Saimaa seal (Pusa hispida
saimensis), the Ladoga seal (Pusa hispida ladogensis), and the Mediterranean
(Monachus monachus) and Hawaiian (Monachus schauinslandi) monk seals
are the clearest cases of populations or species that are still at substantial
risk of extinction from various causes (e.g., stochastic fluctuation in abun-
dance, environmental change, habitat modification or destruction, reduction
in prey, anthropogenic mortality of seals). The Saimaa and Ladoga seals are
subspecies of the parent ringed seal species that is widely distributed in
the circumpolar Arctic. Both of those species have been confined to inland
freshwater lakes for about 9,000 to 10,000 years, the former to the Saimaa
lake system in eastern Finland and the latter to Lake Ladoga in Russia near
St. Petersburg (Reeves et al. 1992, 2002). Though perhaps never historically
exceeding 2000 to 2500 seals, the Saimaa seal declined to around 200 seals
by the 1980s, though has evidently increased some recently to around 250
to 300 owing to direct intervention and conservation measures.

Though more numerous and with a less confined distribution than the
Saimaa seal, the Hawaiian monk seal now numbers only around 1300 seals
in the Hawaiian Island Archipelago, having declined substantially from the
1950s through at least the late 1990s. Because the population is predom-
inately older seals, it is predicted to decline further during the next two
decades at least as the number of recruits to the breeding population will be
small. This bias towards a mature and aging population is related to poor
growth and survival of young seals, evidently owing in part to their poor for-
aging success, (Craig and Ragen 1999; Baker and Johanos 2004; Stewart et al.
2006). Consequently, data have been collected recently on the foraging habi-
tats, movements, and behaviors of monk seals throughout the Northwestern
and main Hawaiian Islands.

This paper studies a three month journey of a juvenile male Hawaiian
monk seal, while he foraged and occasionally hauled out ashore. The track
started 13 April 04 and ended 27 July 04. He was tagged and released at the
southwest corner of Molokai, see Figure 2. He had a satellite-linked radio
transmitter glued to his dorsal pelage to document geographic and vertical
movements as proxies of foraging behavior. There were 754 locations esti-
mated in all, but many were suspicious. Understanding the foraging behavior
and habitat use of the Hawaiian monk seal is critical for clearly identifying
the causes for it and instituting management responses to end and reverse
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Figure 1. The top graph provides the eastward movement of the seal as a function of
time and the bottom the northward component of his movement.



82 David R. Brillinger Brent S. Stewart Charles L. Littnan

it. There are various specific questions that are relevant to this end:

• “What are the geographic and vertical marine habitats that the Hawaiian
monk seals use?”

• “Are there age and sex differences in the habitats seals use when forag-
ing?”

• “Do seals have individual preferences in foraging locations and does an
individual vary its behavior over different time scales?”

• “How long is a foraging trip?”

This paper will focus on the first and fourth questions.
The paper Brillinger et al. (2006) presents an exploratory statistical study

of the movements of a 4 year old female seal released at the same time and
location as the seal of this paper. In those analyses we found that the animal
made separate journeys to nearby Penguin Bank. The original intent of our
current analyses was to confirm the findings of the first paper using data
from another seal. Though we did not confirm those details, we did find that
the same general approach of using a potential function proved viable.

A basic tool of the work is a stochastic differential equation. The SDE
approach is elaborated in Brillinger et al. (2002). The potential function ap-
proach may be found in Brillinger et al. (2001b). There are many references to
the literature in those papers. Two particular are Heyde (1994) and Sorensen
(1997).

As in the previous paper, we found several difficulties with the data in-
cluding: outliers, well-separated unequally spaced observations times, map
creation, changing coordinates, developing the potential function, observa-
tion error (points inland and unreasonable speeds) and carrying out the
simulations.

The paper includes the sections: The data and some initial analyses, Gradi-
ent functions, Fitting an SDE, Results, Validation, and Discussion.

2 The data and some initial analyses

The study began with a satellite-linked time depth recorder (SLTDR) being
glued onto the seal’s dorsal pelage. The SLTDR records times and depths of
dives and transmits a brief radio frequency signal to a system of near polar
earth orbiting satellites managed by the Argos Data Collection and Location
Service. Periodic locations of the seal being studied were determined by
measurements of Doppler shifts in the reception of successive transmissions.
Those locations and accompanying dive data were then communicated daily
to us by email.

Associated with a location estimate is a prediction of the location’s error
(LC or location class). The LC index takes on the values 3, 2, 1, 0, A, B, Z.
When LC = 3, 2, or 1 the error in the location is predicted to be 1 km or less.
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Errors for locations of LC = 0, A, and B are not predicted by Argos but may
often be around 1 km but up to 10 to 20 km on occasion. In this paper when
LC is 3, 2, or 1, a location is referred to as well-determined.

Figure 2 (bottom plot) provides locations with LC of value less than 1
and in the top plot those with LC 1 and up. (Later there will be a further
restriction that the speed between any two successive location points is less
than 259.2 km/day.) The figure is meant to provide an indication of the
distinction between well- and poorly-determined points, (i.e. of the impact of
the LC value.) One sees that the well-determined points are clustered close
to the SW corner of Molokai while the poor ones are some distance offshore
and in one case far offshore.

In the work it is convenient to employ UTM coordinates instead of the
traditional latitude and longitude. This reduces distortion in the plots, leads
to units of km, allows easy interpolation, and generally speaking makes the
results more easily interpretable.

Figure 3 provides plots of the well-determined points for 6 successive 15
day periods. The dashed curve is the 200 fathom line which outlines Penguin
Bank to some extent. (Penguin Bank is a marine reserve that is attractive to
sea life.) The time points are unequally spaced. This means that apparent
hotspots may well result from a cluster of time locations rather than a
tendency of the animal to return to some particular location.

Figure 4 provides an estimate of the density of the well-determined points
as a function of location. The lighter colors refer to the large values. One
sees a “hotspot” partly up the coast and the points generally lying in a strip
running NE-SW. The hotspot may be simply due to a lot of points being close
to each other in time.

The behaviors of many animals are often characterized by circadian (i.e.,
24-hour) rhythms. Such behavior was apparent in the movements of elk,
see Brillinger et al. (2001a,b, 2002), Preisler et al. (2004), though it was not
noticeable in our previous study of a female Hawaiian monk seal, Brillinger
et al. (2006).

Figure 5 graphs estimated speeds of the animal based on the well-deter-
mined points. A log scale is employed to make the fluctuations more nearly
constant. A smooth line has been added to the plot, specifically Cleveland’s
loess line, see Venables and Ripley (2002). There is a clear suggestion of
the animal’s moving more rapidly between 0500 and 1000 hr. The speed of
the animal at the observation times was estimated by dividing the distance
between successive points by the time distance. It is to be noted that there
are some gaps in hours of the data. These are caused by the particular orbits
of the satellites and complicate the interpretation.

Figure 6 is a plot of successive distances of the animal from the closest
point on the coast. In Brillinger et al. (2006) such a plot brought out a number
of offshore trips. In the present case one sees that the animal does spend
some noticeable time offshore.
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Figure 2. The top figure shows the well-determined points joined by successive lines.
The bottom provides the poorly determined points. The hatched in area indicates the
island of Molokai. The animal’s tracking started at the SW corner of the island.
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Figure 3. Plots of the well-determined points for six successive 15 day periods. The
dashed curve is the 200 fathom line.
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Figure 4. Estimated bivariate density of observed seal locations. Molokai is the hatched
region. Lighter coloring corresponds to higher density.
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Figure 5. Log-scale plot of estimates of the animal’s speed plotted versus time. A loess
line has been added. The early morning and late night gaps are due to the satellite’s
orbit
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Figure 6. Successive distances of the seal from the shore.

3 Gradient functions

The study of motion, and the statistics of motion, has a long and venerable
history. To begin one can note the Newtonian equations of motion

dr(t) = v(t)dt

dv(t) = −βv(t)− β∇H
(
r(t), t

)
dt

with r(t) a particle’s location at time t, with v(t) its velocity, with H(r, t) a
potential function, and with ∇ the gradient. The potential function controls
a particle’s direction and velocity. Regions of attraction and repulsion may
be introduced by terms in H. The parameter β represents friction. Nelson
(1967) is a reference for this material.

In the case that β is large, the equations become, approximately,

dr(t) = −∇H
(
r(t), t

)
dt

If one adds a stochastic term, and changes the notation slightly, then one
obtains the stochastic differential equation,

dr(t) = µ
(
r(t), t

)
dt + Σ

(
r(t), t

)
dB(t) (1)

Often B(t) is assumed to be standard Brownian motion. In the planar case
with r = (x,y) the 2-vector µ contains the partial derivatives Hx , Hy .

The following potential function was suggested for the seal of this paper
by Figures 3 and 4,

H(x,y) = β10x + β01y + β20x2 + β11xy + β02y2 + C/dM(x,y) (2)
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where dM(x,y) is the shortest distance from the location (x,y) to Molokai.
(In the results presented C = 7.5 a value suggested by a few trials.) Terms
like C/dM(x,y) are considered in Brillinger et al. (2001b). It has the effect of
keeping the animal away from the interior of Molokai. In the computation of
Figure 7 below the shortest distance +0.2 was taken for dM(x,y). The 0.2
was to stabilize the computations. The quadratic in (x,y) allows a broad
region of attraction to be present.

4 Fitting an SDE

Stochastic differential equations, such as (1), have been referred to. There
has been a substantial amount of work on statistical inference for SDEs,
references including Heyde (1994) and Sorensen (1997). Inferential work may
be motivated by setting down the Euler approximation

r(ti+1)− r(ti) ≈ µ
(
r(ti), ti

)
(ti+1 − ti)+ Σ

(
r(ti), ti

)
Zi
√
ti+1 − ti (3)

with the ti an increasing sequence of time points filling in the time domain of
the problem, see Kloeden and Platen (1995). The Zi are independent bivariate
standard normals and the ti may be thought of as the times of observation.
With the potential function set down above the β parameters appear linearly
and so may be estimated by least squares.

Assuming that µ(r, t) = µ(r), and that Σ(r(t), t) = σ2I, one can consider
as an estimate of σ2

σ̂2 = 1
I

∑
i

∥∥r(ti+1)− r(ti)− µ̂
(
r(ti)

)
(ti+1 − ti)

∥∥2/(ti+1 − ti) (4)

i = 1, . . . , I having determined an estimate of (β10, . . . , β02) by least squares.

5 Results

The model is

dr(t) = µ
(
r(t)

)
dt + σdB(t), r(t) ∈ F (5)

with F a region to be described, with the potential function (2) and with B
bivariate Brownian. The region F is the area between the 200 fathom line and
Molokai.

The number of data points in the least squares analysis was 142. The
parameter estimates obtained were β̂ = (93.53, 8.00, −.47, .47, −.41), and
σ̂ = 4.64 km.

Figure 7 shows the estimated potential function of (3). The particle (seal)
is pulled into the middle of the concentric contours, but the Brownian term
pushes it about. The final term of (2) keeps the “animal” off Molokai.
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Figure 7. The fitted potential function obtained using the model (2). The darker values
are deeper.

6 Validation

Figure 8 shows the results of a simulation of the process (only one was
generated) taking the parameter values to be those estimated. The sampling
interval dt = ti+1 − ti employed in the numerical integration is 1 hour. The
paths were constrained to not go outside the 200 fathom line. The locations
at the time points of the data set are the points plotted. This allows direct
comparison with the data plot of Figure 3. The variability of Figure 8 is not
unlike that of Figure 3.

The plots are “synthetic” in the language of Neyman et al. (1952), Neyman
and Scott (1956). They are an exploratory tool for model validation having
the possibility of suggesting how to create another model if the resemblance
is not good.

Future work includes a study of measurement error, uncertainty, animal
interactions and formal validation.

7 Discussion

The work searched out a stochastic model for a seal’s trajectory using de-
scriptive methods, classical dynamics and statistical techniques. Developing
a pertinent potential function proved an effective manner by which to infer
a model for the animal’s track. There was preliminary model assessment by
looking at pictures of simulations.



90 David R. Brillinger Brent S. Stewart Charles L. Littnan

130 135 140 145 150 155 160

80

85

90

95

100

105

Days 0  to 15

km

130 135 140 145 150 155 160

80

85

90

95

100

105

Days 15  to 30

km

130 135 140 145 150 155 160

80

85

90

95

100

105

Days 30  to 45

km

130 135 140 145 150 155 160

80

85

90

95

100

105

Days 45  to 60

km

130 135 140 145 150 155 160

80

85

90

95

100

105

Days 60  to 75

km

130 135 140 145 150 155 160

80

85

90

95

100

105

Days 75  to 90

km

Figure 8. A simulation of the model (5) having fit the potential function (2). The times
are those of the data of Figure 3.
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It is to be noted that time of day was not included in model in contrast to
the work of Brillinger et al. (2001a,b). The work is preliminary and circadian
the effect was not considered overly strong. The work again constitutes an
exploratory analysis, with the results to be examined with data to be had
from other animals.

The key hypothesis accounting for the decline of Hawaiian monk seals
in the primary part of their range, the Northwestern Hawaiian Islands, is
that growth and survival of juvenile seals is poor owing to poor foraging
success (Craig and Ragen 1999; Stewart et al. 2006). Seals in the small but
growing population in the main Hawaiian Islands appear to be in better
physical condition and grow faster and survive better than those in the
Northwestern Hawaiian Islands. The results of the development of descriptive
foraging movements of monk seals in the main Hawaiian Islands and of the
simulations of movements that incorporate simple attractant and repellent
elements may be helpful in further evaluating the differential dynamics. We
think that those further studies, directed by these theoretical inquiries, will
provide substantial insights into the reasons for the continued declines of
monk seals in the Northwestern Hawaiian Islands versus the increases in
the main Hawaiian Islands relative to habitat distribution and biological
productivity.

Acknowledgements

Phil Spector helped with the use of the statistical package R, Ihaka and
Gentleman (1996). The work of David Brillinger was partially supported by
the NSF grant DMS-20051127, and that of Brent Stewart by grants from NOAA,
PIFSC, and Hubbs-SeaWorld Research Institute.

References

Baker, J. D. and Johanos, T. C. (2004). Abundance of the Hawaiian monk seal in the main
Hawaiian Islands. Biological Conservation, 116, 103–110.

Brillinger, D. R., Preisler, H. K., Ager, A. A. Kie, J., and Stewart, B. S. (2001a). Modelling
movement of free-ranging animals. Technical Report 610, University of California,
Berkeley, Statistics Department.

Brillinger, D. R., Preisler, H. K., Ager, A. A. and Kie, J. G. (2001b). The use of potential
functions in modeling animal movement. Data Analysis from Statistical Foundations.
Editor A. K. Mohammed E. Saleh. New York: Nova Science. Pp. 369–386.

Brillinger, D. R., Preisler, H. K., Ager, A. A., Kie, J. G. and Stewart, B. S. (2002). Employing
stochastic differential equations to model wildlife motion. Bulletin of the Brazilian
Mathematical Society, 33, 385–408.

Brillinger, David R., Stewart, B. S. and Littnan, C. L. (2006). Three months journeying of
a Hawaiian monk seal. Lecture Notes in Statistics. To appear.

Craig, M. P. and Ragen, T. J. (1999). Body size, survival, and decline of juvenile Hawaiian
monk seals, Monachus schauinslandi. Marine Mammal Science, 15, 786–809.



92 David R. Brillinger Brent S. Stewart Charles L. Littnan

Heyde, C. C. (1994). A quasi-likelihood approach to estimating parameters in diffusion-
type processes. Journal of Applied Probability, 31A, 283–290.

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics. Journal
of Graphical and Computational Statistics, 5, 299–314.

Jonsen, I. D., Flemming, J. M. and Myers, R. A. (2005). Robust state-space modeling of
animal movement data. Ecology, 86, 2874–2880.

Kloeden, P. E. and Platen, P. (1995). Numerical Solution of Stochastic Differential Equa-
tions. New York: Springer.

Nelson, E. (1967). Dynamical Theories of Brownian Motion. Princeton: Princeton Press.

Neyman, J. and Scott, E. L. S. (1956). The distribution of galaxies. Scientific American,
(September), 187–200.

Neyman J., Scott, E. L. S. and Shane, C. D. (1952). On the spatial distribution of galaxies,
a specific model. The Astrophysical Journal, 117, 92–133.

Palo, J. U., Hyvärinen, H., Helle, E., Mäkinen, H. S., and Väinölä, R. (2003). Postglacial loss
of microsatellite variation in the landlocked Lake Saimaa ringed seals. Conservation
Genetics, 4, 117–128.

Preisler, H. K., Ager, A. A., Johnson, B. K. and Kie, J. G. (2004). Modelling and animal
movements using stochastic differential equations. Environmetrics, 15, 643–657.

Reeves, R. R., and Stewart, B. S. (2005). Introduction to Marine Mammals of the World.
Walker’s Marine Mammals of the World. The Johns Hopkins University Press. Pp. 1–
64.

Reeves, R. R., Stewart, B. S., and Leatherwood, S. (1992). The Sierra Club Handbook of
Seals and Sirenians. San Francisco: Sierra Club Books.

Reeves, R. R., Stewart, B. S., Clapham, P. J., and Powell, J. A. (2002). Guide to Marine
Mammals of the World. New York: National Audubon Society, Alfred A. Knopf.

Sorensen, M. (1997). Estimating functions for discretely observed diffusions: a review.
Selected Proceedings of the Symposium on Estimating Functions. Lecture Notes 32,
Institute of Mathematical Statistics. Pp. 305–326.

Stewart, B. S., Antonelis, G. A., Yochem, P. K. and Baker, J. D. (2006). Foraging biogeogra-
phy of Hawaiian monk seals in the northwestern Hawaiian Islands. Atoll Research
Bulletin. In Press.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S, Fourth Edition.
New York: Springer.

David R. Brillinger
Statistics Department, University of California, Berkeley, CA 94720-3860
brill@stat.berkeley.edu
http://stat-www.berkeley.edu/users/brill/

Brent S. Stewart
Hubbs-SeaWorld Research Institute
2595 Ingraham Street, San Diego, CA 92109
http://www.hswri.org/research/scientistDisplay.cfm?sciID=7

Charles L. Littnan
Pacific Islands Fisheries Science Center
NOAA Fisheries, 2570 Dole Street, Honolulu, HI 96822


