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ABSTRACT 

Techniques developed for the study of time series, point processes, and marked point processes 
can suggest corresponding techniques for each other, and common techniques can be recognized. 
In this paper connections are drawn based on conceptual foundations, basic parameters, analyses, 
displays, algorithms, problems, models. The definitions and techniques are brought out by specific 
scientific problems. The emphasis is on the single-realization stationary case and on the use of 
second- and third-order moments to help understand the realization. The tool of stacking, at a 
particular period, is employed in several of the examples. 

RESUME 

Les techniques d6velopp6es pour l'6tude des series chronologiques, des processus ponctuels et 
des processus ponctuels marqu6s peuvent sugg6rer des techniques correspondantes pour chacun 
des autres problemes, et des techniques communes peuvent &re discern6es. Dans cet article, nous 
6tablissons des correspondances fond6es sur des bases conceptuelles, des parametres fondamentaux, 
des analyses, des visualisations, des algorithmes, des problemes et des modules. Les d6finitions et 
techniques proviennent de problemes scientifiques sp6cifiques. Nous insistons plus particulierement 
sur le cas stationnaire de r6alisation simple et l'utilisation des moments de second et de troisieme 
ordre, afin de comprendre cette r6alisation. Nous employons une technique d'empilage, a une 
periode particuli&re, pour plusieurs exemples. 

1. INTRODUCTION 

Parallel analysis procedures are often available for time series, point processes, and 
marked point processes. An intention of this paper is to bring some of these parallels 
out. Each domain can learn from the others. 

A time series Y is a wiggly line Y(t), -oo < t < oo. A point process N is a col- 
lection of times {rj, j = 0, +1,+2,....}. (It will be assumed that the 

rj 
are distinct.) 

A marked point process J is a collection of times and associated quantities (marks) 
{('j,Mj), j = 

0,9?1,?2,....}. 
There are also hybrids such as sampled time series 

{ Y(tj), j = 0,+1 ,+2, ....}. Time-series techniques and time-series data are common. 
Point-process techniques are less common, as are their analyses. Studies of marked point 

*This paper is based on the Gold Medal Lecture presented at the Annual Meeting of the Statistical Society 
of Canada held 6-9 June 1993 at Acadia University in Wolfville, Nova Scotia. This research was supported in 
part by NSF Grants DMS-9208683, DMS-9300002, and ONR Grant N00014-94-1-0042. 
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processes are the rarest, but are under substantial current development, particularly for 
the spatial case. 

This paper is partly expository, seeking to bring out connections amongst disparate 
processes, and partly a presentation of new techniques and analyses. It will be seen that 
the second- and third-order moments can be useful tools with which to address particular 
scientific problems of interest. Estimates of such moments and corresponding spectra are 
provided for some particular time-series, point-process, and marked-point-process data 
sets-specifically, ocean tides, nerve-cell firings, and earthquake occurrences. Section 4 
lists some analytic methods useful for studying the processes. Section 5 describes two 
current investigations: analyzing the tracks of microtubules and the tracks of seals. The 
computational details are given in the Appendix. 

2. DISPLAYING PROCESS DATA 

2.1. Time-Series Displays. 

The time-series plot is the most frequently used form of graphic design. (Tufte 1983) 

With these words Tufte makes clear the dramatic importance of graphs of time series. 
He further presents a wide variety of specific examples. The book by Cleveland (1985) 
devotes a number of pages to the topic. Among the displays Cleveland mentions are the 
connected, symbol, connected symbol, and vertical-line displays. 

The top display of Figure 1 provides a shaded area graph for the sea height at Saint 
John, New Brunswick. The heights are measured from a particular level called chart 
datum. Saint John is on the Bay of Fundy, whose tides are the largest in the world, 
reaching 17 meters in places. General discussions of the analysis of tides may be found 
in Morettin and de Mesquita (1978), Wood (1978), and Forrester (1983) for example. 

Examination of Figure 1 suggests a phenomenon of frequency approximately 2 cycles 
per day. The technique of stacking is convenient for examining such a circumstance. 
One places successive segments of a series above each other. In the bottom display of 
Figure 1, 24-h segments have been stacked starting at times 0, 24, 48, ... h after midnight 
31 December 1990. The times of high tide are lagging slightly each day. The lag is caused 
by the fact that it takes the earth approximately 24 h 52 min to make one full rotation 
with respect to the moon. 

Stacking is an important display procedure in seismology; see Waters (1978). It is 
particularly useful for series with strong periodicity. The original values are graphed; 
hence there are special opportunities for noticing unusual features. Stacking may be 
seen as a graphical form of the Buys-Ballot table (Buys-Ballot 1847). Suppose one has 
data Y(t), t = 0, 1, 2 .... In the Buys-Ballot table, to study the integer-valued period 
P, one creates a matrix with entry Y((i - 1)P +j) in row i, column j. Typically the 
columns means are computed and examined. A related table was used in Laplace (1825) 
to study the relationship of tides to equinoctial syzygies. The radar memory tube that 
was so important in World War II (see Watson-Watt 1946) can be thought of as a variant. 
Whittaker and Robinson (1944) and Brillinger (1974) suggest formal test procedures 
based on Buys-Ballot table values. 

2.2. Point Process Displays. 

There are several common methods for displaying point-process data. These include 
points on a line, step function, and lines on a line. 
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Saint John Tides, January 1991 
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FIGURE 1: A graph of hourly tidal values at Saint John, New Brunswick for the period 1 to 18 
January 1991. The lower graph stacks successive 24-hour segments above preceding 
ones. The y-axis labels the day of the segment. 

Figure 2 presents point-process displays derived from some neurophysiological data. 
The top display is a recorded continuous time signal, the fluctuating voltage within a 
neuron. Spikes are seen to recur. These correspond to the times at which the neuron is 
firing and may be thought of as a realization of a point process. The middle display is 
a step function increasing by 1 at each firing time. The bottom display employs vertical 
lines to represent the firing times. The data are from the sea hare. The data collection is 
described in Bryant et al. (1973). 
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Transmembrane Potential, Y(t) 
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FIGURE 2: The top display is the fluctuating voltage potential within a neuron. The middle display 
is a step function increasing by I at the time of each spike in the top display. The bottom 
display has a vertical line at the location of each spike. The bottom two provide different 
methods of displaying point-process data. 
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FIGURE 3: The firing of a neuron of the sea hare. The bottom display presents the times of the 

firings in each burst relative to the time of the first firing. 

Figure 3 also presents spike-train data, this time for another neuron of the sea hare. 
The top display shows firing occurring in bursts, with vertical lines again corresponding 
to firing times. In order to better understand the structure of these data, a stacked plot 
was prepared. This is the bottom display of the figure. Each line starts with the time 
of the first spike of a burst. The other spikes of the burst then follow across the line. 
The display, in this case, brings out some nonstationarity in the data-the bursts are 
decreasing slowly in duration. 

Cox and Lewis (1966, p. 14) plot the column means of a Buys-Ballot table for 
point-process data. A Fourier-transform-based test procedure for periodicities is given 
in Brillinger (1974). 
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2.3. Hybrid Process Displays. 
In the case that the marks of a marked point process are real-valued, the process is 

known as a jump process or cumulative process. The realizations may be represented by 
lines along a line. An example is the top display of Figure 4. This graphs the times and 
magnitudes of earthquakes of magnitude 5.0 or greater in California from 1932 to mid 
1992. 

A second method of display is via a cumulative function, summing the mark values 
up to time t. The bottom display presents such a plot for a quantity proportional to the 
amount of energy eM released in an earthquake, M the magnitude. The dashed line is 
provided to allow some assessment of the stationarity of the process. A third plotting 
procedure, when the marks are velocities of vehicles passing a point, suggested by Bartlett 
(1967), is to plot fixed-length lines, starting at the time points, with slopes related to the 
mark values. 

Figure 5 presents the earthquake data stacked by year. The times are the centers 
of the circles. The circles relate to the size of the event, with the scale indicated. 
Various researchers have conjectured that a yearly periodicity exists in the occurrence of 
earthquakes; see Davison (1928) and Katsumura (1985) for example. Figure 5 does not 
suggest the presence of such an effect in the present case. 

3. STATIONARY INCREMENT PROCESS 

In this section some specific processes are discussed. In the cases emphasized, each 
can be related to a process with stationary increments. 

X(.) is called a process with stationary increments if the following holds: X(t), -oo < 
t < oo, is such that the joint distribution of the increments X(t + bi) - X(t + 

al),...., 
X(t + 

bk)- X(t + ak) does not depend on t for any al < bl,..., ak < bk and k = 1,2, 3.... The 
basic ideas are due to Kolmogorov and may be found on pp. 551-559 in Doob (1953). 
There exists a statistical calculus for such processes; see Brillinger (1972). 

Next, it will be illustrated how the processes of Section 2 can be related to processes 
of stationary increments. A stationary time series Y corresponds to a stationary increment 
process X via 

X(t) = Y (u) du. (3.1) 

A stationary point process N corresponds to a stationary increment process N(.) in 
which all the increments N(t + b) - N(t + a), a < b, are nonnegative integers, specifically 
N(t + b) - N(t + a) = #{rjlt + a < j < t + b}. One can write 

X(t) = jdN(u). 

A marked point process J with real-valued marks may be represented via J(t) = 

To<-<t, M, and there is the correspondence 

X(t) = dJ(u). 

Consider the case of a process X with stationary increments, 'E {dX(t)} = cx dt with cx 
the mean intensity. For simplicity suppose cx to be 0. [If not, replace X(t) by X(t)- cxt.] 
One defines the autocovariance measure Cxx via 

E {dX(t + u) dX(t)} = dCxx(u) dt, (3.2) 
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FIGURE 4: The top display indicates times of earthquakes and associated magnitudes. The events 

are for California, in the period 1932 to mid 1992 and for events of magnitude 5.0 or 
greater. The bottom display is proportional to the cumulative energy released by these 
events. 
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California events stacked by year 
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FIGURE 5: The events of Figure 4 stacked by year, with circle diameter indicating magnitude. The 

circles on the right indicate the correspondence between circle size and magnitude. 

and the third cumulant measure Cxxx via 

•E {dX(t + u) dX(t + v) dX(t)} = dCxxx(u, v) dt. (3.3) 

The process X has a spectral representation 

X(t) = eit dZ(X) (3.4) 

with Z a random function such that 

E {dZ(X) dZ( gL)} = 6(X + j)fxx(X) dA dgt (3.5) 

and 
E {dZ(X) dZ( t) dZ(v)} - 8( + L + v)fxxx(X, tg) dA dg dv, (3.6) 
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1994 TIME SERIES AND POINT PROCESSES 185 

8(.) being the Dirac delta function and fxx, fxxx the power spectrum and bispectrum 
respectively. These are Fourier-Stieltjes transforms of Cxx, Cxxx respectively. The spectra 
themselves may be generalized functions containing Dirac deltas. [Details may be found 
in Brillinger (1972).] 

3. 1. The Time-Series Case. 

Consider a zero-mean stationary time series Y(t), -oo < t < oo. Following (3.1)-(3.3), 
the autocovariance function is given by 

E { Y(t + u)Y(t)} = Cxx(u) = cyr(u), (3.7) 
du 

and the third-order cumulant function by 

'E { Y(t + u)Y(t + v)Y(t)} = - Cxxx(u, v) = cyr(u, v). (3.8) 
au av 

The spectral representation is 

Y(t) = Jeit dZ(X) 

with Z satisfying (3.5) and (3.6). 
The autocovariance function (3.7) provides a measure of the dependence of values of 

the series lag u time units apart. An estimate is provided in Figure 6 for the Saint John 
tidal series. The data are for the time period 1 January to 31 March 1991. There are 
T = 2160 observations in all. The top left panel is an initial segment of the series. 
The autocovariance estimate here shows strong periodicity. The power spectrum of 
(3.5) is particularly useful in making inferences concerning periodicities and developing 
predictors. An estimate of a flattened version (see Appendix) is given in the bottom 
display of Figure 6. Peaks are seen to stand out. The presence of periodic components 
in tidal series is basic and ascribed to the effects of the moon and the sun. A pertinent 
model is provided by 

K 

Y(t) = i + pPk cos((kt + k) + E(t) (3.9) 
k=1 

with a stationary noise series with smooth spectrum f,,. If the Ok are uniform and 
independent, the power spectrum of Y is 

f2 
{W(00-+k) 

+ 
(0•(+0k)} 

+fJ( ). (3.10) 
k 

If K = 3 in (3.9) and 03 = o + co2, )3 = ~1 )+2 where 41, 42 are independent uniform, 
then the bispectrum has a term 

l Pip2P38(X 
--1 

( - 01 2), (3.11) 

for example. 
Wood (1978) lists various estimates of tidal frequencies. The model (3.9) was fitted 

to the Saint John data by least squares, employing the K = 26 frequencies of the final 
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Saint John tides Residuals (26 components) 
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FIGURE 6: Saint John tides and residuals. The first column presents statistics for the tidal series; 
the second, statistics for the residuals of a least squares fit to the series. The top 
displays are initial sections of the series themselves. The middle row provides estimated 
autocovariance functions. The bottom row provides an estimate of the spectrum with the 
continuous component flattened. The dashed line is an approximate upper 95% confidence 
level above an estimate of the flattened noise spectrum. 
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column of Figure 43 in Wood (1978). The right-hand column of Figure 6 graphs the 
results. The residuals are much smaller than the original series values. (Their standard 
error is 0.165 m. The original standard error was 2.192 m.) The autocovariance estimate 
of the residuals and a flattened power spectrum are also given. Some things remain to 
be accounted for: there remain clear peaks with structure about them, suggesting the 

possibility of time lags and nonlinearities. 
In non-Gaussian circumstances and situations where a basic process has been trans- 

formed in a nonlinear fashion, the third-order cumulant function cryy(u, v) and bispectrum 
fyyr(X,g) of (3.8) and (3.6) are of importance. For example, squaring pl cos(olt + 

01) + P2 cos(o2t + 02) of (3.9) with K = 2 leads to, amongst others, a further term 
P3 cos(W3t + 03) with 03 = 

(l 
+ 02 and 03 = + 2 and the bispectrum term (3.11). 

Figure 7 (top) presents estimates of the third moment function (3.8) for the original 
series and for the residuals from the least-squares fit. Positive contours are graphed with 
a solid line, negative with a dashed line. The third-order cumulant estimate of the original 
data suggests periodicity and asymmetry. The structure in the case of the residuals is not 
apparent. The bottom displays of the figure provides estimates of 

r 2 2 2 

min{ P2 
P2 P3 (3.12) 

,E(0)I)' 
fE(0)2)' fe(03) 

as a function of (01, 02), with 03 = o1 +o)2. This parameter is meant to examine the null 
hypothesis that at least one of the harmonic components at frequencies ol, o)2, Io + 0)2 is 
absent; see Brillinger (1980). Further details are in the Appendix. Graphed are the values 
significant at the 1% level. There is clear structure present in the original series, and 
much of the structure remains in the residuals. There are strong suggestions of nonlinear 
interactions. 

Cartwright (1969) discusses the generation of nonlinear interactions in tidal series. 
Marone and de Mesquita (1993) are concerned with estimating the bispectrum with 
lower-order information removed. 

3.2. The Point-Process Case. 

Suppose that the point process N is described via times r, j = 0, -1, +2,.... A step- 
function description is provided by N(t) = #I{jl0 < j < t}. There are other useful 
representations for a point process. A representation that suggests immediate extensions 
of corresponding time-series procedures is 

Y(t) - dt 
- (t - 1) (3.13) 

with dN(t)/dt a symbolic derivative of the process. This is an extension of the line plot 
of Figure 2 with the lines now having infinite height. From the representation (3.13) one 
sees, for example, that a linear filtering is given by 

a(t - u)Y(u)du = a(t -) 

with a(.) the impulse response of the filter. Similarly the empirical Fourier transform is 
given by 

e-ixtY (u)du = e ic; 

0<T<T 
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FIGURE 7: Top left is an estimate of the third-order cumulant function for the Saint John tidal data. 
Negative values are plotted as dashed lines. Top right provides the same for the residual 
series. The points significant at the 1% level of the statistic (A.5) are plotted for the two 
series. 

It can also be convenient to consider a point process as a function of intervals, with N(I) 
counting the points in the interval I. Then one has 

N(I) 
=• 

1 = dN(t) 
Tj EI 

and N is seen to be a counting measure on the line. 
A basic parameter of a stationary point process is the rate pN, given by 

Prob{dN(t) = 1} = pN dt = 'E {dN(t)} 
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for small dt. A second is the autointensity function hNN(u), given by 

Prob{dN(t + u) = l1point at t} = hNN(u) du, u : 0. (3.14) 

The autointensity is a more primitive concept than the autocovariance, being based on a 

probability rather than the more technical idea of a moment. It is a direct measure of the 
chance of a further point occurring u time units after an existing point. 

Figure 8 presents an estimate of hNN(u) for each of two data sets. The top panels 
give illustrative segments of the data. The left-hand column corresponds to a sea-hare 
neuron firing regularly. The right column refers to the bursting neuron of Figure 3. The 
middle panels give the estimated autointensities. Complex periodic behaviour, which did 
not stand out in the firing-time display, is now apparent in the pacemaker case. The 
autointensity estimate in the bursting case has a broad peak at a lag of about 25 seconds, 
presumably corresponding to the spacings of the bursts. The bottom panels provide 
estimates of the power spectra fNN(X), defined at (3.5), and bring out periodicities in an 
alternative fashion. The pacemaker firing does have a complex structure. The firing in 
the bursting case is seen to have a character suggesting harmonics. 

The autocovariance density at lag u, qNN(u), of a stationary point process N of rate 
PN is given by 

Cov{dN(t + u), dN(t)} = [8(u)pN + qNN(u)] dt du, 

while the third-order cumulant density is given by 

E {[dN(t + ul) - PN dt][dN(t + u2) - PN dt][dN(t) - pN dt]} 

= qNNN(UI, U2) dt dul du2 (3.15) 

for ul, U2, 0 distinct. 
Estimates of (3.15) for the pacemaker and bursting cases are given in Figure 9, top row. 

(Details of the construction of the estimates are found in the Appendix.) Positive contours 
are graphed with a solid line, negative ones with a dashed line. The periodic behaviors 
of Figure 8 show themselves in an alternative form. The bottom row of Figure 9 gives 
an estimate of the quantity (3.12), specifically (A.6) below, graphing points significant 
at the 1% level. There is a cluster at (1.40, 0.95) in the pacemaker case that might not 
have been suspected. The sum frequency, 2.35, is apparent in the periodogram. The burst 
statistic likewise shows interesting structure. 

3.3. Hybrid Cases. 

Consider a marked point process case with real-valued marks. Realizations of the 
process have the form {(tj, Mj),j = 0, +1, 

+2,....}. 
A representation for the process as 

a generalized ordinary time series is provided by 

dJ(t) 
Y(t)-dt - MS(t - C). 

As a function of intervals, J may be written 

J(I) = 
EMI 
zIl 
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FIGURE 8: The left-hand panels give statistics for a neuron firing regularly, the right-hand for a 
neuron firing in bursts. Top are data sections. The middle displays are estimates of the 
autointensity [of (3.14)]. The bottom row provides the periodograms (A.5). 
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FIGURE9: The left-hand panels are the cumulant densities as estimated from (A.2). Negative 
contours are plotted as dashed. The bottom panels are the statistics (A.6) significant 
at the 1% level. 

and is seen to correspond to a discrete measure on the line. The autocovariance density 
at lag u, cjj(u), of the process is given by 

Cov{dJ(t + u), dJ(t)} [8(u)cj + cjj(u)] dt du 

with E {dJ(t)}= cj dt. 
A hybrid process is provided by a sampled ordinary time series, { Y(,j)}. This can be 

represented via dJ(t) = Y(t) dN(t), N being the process of sampling times. This J will 
have stationary increments when, for example, the processes Y and N are stationary and 
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independent. A discrete time series corresponds to j = j. The spectral representation of 
J involves 

dZj(,) 
= J 

dZy(, 

- i) dZN( ), 

a relationship from which expressions for various spectra may be obtained. 
Figure 10 presents the initial stretch of the California earthquake data and of the 

corresponding point process of times. The second row left presents an estimate of the 
autocovariance cjj. Below is an estimate of the power spectrum, fjj. Approximate 95% 
marginal confidence intervals are indicated. No special structure is apparent. 

An estimate of the third-order cumulant density is graphed in the top left of Figure 
11. The bispectrum fjjj is given by 

cum{dZj(k), dZj( t), dZj(v)} = (k + g + v)fjjj(k, t) d g d4 dv, 

and the bicoherence by 

fjjj(X9, g)12 
fjj ()f jj( L)fjj (X + 

W,) Values significantly different from 0 at the 1% level are graphed in the bottom left of 
Figure 11. The results reflect the nonnormality of the process. 

A question that arises when dealing with marked point processes is: are the series of 
marks, {Mj}, and the inherent point process, N = {tj}, independent of each other? This 
question may be addressed via a second-order moment analysis. 

First some definitions pertinent to the bivariate case. The crosscovariance density at 
lag u, CJN(u), between the jump process J and its inherent point process N is given by 

Cov {dJ(t + u), dN(t)} = CJN(u) dt du 

for u / 0. Suppose that the marks Mj = Y(pj) correspond to sample values of a zero-mean 
stationary series Y. In the case that Y and N are independent, cJN will be identically 0. 
So too will the cross-spectrum, fJN, given by 

E {dZJ( ()dZN( g)} = 8( + Pl)fJN(X) 
d, 

dg. 

Figure 10, middle right, graphs an estimate of CJN(u) for the California earthquake data. 
The values fluctuate about 0. The sampling properties of an estimate of the coherence, 
IRJN(X)12 = IfJN(X)12/fJJ(X)fNN(X), are simpler; hence this is the statistic employed to 
assess the independence. An estimate is graphed in Figure 10 bottom right. There is some 
evidence against independence: 21 points out of 128 exceed the 95% null point. 

The third-order joint cumulant density may also be used to address the hypothesis of 
independence. It is given by 

cum{dJ(t + u), dN(t + v), dN(t)} = CJNN(U, v) dt du dv 

for u, v, 0 distinct. It will be 0 in the case of Y independent of N. An estimate is 
given in Figure 11, top right. The crossbispectrum fJNN similarly will be 0 in the case of 
independence. An estimate based on the corresponding crossbicoherence is graphed in 
Figure 11. The points plotted are bifrequencies 

(,, 
i) where the bicoherence estimate is 

significantly different from 0 at the 1% level. There are many such points. A comparison 
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FIGURE 10: Analyses of the California earthquake data of Figure 4. The top displays are the 
magnitudes and times and just times (first 5 years). The bottom left is the power- 
spectrum estimate with an approximate 95% confidence interval set about the mean 
level. The bottom right is the estimated coherence with an upper 95% null level. 
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FIGURE 11: Estimates of third-order cumulant densities for the marked point process and point 
process. The bottom two graphs are points of the estimated bicoherence significant at 
the 1% level. 

of the two bicoherences of Figure 11 shows many more significant points in the JNN 
case. This goes along with the process (J, N, N) being more nonnormal. 

Vere-Jones (1970) discussed point and marked point processes associated with earth- 

quakes. The theory of point processes and marked point processes is presented in Daley 
and Vere-Jones (1988). 

A question related to the present context is: assuming Y and N are independent, how 
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does one estimate cyy and fyy? One answer is given in Brillinger (1972). Some results 
of applying the technique are given in Moore et al. (1987). 

4. CONNECTIONS 

There are several methods for relating time series, point and marked point processes, 
and techniques. Advantages of employing these include: computing programs available for 
one type may be used with the others, models and theoretical results may be transferred, 
and generally further insight and understanding may be obtained. 

A point process on the line may be studied via ordinary time-series methods through 
picking a small cell width 8 and setting up the discrete time series 

Y(t) = N(t, t + 8] (4.1) 

for t = 0,?, 6,286,.... This 0-1 series may be fed to either moment- or likelihood-based 
techniques. For example, the second-order moments are connected via 

cYy(u) 
= PN(8 - juj)+ + qNN(u)82 

for small 8. The power spectrum of the discrete series (4.1) is given by 

frr(l()=4 sin 8 2 
+ - 

)fNN +~ ) 
)=-oo 

References include Vere-Jones and Davies (1966), Lewis (1970), Guttorp (1986), Guttorp 
and Thompson (1990). 

The use of 0-1 series for point-process likelihoods occurs in Brillinger and Segundo 
(1979) and Berman and Turner (1992). When the model is correct, the likelihood approach 
may be anticipated to be the more efficient. However, the moment approach has the 
advantage of being broadly applicable and of having the same form for distinct types of 
processes. Indeed, if one moves to the frequency domain, the moment procedures are 
essentially the same for time series, point processes, and marked point processes. 

A discrete time series Y(t), t = 0, +1, ?2, ..., may be set up as a planar point process 
via the correspondence Y(t) -+ (t, Y(t)). A marked point process, with marks in RP, may 
similarly be considered a point process lying in RP+' through the expedient of simply 
viewing (ti,Mj) as a point in Rp?I. One reference is Karr (1976). 

A jump process J may be associated with a time series in continuous time through the 
correspondence 

Y(t) = a(t - u) dJ(u); 

see Priestley (1963), Jowett and Vere-Jones (1972). The spectra are related by 

fy...Y(Xi, ..., hk-1) = A(Xl) 
" "A(Xk-1)A(Il 

+ . + X+k-l)fJ ... l , Xk-1), 

on which estimates may be based. The 0-1 time series above corresponds to a(-), a boxcar 
function of width 6. Hence A(0) = 2(sin 1 ?;)/X, which is approximately 6 for small 6. 

Parallel development of the time-series and point-process cases is provided in Brillinger 
(1978). 
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5. TWO CURRENT PROBLEMS 

5.1. Cell Motility. 
Consider the movement of biological objects. Vale (1993) comments that "Under- 

standing the mechanism by which biological motors work has been one of the great 
puzzles in biophysics for the last century ...". The specific question that will be consid- 
ered here is whether such motors produce stepwise movement with abrupt displacements, 
or whether the movement is diffusionlike. 

In the experiments to be studied a motor (kinesin) was attached to a small bead. In the 
presence of adenosine triphosphate (ATP) the bead is transported along a microtubule. 
The location of the bead may be followed by means of a special microscope. At issue is 
whether the motion of the bead is smooth or jumpy. 

Figure 12 shows data for two cases based on material extracted from the bovine 
brain. Details of the data collection are given in Malik et al. (1993). A microscope with 
nanometer precision and millisecond temporal resolution is employed in following the 
motion. The data as measured appear as a track in the plane (Figure 12, top). In case 
1023 the tubule is rocking substantially from side to side, motion that may be due to the 
vibration of the microscope. In case 1639 the motion is more nearly confined to a line. 
The data were rotated to obtain motion in directions parallel and perpendicular to the 
general directions of movement. The parallel motions, X, are given in the second row of 
Figure 12. The figure also gives the histograms of the step sizes, X(t + 1) - X(t). There 
is no spike standing out in either, which would correspond to some common jump size. 

A model that may be considered is the following. Let X(t) be the position, as a function 
of time, of the bead along the line of movement. Suppose that the bead jumps a distance 
a at the times rj of a point process N and that there is an associated noise process 
E. Here a corresponds to the distance between successive kinesin binding sites on the 
microtubule. It is about 8 nm. Write 

X(t) = t + aN(t) + E(t). 

This model involves both a time series and a point process, and it naturally leads to a 
process with stationary increments. In the case that a is small and the rate of the point 
process high, the particle will appear to be diffusing. 

Supposing the processes N and E to have stationary increments, the expected value 
of X(t) is 9t + CapNt, where PN is the rate of the process N. The velocity with which 
the particle is moving is apN, and this will change with the experiment, but a will be 
constant across experiments. For N and E independent, the power spectrum of X is 

fxx() = X2fNN(X) +fEE(X). 

If N is a renewal process, with interevent distribution having characteristic function 4, 
then 

fNN(X) 

= 
PN 1 -[I•(,)I2 2n: [1 - 4 (h))2 

[see (2.11.43) in Brillinger (1978)] and the rate of N will be pN = 
1/,, 

where ji is 
the mean of the interevent distribution. In the case that the interjump time, tj+l - t, is 
constant, and v denotes the velocity of movement, the power spectrum is 

a function seen to depend on 
,/v. 
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FIGURE 12: Microtubule movement in two experiments. The top graphs show the actual motion of 
the bead, starting from position (0,0) in each case. The second row shows the motion, 
as a function of time, along the direction of motion, from the upper left to the bottom 
right corner of the top figures. The final displays are histograms of the individual steps. 
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To address the issue of the size of a, a procedure sensitive to periodic-type behaviour 
was employed. If the points occur in an approximately regular fashion, there will be 
peaks in the spectrum that will stand out. Suppose that the interevent density has the 
form g(x/O)/O for a scale parameter 0. The parameter 0 will describe the velocity of 
the bead in a particular experiment: the larger 0, the smaller the velocity. The spectrum 
fNN will be a function of OX. So instead of plotting versus , one plots versus stepsize = 
velocity/X. This allows the results of separate experiments to be combined. It is further 
noted that studies of the noise when the microtubule is not stimulated to move show the 
spectrum fEE to be smooth. 

Figure 13 shows results of both simulations and data analyses. Renewal processes with 
interevent times gamma-distributed with coefficient of variation 0.2 were simulated. The 
top left display is an example of part of one of the step functions. Next, the step size was 
taken to be 8 nm and actual noise records added on. The top right provides the results 
of estimating the power spectrum from the simulations, flattening at the low-frequency 
end, transforming the abcissa to velocity/frequency, and averaging the results of 14 runs. 
A peak stands out at the 8 nm position, with a prob value of 0.009. The procedure may 
now be considered validated in a sense. The bottom two displays correspond to applying 
the same steps to the parallel and perpendicular motions of 14 actual experiments. In 
these two cases the prob values of the largest peaks were 0.120 and 0.176. There is no 
strong evidence for motion in jumps. 

5.2. Seal Diving. 

Marine ecologists are concerned with the navigation, foraging, and spatial-temporal 
use of the underwater habitat by marine mammals. Questions arise like: How are they 
moving? What are they doing? How are they interacting? The principal type of data that 
these scientists have worked with is depth as a function of time (such as the bottom 
display of Figure 15 below); hence for example they have been unable to estimate 
velocity, and there have been problems in identifying other quantities of interest. Recently 
three-dimensional data have started to become available. 

Figure 14 displays the track of a ringed seal as recorded in the Barrow Strait, NWT. 
The ecology of these seals is described in Kelly (1988). The four figures correspond 
to viewpoints rotated 90 degrees from each other. This type of display is particularly 
effective when viewed spinning in real time. 

The animal was in the wild, moving under ice from a breathing hole and returning. 
The seal had a sonic tag. Four hydrophones were placed at known locations, allowing 
the estimation of the seal's track; see for example Wartzok et al. (1992). There is 
measurement error in the estimates of position, and the time points are unequally spaced 
(hence one has marked-point-process data). 

Figure 15 shows the individual X(t), Y(t), Z(t) series. These traces bring out additional 
features of the data, for example that the seal stopped moving for a period. The X and 
Y traces show the track to be jumpy, and indeed this was apparent in Figure 14. These 
jumps can be due to measurement error. They are seen to occur at the same places in 
the X and Y traces. As a first step towards more complicated analyses an "improved" 
estimate of the track is needed. This is a problem of robust-resistant smoothing, with 
the twist that the dependent quantity is vector-valued; hence available procedures such as 
loess (see Becker et al. 1988) cannot be used efficiently. Figure 16 presents the results 
of univariate smoothing, via the function loess( ) of Chambers and Hastie (1992), but 
pooling the X and Y residuals together. One sees a plausible track for the animal, except 
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FI(;GURE 13: The top row refers to the results of simulations of a renewal process, the interevent 
distributions being gamma of coefficient of variation 0.2 and corresponding to an ( 
of 8 nm. The left display is a stretch from one of the simulations. On the right is the 
results of averaging the flattened, frequency-transformed spectra. The bottom displays 
are the results of applying the technique described to the parallel and perpendicular 
motions respectively. The solid horizontal line is at the average level. The dashed line 
is at the height of the highest ordinate. The significance levels in the three cases are 
0.009, 0.120, 0.176 respectively. 
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FIGURE 14: A track of a diving seal viewed from four perspectives rotated 90 degrees from each 
other. The distances are all in meters. 

that now the resting period is not so apparent. The depth trace, Z, was not smoothed, 
because it appeared sufficiently regular already. 

Another interesting aspect of these series is that they are tied down: the seal returns to 
its initial position. Also the surface and bottom form special barriers. These things must 
be taken note of in analytic models. 

6. DISCUSSION AND SUMMARY 

In her functioning, Nature appears to make use of each of time series, point processes, 
and marked point processes. This work has sought to bring out some parallel definitions 
and methods for these concepts. The models and techniques employed are mainly non- 
parametric and moment-based. Another aspect has been the illustration of both time-side 
and frequency-side analyses. Generally speaking the (approximate) sampling properties 
are simpler in the frequency domain. 

Various displays were presented for each data type. In particular the tool of stacking 
has been highlighted as being of use in some circumstances. 

A new statistic (A.6) has been employed in the study of discrete components in a 
bispectrum. The statistic has advantages over the biperiodogram, for the biperiodogram 
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FIGURE 15: Plots of X, Y, Z versus time for the data of Figure 14. The points correspond to the 
times of measurement. 
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FIGURE 16: Robust-resistant smoothing of the X and Y traces of Figure 15. 

will be large in amplitude when any of the frequency components involved is large. The 
statistic (A.6) standardizes for this. 

Analyses were provided of data taken from five fields: oceanography, neurophysiology, 
seismology, biophysics, and ecology. In all studies it is good practice to ask: "What is 
the question?" Questions going along with the examples of this paper include: 

(1) Tides. How to predict? The analyses presented were in part directed at under- 
standing if an existing model was satisfactory. 

(2) Nerve firings. How to describe? Description is needed because there are so many 
types of behaviour. 

(3) Earthquake times and sizes. How to predict? One focus was on whether magni- 
tudes were related to occurrence times; a second was on the presence of periodicities. 

(4) Biological motors. Is the motion discrete or diffuse? One type of discrete motion, 
approximately regular jumping, was examined for via frequency-domain techniques. 

(5) Seal tracks. How to estimate and display the motion? A spinning display proved 
effective, and robust-resistant smoothing looked promising. 

7. FUTURE DIRECTIONS 

There are a number of directions in which the work may be extended. The analyses 
employed have been based on second- and third-order moments principally. Extensions 
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can be pursued to higher-order moments and to likelihood analyses. The existing tech- 
niques need to be extended to include covariates and to handle nonstationarity. The case 
of trends is discussed in Brillinger (1993). The marks of a marked point process may be 
ordinal, interval, nominal, ranks, or vector-valued, and corresponding special techniques 
need to be developed. 

There are interesting analytic problems. For the estimates (A.1), (A.2), the question of 
how to choose the cellwidths 8 and b needs to be addressed. There has been research 
on the corresponding question in spectrum estimation, but not in product-density cases. 
The sampling properties of the flattened spectrum estimate [the statistic (A.6)] and of 
the argument-transformed estimate of Section 5.1 need to be studied in detail. 

Suppose there are tracks of several particles. How is one to model and describe the way 
they are interacting? As in the case of Section 5.2, models may be needed to handle the 
fact that (X(t), Y(t)) may be tied down or bounded. As mentioned above, a multivariate 
version of loess needs to be developed. So too do other improved estimates of tracks 
based on irregularly observed data. 

Stacking appears a powerful tool worthy of an in-depth study. 
The cases of vector-valued processes and series need to be developed. So too do the 

spatial, marked spatial, and spatial-temporal cases. Some references to the spatial case 
include Hanisch and Stoyan (1979), Isham (1987), Ogata and Katsura (1988), Stoyan 
(1984). 

APPENDIX 

This section provides some details of the estimates and computations. Given data, X(t), 
O < t < T, general estimates of the fx...x and Mx...x are indicated in Brillinger (1972) for 
processes with stationary increments. 

If Y denotes the mean of the data Y(t), t = 0,... , T- 1, of a discrete time series, then 
an estimate of the autocovariance function is 

IT-lul 

Cry 
(u) = { Y(t + u) - }{ Y(t) - 

}, 
t=O 

and of the third cumulant function is 

Cyy,(U, v) = { Y(t + u)- F }{ Y(t + v)- }1{ Y(t) - }. 
O<t, t+u, t+v<T- 1 

These appear in Figures 6 and 7. 
An estimate of the rate of a point process N is 

py 
= N(T)/T, while an estimate of 

the autointensity is 

hN(U)= #{I-tk -u < b,j k} 
2bN(T) (A.1) 

The estimate (A.1) was introduced in Griffith and Horn (1963) and considered in Cox 
(1965). It appears in Figure 8. 

Following the discussion of Section 4, an estimate of the third-order cumulant density 
at u, v, 0 distinct is given by 

qTNN(U, V)= C yy(U, V)/63, (A.2) 

where Y is the corresponding 0-1 time series based on cells of small width 8. This 
appears in Figure 9. 
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For a marked point process, given a binwidth b, one can consider the statistic 

E MjMk= J dJ(t) dJ(s) (A.3) 
ITj-Tk-ul<b It-s-ul<b 

(with j / k and t $ s) in analogy with (A.1). One bases an estimate of Covz{dJ(t + 
u), dN(t)} on 

My= J dJ(t) dN(s). (A.4) 
Iij-Tk-uI<b It-s-ul<b 

These appear in Figure 10, having adjusted the marks to mean 0. 
In estimating frequency-domain parameters it can be convenient to work with the 

empirical Fourier transform 

d(X) = e-i dX(t). 

In the cases of a discrete time series, a point process, and a marked point process this 
becomes 

- Y(t)e-tx, - -i , -j ei, 
t j j 

respectively. These satisfy central limit theorems in various circumstances, allowing 
approximate distributions of derived statistics to be set down. 

A crude estimate of the power spectrum is provided by the periodogram 

IT(k) = IdT(Xh)2. (A.5) 
2nT 

This appears in Figure 8. 
The spectrum (3.10) shows lines superposed on a (smooth) curve. To make the lines 

stand out more, the data have been tapered prior to Fourier transforming and the curve 
is flattened. The flattening was done by applying a resistant heavy smoother to the log 
periodogram values to obtain an estimate of the spectrum, which is then divided out. 
In a related context Tukey (1963) suggests dividing the periodogram by the result of 
a repeated running median, and in a testing situation Chiu (1989) suggests dividing by 
trimmed means of periodograms. 

A cross-spectral estimate fT may be computed by breaking a data set of length T into 
L segments of length V, computing the crossperiodogram (2nV)-l'dvd for each, and 
averaging. The coherence may then be estimated by Ifi2f 

TfA.• 
Likewise, a bispectrum 

estimate may be obtained by averaging the biperiodograms 

I 
dv ()dv(v)dv( + p). 

(2t)2 V 

The bicoherence may be estimated via 

IfJ 
12' 

2 T T 

Its distribution, in the case that the population value fJJJ is 0, is exponential with mean 
V/2iL. See Huber et al. (1971). 
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In the case of a line in the bispectrum at (X, Ig), it can be more useful to consider the 
statistic 

min 1 |lT())12 IlT( "12 
JIT(•+L)12 (A.6) mi fT(A.6) 

fr(,) 
' f)T() ' fT(X + g) 

with IT the periodogram and fT a heavily smoothed resistant estimate of the power 
spectrum. The large-sample distribution of (A.6) under the null hypothesis that at least 
one of pl, P2, P3 = 0 is that of 

min{ei, e2, e3}, min{ei, e2}, ei, 

where the e's are independent exponentials depending on whether all p's, two, or just 
one are hypothesized. The critical value employed is based on the last, corresponding to 
the "wOrst" case, i.e., that closest to the alternative. 
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