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I. Introduction and Summary of Results

There is a growing literature on the k-th order spectra of
stationary vector-valued processes and questions relating to their
estimation (see [1-2],[ 4],[ 6],[8], [9], [11-12].) This paper is
concerned with the asymptotic theory of estimates of k-th order
spectra. A class of estimates is considered that is of an elementary
form computationally and yet leads to asymptotic H,mM,Eﬁm of a simple
form. The asymptotic mean and variance of these estimates is in-
vestigated as well as the covariances and joint asymptotic normality
of several estimates of the same or differing orders. A basic property
the processes are assumed to possess is a tendency for values of
the process, well separated in time, to be approximately statisti-
cally independent.  There is also an accompanying paper on appli-
cations. (See "Computation and Interpretation of kth order spectra”
by D. R Brillinger and M. Rosenblatt in this volume).

II. Background

A. -Stationary Processes

We will be concerned with stationary, r-vector valued
(column vector) processes X(t) = (Xg(t); a = 1,...,r) with real-
valued oonosm:ﬁm/. It will be convenient to assume that all moments
exist. (We do not necessarily assume EX(t) = 0.) Time t will be
assumed to run through the integers.

Stationarity with respect to second order moments implies
that the process X(t) has a vector-valued Fourier representation

2.1) X(t) = [ exp {itx } dz2(\),

-

in mean' square with Z(\) = ANmCL“ a=1,...,r) aprocess with
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orthogonal increments, thatis for -w <X, p <m,

(2. 2) EdZ(\)dZ@)' = (A + p)dF(\)

where A' denotes the transpose of A with F an r Xr non-
decreasing, bounded, matrix-valued, Hermitian function, and 5(\)
is the Dirac delta function. Thus the matrix-valued covariance
function of

(2. 3) EX(t)) X(t,)" n.ﬁ exp {i(t;~ t, )\ JAF(\)

The fact that X(t) is assumed to have real-valued components
implies that

(2. 4) dz(-x) = dzZ(\)
and therefore that
(2.5) dF(=N) = dF(\) .

Since t takes on integer values, Za(\) may be defined for values
of A outside the interval (-w, m) by the relation

(2. 6) ch; = Nw9 + 2jm)

for =0, x2,... .
(These results are due to Bochner and Cramer and may be found in
[3].) Letus define

(2.7) n) = ) s+ 2im).

The existence of all moments and the full stationarity imply
that the moments satisfy

(2.8) m (t,e.,t )= EX_ (t)...X (t)=m (t+ty,e.., T4 ) |
SITRRTPL N Ptk 3 1 a k FEITRPEN Pk
|

for t= 0,+1,%£2,... . Itis convenientto assume (see [1]) that

the moments m have Fourier representations
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(2.9) m

m ™ k K
a a :Hu.:“ﬁwvu.\:. \ mxb?MJéuwm*mQNm Aiu.v 3,

Ptk - i j

where

3
(2.10) mﬁwamm.?f_vTi3+...+swv dG g (Whoo, W)

; ey 8y

and G is of bounded variation with dG zero unless wwsa. =0,%+2m,... .
Such a representation without G of bounded variation is most likely
true if the transform is interpreted in an appropriate sense ( see [ 4]).
With G of bounded variation, it is not true in all generality, but is
valid for a wide and interesting class of stationary unoom\mmmm. Let
“mWA Hr e ty) denote the joint cumulant of xm_A t1), .

c ..
a, - - ,

XmWA ty) . Then the assumption of ( 2.10) is equivalent to

(2.1) ¢ (t,...,t) =c (t+t, ..., t+t )
mp...mw 1 k mH.:mw 1 k

m m W,
ul%d:.l%ﬂmxﬁ ?WwéwuﬁoawaAS%“ i=1,...,k}

with the cumulant

(2.12) oENm.Asa.: =l ...,k =n( 3+:.+<<rv%ma: mx?:, W)
]

ok
S:mwmm,Hmoﬁvoczama,\mﬁwﬂbdéﬁ:mwNmﬂocammmMJ<<_H

J
0,+2m ... It will be convenient to assume that ‘;m cumulants
Ca a. arein Lj as a function of some (k-1) -tuple of t's (and
R
hence any other ( k-1) -tuple. ) This implies that F is differentiable

on the manifold Mw.af =0,+2m ... with

(2.13) &.,m .m?e

L, won(wot 4w
13 k 1

r Wv
=t L mwA Wi, W) nlw b tw, ) dwy L dwy

It is convenient to write f as a function of k wvariables even though

it is zero off MWS_, =0,+2m,. Notice that f is continuous on
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Mwﬁgu HOv an._._.u... .

The stationarity of the process, primarily a time domain
concept, corresponds precisely to the condition that in the Fourier
analysis of k-th order moments ( or cumulants) the spectral mass is
located on the principal manifold MWS; =0 (mod 2w) of k-dimensional
wave number space for every integer k > 0. Further, one can readily

see that

(2.14) dG (w

4
L a T:Js.xvis;.:.+<<

W)

nmm ...a :J

X . t..uéxvi<£+...+2xva<< ... dw

1 k

as long as the wave number vector (wjy,...,w)) does not lie in a

proper submanifold of MWSH =0 (mod 27) of the form

(2.15) Y w. =0 (mod 2r)
je7
where ] is a nonvacuous proper subset of 1,...,k. The discussion

of what happens on (or near) such proper submanifolds of the princi-
pal manifold in spectral analysis has to contain some detail and is
somehwat more complicated than the usual situation on the principal
manifold , but off proper submanifolds. The fact that the process has
real-valued components implies that

(2.16) MH.. WA<< ...“éwvlmmw...wwﬁxiﬁ...g K
There are also symmetries introduced if some components are re-
peated in the computation of higher order moments or spectra. A
detailed discussion of these symmetries and questions of aliasing
for higher order spectra is given in the accompanying paper on
applications.

B. Second Order Case.

At this point we shall briefly discuss the asymptotic proper-
ties of a class of estimates of second order spectra. The hope is
that this will motivate and provide a base for ﬁdm&ﬁn@wﬁam:ﬁ of esti-
mates of k-th order spectra. Assume that we observe a zero mean,
discrete time parameter, real-valued stationary X(t), t=0,+ L.,
from time t =0 to time t = T-1. Certain features of the discussion
will indicate what happens in both the discrete and continuous case,
while others will be typical only of the discrete case; however, these
will be pointed out at the appropriate place. Obvious estimates of
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the covariances m(T) = EX(t)X(t + T} are given by

(2.17) N ) X(t)X(t + 7)
0<t, t+T<T-1

The Fourier transform of this sequence is

T-1
(218 T Diny = (2m 7L ) m D vy exp f-1m\}
=_(T-1)
1t 2
V% =(27T) 7| ) X(t) exp {-itn}| |
t=0

the periodogram. Asymptotic properties of the periodogram, under
an additional condition like MWOS_ ,_,_ _SA i_ < w_ include

(2.19) mHA H:z =f(N\) + 0f HLV

2T 2T ,
sin IN.;+IV sin N?:tv )

2
(2.20) covit P(ny, 11D (-0 + yoir).

HN AmeNMH?.I& mgwlmw;lrv“

Clearly the periodogram is not a consistent estimate (in the sense
of mean square convergence) of f(\), even though it is asymptoti-
cally unbiased. However, the asymptotic orthogonality of HT)(\),
HA HVA ) for N #u 0 <\, p <w suggests that one would obtain a
reasonable estimate by smoothing. We shall smooth by using a
sequence of weight functions Wr(u) derived from a fixed weight
function W(u). Let W(u) be a given weight function that is
bounded, non-negative, symmetric about zero (W(u) = W(-u)) and
such that W(u) ~ 0 as |u| - 2. Further let [W(u) du =1. Let

|
= i <
(2. 21) Wo(w) =K B W(B u) if ul < =

s
with Kr a suitable renormalization constant so that R <<4.HA u)du=1.
-
Br is chosen so that By~ 0 as T —> «, but TBp - ® as T — o,
Notice that this implies that Ky > 1 as T —= ®. For u outside of
(-m,m, Wp(u) is to be taken as a periodic function with periocd
2w. An estimate f{TN(\) of f(\) is then given by
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Ll
(2.22) m Dy = f W TQ:A B a)yda .
-Tr
The alternative way of writing m H: \) as
T-1
(2.23) m 53; =( Nil_ M w (1) BA H:imxn {-iT\}
T
T==( T-1)
where
:.3
(2.24) SHA T) u\ <<.H_A u) exp {itu} du

-1

may often be more convenient for computation. It is natural to call
Bt the bandwidth of the function Wr(u). The estimate is asympto-
tically unbiased as is the periodogram

(2.25) Efl H: N) =N + 0f HLV

A discussion of the bias bp()\) = Eff .H: N) - f{(\) can be found in
[7]. The estimate is asymptotically consistent since

(2.26) cov{fl T IS I Diw )

. ,
= Na.Hl:% <<.H_A A-a) <<HA uta) mNA a) da

-1

v
+ [ W (A=) W (p-a) %EE&ZG-:.

-
For fixed X\, pn with A#Ep(0O<X, p<m

1

£ H:::uog‘ )as T—oo,

cov ﬁA H: N,

Thus £{ ) N, il T(w) are asymptotically csooﬁ.mean if X #Fp,
0 <\, p <w. Now consider what this tells us abofit the asymptotic

behavicr of the variance
(7) “1, T 2
(2.27)  varf (N =2nT {] Wo(A-a) W (\+a) £( @) da
=1

+ \,ﬁzmﬁ N=a) £2( @) da} + ot .

~1
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Clearly,
(2.28) lim BT var £ D()) =2n£2(N\n,. [W(u)du

T T 2\

if 0<\ <w, where if &, denotes the Kronecker delta,

o0
(2.29) T Wﬁs&?

Notice %»mﬁ in expression ( 2. 28) one has a doubling of the variance
at \ = and A =m. The doubling of the variance at \ =0 happens
in both the discrete and continuous case, while the doubling of the
variance at X\ =7 is characteristic of the discrete case only. If

we were to write the spectral density in the form given in (16), we
would have

(2.30) - mrvumswsx

with w] =X = - w2 and then it is seen that X\ =0 corresponds to
the submanifold (0,0) of w) + w, =0. Formula ( 2. 28) is unpleas-
ant in that the asymptotic behavior at \ = 0, ™ appear as discon-
tinuities. Formula ( 2. 27) is much more informative in this respect
since it indicates that the transition between the usual asymptotic
behavior and that at » =0, n takes place in intervals about \=0, =
whose length is of the order of magnitude of the bandwidth Br. The
estimates mA H:Jv of f(xy), 0 < AN =m, j=1,...,s are asympto-
tically normally distributed with means and covariances given by

( 2.25)and (2.26) to the firstorder as T— o under appropriate conditions.

C. The k-th Order Case

Because of the stationarity the moments Ma,. . .mWA t, -, tk)

and cumulants an. L
ately chosen variables. At times, such a representation will be
convenient though perhaps unesthetic. The representation will de-
pend on the index of the time variable one uses as a base point in
forming time differences. If t; is used as the base point we shall

write

mwA t,...,t) depend only on k-1 appropri-

(230 ymy e (Vs Yy p Vigp e )
1 k
=m g (v, v, bt RV e BV
1 k
with a corresponding definition for __omp...ww?%:; JLV <_,+T ey <rv .
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Notice that the k functions of k-1 wvariables formed in this way
from the initially given function of k wvariables will generally look
quite different, There are however, certain obvious relations be-
tween them enabling one to determine any one in terms of any other.
These relations are commented on in greater detail in the accompany-
ing paper on computation and interpretation. Whenever an assump-
tion in some result is stated in terms of such a representation, the
assumption will have the same form in terms of any such representa-

tion. For convenience we will write m! {(vy,... > Vi) for
al...ag' 'l

xMa a (vy,-..,vk_1) with a similar definition for
1% :
Qw%.. mWA Viy-+-,Vk_])- In the frequency domain, the contracted
form
\ I N
(2.32) 8, o peoMp Mg M)
1 k
= RN
mw...mArﬁ..:ywlﬁyﬂjiu ’ wv
1 k
where MWVJ. =0 (mod 2m), will at times be used. We shall also
write ww& . mWA 77 ceey M) for rmmh. . mrA ISTEEEE ZALV on
occasion.

In deriving results we will make a basic assumption con-
cerning the nature of the process X(t).

Assumption I. Given the strictly stationary process X(t) =(Xg(t);

a=1,...,r) we assume
o
(2.33) S 8_<uoma..mwA<Hw:.n<w-:d *
Vi V1T
for j =1,...,k-1 and any k-tuple aj,...,ak when k =2,3,...

This assumption relates directly to the smoothness of the
k-th order spectra. In fact we can prove that

. X ..
(2.34) ,we:wnzu USRS TR TER RN
&
i} X Y
mma..mwﬁrw...“yw-a ST N
ket
< 1
I;_._Ami M_<&om~.‘.wwa<%...u<x|yv_
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or alternatively we may note that ( 2. 33) implies that

m.mp. .. mwﬁ VT..J rwnb:mmwcsﬁoﬁ,aqoo:ﬂscocmvcamoﬂsq
bounded gradient.

Before going on to state some results of interest, we shall
have to introduce some additional notation. Let

(2.35) awd; N X () exp {-ixt) .
£=0

Moments of products of such sums as

(2.36)

-
1"
e —

é::

will be of special interest to us. Notice that the familiar second
_order periodogram is simply,

(2.37) Doy =(2em ™ Dinyl?.

We shall have occasion to introduce higher order analogues of the
second order vmﬁoaomwmg In the following lemma the joint cumulant
of mm (T) rHv g eey (D v is estimated. Let

1 mw

(2.38)  aqn uMl exp {-irt}

= exp {ix(T-1)/-2} sin E\N\MS Nz .

We note that Ag(\) =T if X\ =0 (mod 2m) and Ag(\) =0 if
A =2mn/T, n an integer not equal to 0, *T,... .

£
Lemma 1. Suppose that

[o¢]
(2.39) MU lv.c (v, .., v, )| <o
v v =0 uwH.:.mw 1’ 7 k-1
I
for j =1,...,k~1; then the cumulant

o

S
The proofs of Lemmas and Theorems may be found in Section IV.
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( 2. 40)
T T
OEW:JV,:. D= (zmla ANV e .mmJ“:;ﬁ-?ﬂoA:
where the error term O(1) is uniform for all A ..., A

We note that the cumulant reduces to O(1) if for j =1,...,k

u Nﬂs /T, nj an integer, but Mwn J #0 (mod 2w). This H.mo.EOSOD
will onmmzv\. wmmpmﬂ us in deriving statistical properties of the pro-
posed estimates.

The expression

(T k-l w:v
(2.41 HmH.:m?d:;r Tnmi umpam AJV

where MWJ. = 0(mod 2m) is a k-th order analogue of the second

order periodogram. This is suggested by the fact that

(T)
(2.42) 1 (N eey N)
aj--- 1 k
T-1 T-1 k-1
P LD MR ) BMHV (e vy _exp{-t b ﬁwu@
v, =T+l v, ==T+ 177 % 1
1 k-1
with

(2. 43) BE L @y, z&; LoX (v X (e DX (0,
&%k - 0<t<T-1 1 k-1 k

0t <T-1

< <T-
o.ln+<wl H....H. 1

:,V

since MWHJ = 0(mod 27). We shall call Iy mwA Ny -ery M) @

k-th order periodogram and it is always to Um understood that the

sum of its k variables satisfies MM J 0 ( mod#2w) .

In connection with the k-th order periodogram we can prove
Lemma 2. Let X(t) ={(Xa(t); 1,...,r) be a strictly stationary
process mmﬂm@:ﬁ Assumption H me k-th order periodogram,

iy (M, ..., \), given by (2. 4]) is such that
a...a 777k , given oy
ey
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(T
( 2. 44) EI (x,,
wH...ww 1

_ -1
ey N) =f (N ppeees M) HO(TT)

k 3y mw

provided that the X\, ...,% donot lie in any proper submanifold of
the principal manifold. ( The term O .H_IJ is not uniform here. )
The expected value typically diverges as T—% if the N's do lie
in a proper submanifold. If the process has zero mean,

T) (D
(&N Ml
1 3%

—k+2
(2.45) T QHM PN

(S T S
ka1 22k k+1 2k

Md L Oy ey )}
k+1" 2k

2k

(1)
-EI mwc{..; NJET -

I

sin Wef+ N ) sin 1T( MNoOEN )
) 1 2 2k-1 2k
HE:WAJ:. ) *77 Tsin 2(), AN, )

1 2 Lok tox

y + Of HLV
2k-1

1 1
..mm‘m. AVH..V...Hm. a AVH

where = extends over all groupings {(1j, i) ,..., (12K}, i2x) } of
(1,...,2k) into pairs such that for some j one_of ipj_1,izj is
in the range 1 to k and one in the range k+l to 2k.

From { 2. 44) we see that the k-th order periodogram is as-
ymptotically unbiased off submanifolds; however from ( 2. 45) we see
that it is not in general consistent. From ( 2. 45) we also see that
if VH.H.ZLN, ey ZNWL.T ZNW are not all congruent to 0(mod 27),
then the estimates are asymptotically orthogonal. This suggests
that we may obtain a reasonable estimate by performing a smoothing
avoiding submanifolds. We have already noted that { 2. 33) implies
the continuity of mm_... wwA N, ..., M) as a function of the N's on

M_Hn VJ = 0(mod 27). Consequently we would expect that taking an
average of values near, but not too near, a submanifold may provide
a reasonable estimate on the submanifold. Both off and on sub-
manifolds we have been led to estimates that are weighted averages
of the k-th order periodogram avoiding the submanifolds.

We can now describe a class of estimates of k-th order
spectra that are analogous to the estimates of second order spectra
discussed in the previous section. Let W(uj,...,uy) be a given
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continuous weight function on the plane Mm Uy = 0 and such that

00 © k
(2.46) .%...k,6<Act.,.“cwvmawucgwaca..acw”p
and
(2.47) Ww( lcﬁ...‘ncwvn<ﬁ:<:.u:wv
Let
~k+l -1 -1
(2.48) S\H.Ac%.:u:wvlma W( wH cH...;wH cwv
for all uj with wa = Q. If the resulting series is uniformly and
absolutely convergent,set
(2.49) Wy, uy) = DLW+ 257y e w25 )
for chu_ = 0 (mod 2m) with _:H._ <w, j=1,...,k and where the
summation in ( 2. 49) extends over ji,...,Jx with upt...+ux+
2m(jy+...+jg) =0. Br is chosen sc that By—~0 as T ~ ©, but
k-1

An estimate of mmw. (Np, ..., \) that one could consider

.. WW
off the submanifolds is given by

(T)

(2.50) f (Myee oy N)
Ay 1 k
0 w0 k
= foof Wolhaeh —e )BT (a,e )80 e) de.. de
T Pk k' Tag...a, P70k =5 """ 7k
_O0 -0 1 k 1
Tow (T) k
= fof W e —e )T (e e n( D edey da.day,
- =T 1 k 1
K E

where as usual MHJ = 0 (mod 27). This can also be written in the
form
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(T)
(2.51) f£ (N, . )
mw. . .mw 1 k
T-1 T-1
~k+1
= (2m) M M ée?ﬁ ceey 4WLV
vy =-T+1 <W|~n|m_+~
k-1
(D) .
. Bmp:. mwA Vi s Vi) exp{-1i M vy Juﬂ

where the éi V], ..., Vi_]) are the Fourier coefficients of
Wrluy, ...y uioy),
<« o«
(2.52) S.H,A AATRTES <WL~ u.ﬁ R <<HA c% e quv
00 ~00
k-1 k

meﬁMﬁ.z.;AM:.vac...&c
R k

The asymptotic behavior of estimates of this form, k =3, and when
the series have zero mean have been discussed in some detail in
[9] and [13].

For estimates on the submanifolds, the earlier discussion
indicated that we could average estimates of the form of { 2. 50) for
A's in a neighborhood of a submanifold, but not actually on it, An
alternative is to employ an expression of the form

o I T-1
(2.53) (2m) Lo ko welvye,v )
vi=-T+l v, =T+l
k-1
(T) )
- C A<u‘..w<|vmxv«|~M v.A )
wH...mw 1 k-1 1 ii
h (ny )i timate of th lant
winere O.mu.... WW <Hu veey CJAIH 1s an estimate o € cumulan

O.wH. Y mwa Vlseo s Vkal)-

We could base an estimate of o_m_:. wwﬁ Vis oo vi_1) upon
estimates of moments of the form of expression { 2. 43). Alterna-
tively we could base moment estimates upon the associated circular
process, that is use moment estimates of the form

T-1

~(T) -1 5 5 5

(2.54) m (Viyy v, =TT ) X (thv). X (t+v, )X (1)
mp:. mw 1 k-1 t=0 mH 1 wwL k-1 a,
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where |vjl <T-1 and X(s) =X(s) if 0 <s <T-l, while it is the
periodic €xtension, with period T, outside this range. Estimates

of this second form lead to estimates of k-th order spactra that are
simpler both computationally and analytically. This simplicity is
due, in part, to the fact that one is now in effect carrying out a
discrete harmonic analysis on the discrete circle and more generally
the discrete k-torus. The results obtained on the asymptotic be-
havior of these estimates constitute a natural extension of those
obtained in the papers cited above for k =3, with the added advan-
tage that a simpler variance formula is obtained. We consider a
sequence of weight functions <<i up, ..., U) justas those in
formula ( 2. 48). However, the estimate is obtained by summing dis-
cretely., We define &(uy,..., u) to equal 1 if wa = 0O(mod 2w),

but .Mwﬁ_. # 0(mod 2w) where ] is any nonvacuous proper subset
Je )

of 1,...,k and &(up,..., zwv =0 otherwise. The proposed esti-

mate is now given by

(T)
(2.55) f (Npyeen, X))
mH.:mw 1 k
0 0 2ms 27s
o k-l -kHl g : 1 k
=(2m 7T Yo WA ==y A - =)
S, =00 S, =-00
1 k
o quH Nﬂm_n:H T) A quH Nﬁmwv
ey yeeey
T T mH...mw T T
T-1  T-1 2ns 2ns
k-1, _-k+l — 1 k
=(2m T mM, . M;oéii- Ty N m )
I
2
L N#mH Ndmw:A ) A Nde ._._mw |
T T Map..a T T

where MWJ. = 0(mod 27). Notice that estimates of the type (2. 55)
differ from these of the type ( 2. 50) in that any contribution from a
proper submanifold is supressed by the function & . Later,in proving
one of the main asymptotic results, we will see that this modifi-
cation leads to an asymptotic variance simpler B%ms one might ex-
pect. If we wish we may normalize the weights in ( 2. 55) by divid-
ing through by

) ©
NﬁmH N.:mw Na.-mH Nﬁ,mw

(2.56) K = Yo Y Wl s (e, )
MMHIOO S, ==00

k
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or some similar expression. This will not affect the asymptotic
results of the paper, since under the conditions to be postulated for
W, Kp =1+ 0O( mHLﬂn: . Finally, we will see that the estimate

mﬁm.ﬂ a ;T . vwwv given by ( 2. 55) may also be written
e 8y
.H- -_— —
(zsg) 40 O, =(2n T
1 3
I w (Vv ceey V. vm.\._ (Vyyers, V. vmvnb.ﬂlu.. v}
<._.|I.I.H_+H <FI—.HI.H_+H ™ P k-1 WH...WW P k-1 T ity

WH ~1 1 C i S
where omf.. mwA V) ..JﬁnLv is an estimate of OWH...mwA<Hv...,<W|_V

derived from the moment estimates of expression { 2. 54) and

{2.59) <<HA<~“:.,.<.WLV
© © 2ms 2ms
k-l -k+l 1 k
=(2m™ 7T D D T W
=_00 =
®1 S
WML Ndmu. 1 -1
- exp {i v {rnAN, - = T
L uAu T SHTJV “<W|Z+Oawaa ).

:Jn
1

III. Statement of Some Typical Results

A. The asymptotic mean of a k-th order spectral estimate

The class of estimates we will be concerned with are those
given by expression ( 2. 55) with Wr given by expression ( 2. 48).
With respect to the function W we will assume

Assumption II. There exist A, ¢ > 0 such that

k-1
) cu.i < A(14]
1

=

) B R
ﬁ.NHN ) —{ kt+e - 1)

(3.1 {wWlu,...,
1 ]

Vv

~

and
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k-1 k-1 1
| vo2. 2 —{kte-1
(3.2) F2—wW(u,...,u - yuyl<ai+ [ ul) (ke - 1)
Bu 1 k-1 j J
4 1 1
for £ =1,...,k-1.

(3. 2) will be needed when we come to approximate certain finite
sums by integrals.
We can prove

Theorem . Let X(t) = ANmA t)y;a=1,.

.., T)
process satisfying Assumption I. Let mAwMH_.V: ay

estimate of me.: mwA Nyy ey Mg} Of the type given in expression

be a strictly stationary
AVT ey JAV be an

( 2. 55) with the weight function W satisfying Assumption II.
If BpT > « with By~ 0 as T — o, then

(T

(3.3) Ef
a3y

Oy e s M)
0w 0 k

=/ Jw, (- A, ~a )f ( a yn( Ya,)de ...da+ o:wLHL,.
AR IR LRSSl Yl "S-V W LA 3 P75k T

_o0 -0 1 k 1

We see thatup to O( wm_HH_LV the expected value of the pro-
posed estimate is a weighted average of the k~-th order spectrum
with weight concentrated in a neighborhood of the wave numbers of
interest. The theorem has the following immediate corollary

Corollary. Under the conditions of the theorem

, (T) -
(3.4) lm BEC Oy N =E Oy

T—oc 1 k 1 k

_AVu

that is, the estimate is asymptotically unbiased.

By strengthening the conditions on W and fa; w&rr e )
we can obtain an alternative expression for the expected value given
in {3.3). This alternative expression is illuminating in severalways.
Suppose W is such that

A
o0 aoo p k
(3.5) oo TLag FIWeug,e, uls (D uduy. . duy <o
—00  —w 1
for some integer P>1 and ¢ =1,...,k-1.

Let
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(3.6) <1<T...~<WLV

k

0w k-1
=fo. ] Wlu,...,u mev?M,\.z.szc.vac..
\Mo n.om r * Tk-l R T 1

We can prove

Theorem 2. Let X(t) =(Xz{t);a =1,...,7) be a strictly stationary
process such that

v
uwH a,...a HT.JJAL
m?. Ww

is uniformly bounded for Mwn HP =p, b_ 0, p<P. Let

EV
mH... ay
type given in expression ( 2. 55) with the weight function W satisfy-
ing Assumption II. If BpT—~® as By~ 0 and T %, then

( VT .-+, M) be an estimate of mww:. mwA Ny oy M) of the

(T)
(3.7) Ef (Ao eey A
mﬁ:mw 1 k
_ p
.mMH Ny Br 5% o N
- L D p p coa N )
=0 pP.ye.,D i pt 1 k-1 1
1 k-1 N[ BN
D
] 1
w(0,...,0)+O(B Pyios Ly J
L Pk B T
B,
N

‘We note that we may eliminate bias up to order wHHuL by
selecting a weight function such that

(3.9) ————— w(0
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for p=1,...,P-l. We note that the term O Bf) + O(BflT™})
ooimnmmm no OA BpF) if mﬂmi T~ as T— . Finally we note
that the partial derivatives mentioned in the theorem will be uni-~
formly bounded if

p
[v.] ,ow 5 ?1:;<wL:A8

(3.10) r u
. » eay

VT Yyl

-, 08

for j =1,...,k-1, W

B. Asymptotic covariance of k-th order spectral estimates.

Continuing to examine asymptotic properties of estimates of v

the form ( 2. 55) we can prove !

Theorem 3. Let X(t) =(Xa(t);a =1,. vommqwoﬁv\mﬁmﬁozmg .
process satisfying Assumption I. Hmﬁ m:J mw:é:. ,Ak) and

MNM“G: mw?ﬁ ceey va be estimates of the Sﬁm given in formula ( 2. 55)

mwA VT... , Jav and mw_u.:mﬁ PR t.wv respectively with
weight function W satisfying Assumption II. If ww Y as

Br~ 0 and T- o, then

of fa)

(T) ;,...,ywvhmw:m.:J...;cw:

8%k 177k

(3.1 oo<:

s 27
=200 ) [ [ W= By M By

..N.Ioo -0

()

W By by :ﬂf; :f:i? ) e u

a,,a', .
" P(i)

da....de dp....dp +o(B"T2T
e 9 dPy e dby T :

where the summation is over all permutations P on the integers

l,...,k and the error term is uniform in the V_p,m and p's subject
to

k

u.mo:ao& 2wy and MthOABoawi.
1

=~

Notice that the random variables in formula (3. 11) are
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generally complex-valued. The covariance of two complex-valued
random variables, X,Y is taken to be

x s
(3.12) cov(X, Y) =EXY -EXEY

In the present situation it is enough to derive these complex co-
variances because the covariances of the real and imaginary parts
of the estimates may then be derived in an elementary manner. The
asymptotic results on covariances can be given in the following less
informative but simpler form.

Corollary. Under the assumptions of Theorem 3,

(T)

k-1 (1)
(3.13) _Wvdwow T cov| w&:w“r%:;rw?mmm...wﬂtﬁ..;rw:
uqu,Z._ ..M I, (Nt
P oMy MPRok %Ry 23y (M)
0w k
.mo .No‘é?m..:q ) WETp(1p0mes Tk VEMJEP:. dp,

where the summation is over all permutations P on the integers
1,...,%k. In particular if one orders the series so that the wave
numbers satisfy -m <A} <Ap<...<A¢<w and - <pp<pp <. <pg<w
and one is off proper submanifolds of the principal manifold the ex-
pression on the right of formula ( 3. 13) becomes

[e]

- mw_;i..géat.“ wa% 4B,

k
(3.14) 27 1 {n
j=1 M

itd -0 -

Alternatively if W is symmetric in its k arguments and we are
dealing with a single series (3.13) becomes

(3.15)

2wf(N,). . EO0 ) 2 e

VKB Arkpay MMk S0 oo

In the case of (3. 14) we note that we may standardize the

estimate by dividing itby Aﬁ?mu; ) H\N Also we note that ( 3. 15)

contains fewer terms in the case k =3 than formula (7.10) of[9].
This simplification is caused by the subtraction of estimates of
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k
%8 H:.;UWEMF.EP:.%W.

tower order product moments. One can see that generally in the
case where these lower order moments are known exactly, as in
[9], one obtains a simpler formula by persisting in subtracting

their sample estimates.

In both the theorem and the corollary the expressions for
the principal contribution to the covariance involve only the second
order spectra. Intuitively, this should not be completely surprising,
since in forming estimates of k-th order spectra one is still effec-
tively narrow band filtering, though in a more complicated situation,
and narrow band filtered series tend to become Gaussian. This point
is discussed in "Computation and Interprelation of kth order spectral!
by D. R. Brillinger and M. Rosenblatt in this volume.

The corollary above is the analogue of the result given in
formula ( 2. 28) for estimates of second order spectra. The apparent
discontinuity in formula ( 3.13) for the limiting covariance on proper
submanifolds of the principal manifold parallels the discontinuities
at zero and = in formula ( 2. 28). It is for this reason that the
uniform result given in Theorem 3 is more satisfactory. Formula
(3.11) indicates that there is for finite, but large, T a continuous
transition between the typical result off a submanifold and the
typical result on a submanifold in a region of linear bandwidth B
about the submanifold.

In the next section, to complete the covariance analysis, we
will see that estimates of a k-th order and an £ -th order, k #{,
spectrum are asymptotically uncorrelated under suitable regularity
conditions.

C. Asymptotic distribution of the estimates.

Suppose we now have estimates of cumulant spectra of
orders k] <kz <... <kp of the form given in (2.55) with scale

(D). <p(b)

factors By ' <...<By'. Write the j-th such estimate in the form

, x (1 5.4 (i)
(T),, (3), _ 2m : 3 2ms (T) 2ws
(3.16) 1, (") =) Tl e (S
] u
where Aj designates the indices of the f series involved in the

j-th estimate. We can prove

Theorem 4. Let X(t) =(Xa(t);a=1,...,r) beta mﬁlos% stationary
process satisfying Assumption I. Let ma: ra 1 ), i=1,...,b, be
u.
estimates as given by formula (3. 16) of orders kj; <... <kj whose
weight functions <<d satisfy Assumption II. The Ums%i%sm wm:
of the estimates are assumed to satisfy
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; T~

(3 (i)ks-1
mﬂ -0 me ]
as T — « with mﬂ:v..A.. .. MwHA D) Bandwidths of estimates of the
same order are taken to be equal. Under these assumptions the
estimates are asymptotically jointly normally distributed as T — ©
with estimates of different orders asymptotically independent and
estimates of the same order having covariance structure given by
{3.13).

D. Extensions. The results stated above are given for discrete
parameter processes. One can obtain parallel results for continuous
time parameter, continuous in mean square, processes. Assumption
I is replaced by

Assumption I'. Given the strictly stationary process X(t) =(X5(t);
a=1...,r) we assume

oo} Q
3.17 o [ _ <
(347 % -R _J.omp.:mn r v<wL:a<H dvy =%

for j =1,...,k-1, and any k-tuple aj,...,ax when k =2,3,...
Expression ( 2. 35) is replaced by

(3.18 QAdyxe {-int}
. 18) a Avn%xm:vmxv —ixt}dt

and expression ( 2. 38) by

T
(3.19) AN n% exp {-irt}dt .

The definition of the k-th order periodogram, and the estimate of the
k-th order cumulant spectrum remain the same. Turning to Theorems
1 through 4, the results remain valid with the simple replacement of
m by & throughout as the proofs given extend directly. One may
also extend the results to processes with a multidimensional time
parameter.

IV. Proois
A. Cumulants.

Throughout the proofs of the theocrems of this paper, exten-
sive use will be made of the joint cumulants of polynomial functions
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of random variables. As a result we will need an algorithm that A

may be employed in the derivation of such cumulants. The algorithm

we will describe, and the notation we will use, is that of [5].
Consider a ( not necessarily rectangular) two way table

(4.1) (L, ... :LJV
(Lb ... :LJV
and a partition of its elements into disjoint sets, {P,Ppyeny Pmt-

We shall say that two sets of the partition, Py, and Hu.ww, hook if
there exist :H. jp) € HU.S and (i3,]l4) € fm such that j1 =j3. We
shall say that the sets Py and Pyn communicate if there exists
a sequence of sets Pj; =Pyr, Pissenes Py = P;» such that m_J, and
hook for each j. A partition is said to be indecomposable

P, indecomposab’e
ﬁumﬁw its sets communicate. One can see that if the rows of table
(4.1) are denoted by Rl,..., Ry then {Pj,..., mb is indecom-
posable if and only if there exist no sets Py), ..., Pb_ (n <m)
and rows ff....fu;@Ad with

= LAUR,
(4.2) JC:.CHJ wu.C U i

1 n 1 o}

Turning to the calculation of cumulants one may prove

Lemma I[5]. Given an array I V\.EU:V n=1...,ky, m=...,]J
of random variables, consider the J complex-valued random
variables

k
(4.3) m ~ %WW Ymn
The joint J-th order cumulant OANT Ceey Nuw is given by
Y c,...C,
v 1 o)
H X
where C, = o.?w% s ¥y ) when v =(ay...,apy), the a's being

3

pairs of integers taken from the table (4.1), and the summation in
(4. 4) extends over all indecomposable partitions of (4.1).

The proof given in [ 5] is for real random variables, however
the extension to complex random variables is immediate.

As an application of this lemma we see that
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(4.5) Eﬁ,:.%xvuwoﬂi:ﬁ

v 1 p
where the summation extends over all partitions A<T ceny <@v of the

integers (1,...,k) and C, denotes the joint cumulant of the y's
with subscripts in v. The relation (4.5) may be inverted to obtain

- p-1 )
(4. 6) o?ﬁ...uv\xw|mﬁ VR 6 -2 VLA TR T
1 p
where the summation again extends over all partitions Act ey fuv
of the integers (1,...,k), but now u, denotes the product moment

of the y's with subscripts in v.
The finalalgebraic property of cumulants that we will require
is
4. , =
(4.7 OAN ®n Vi M mus v\?v
zH 1 zq T

where the a;j are constants.

M Mm:»:. w“_.s 0?\45, ceny u\?w
sH nw 1 T

Proof of Lemma 1. Set X =Xj+...+X\, tg=-min(uy, ..., ux_1,0)

and tg = T-l-max(uy,...,ux-1,0) if for TJ_MHFr j=1,...,k-1 we
have 0 <ty <tg <T-l. Setranges of summations involving these
limits to the empty set if this is not the case.

(T) (T)
(4.8) oEmHAJr:;awx?x:

T-1 -l K
= -1 1
Y ), expd HMJ.{omH.:m (t) o, t,)

Jno ﬁwno 1 k .

T-1 T-1 k-1 P
= M D) mxv«LM\ quvow o Uy ) meﬁ?;&..
c._.nl.H..ﬁ K HHIH.I 1 """k t=t

- a
T-1 ; -
We note that T exp {-int} = AN,

t -1

o

_MoxﬁT;miA?,Aﬂc_+1,+ic |

=0 —a =71 k-1

and
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T-1
(4.9 | % expl-inl<lul+.o+lu
t=t_ +1
8
We see that
_k+l
(a.100  l£ Oy p=(em
il k
¥ el H
. exp{-i ), u, ¢! (uyennyu, )
u, =-T+l u =_T+] 1 ] mH...mr 1 -1
1 k-1
kil o -l .
<@ LDty plel e pl=OlTT).
-0 -0 u. "

The stated result follows on writing (4.9) in the form

(4.11)
t
T-1 T-1 k-1 T-1 a-1T-1
Y expi-iy, w.z%uo_m a Acﬁ..;crupv:M| Y -7, exp{-ixt}].
~T+l -T4] 1} 1% 0 0 tgHl
Proof of Lemma 2.
We are interested in
k4l -1 K
(212 51D e =C2m M 1T
mp:.mx 1 k j=1 mu. ]

where MWJ_ = 0(mod 2m). Taking yj = QMUA J_V we may use (4. 5)
J

to obtain an expression for the expected value at issue in terms of
the joint cumulants of the QMH_.,: J.v and the reader will remember

that we obtained an expression for these joint cumulants in Lemma I.

In ( 4. 13) below we will sum across all partitions ( Vi rees <vv of
(L...k),a,={aylievin, =2 Ny, and N, = {\lie v, but the
last N is supressed}. We see that H
(4.13) el” O

1%

= (2 K71y BixbeacW JEL (O] fag(R L (O )+OCD).

v 1 vy 1 p o p
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In (4.13),if v =(1,...,k) for example,

N 1y = '
(4. 14) D.HA N <v mchcv |D.H_AVH+...+7wvmw~:.mwﬁrﬁ .eey VWL.V

We now see that ( 2. 44) follows from (4. 13) since the X\'s lie in
no submanifold.

Turning to the proof of ( 2. 45), from Lemma I, given random
variables vyp, ..., v2x,

(4.15)  Ey|...vy ~EY eV By pee Yy um o;.: oﬁv

where the summation extends over the indecomposable partitions of
the table

(4.16) 1 ... %

k+1... 2k

and C,, denotes the joint ocﬁcpm:ﬁ of the y's with subscripts in

v. Setting yj |QS.X A, 3 =1...,2k, the expression at issue in ‘

( 2.45) may be <E.§nm:

(4.17) T am) BRFE2Y Niw-@Fim,\ YL (N )+O(D) ]

v 1 vy 1
N 1 1
.::{fu:m: A7<nv+o::
p
where the sum is over indecomposable partitions .T\T Ceey JL

selected from the table (4.16). The typical term in (4.17) has the
form

k

a )

m v 1 v m

-k ~ ~ , . _ m-~
(4.18) T DH?JV:.DH_?_\ vm_w ;< )... ! Ar< YO =O(T
1 m

Noting that we have assumed ( for the present only) that the series
has mean zero, we see that the principal term occurs for m=p =k.
The stated result now follows directly.

In the proofs of the theorems we will require a lemma allow-
ing us to approximate discrete sums by integrals.
Lemma 3. Consider a function g(uj, ..., Ug) with the property that
there exist A, ¢ >0 such that
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mo?%:;cwd

2,3 (k+e)
(4.19) _@AC%..JCFV_, au )

k
MREM{ =My ) -
1

j :=( Bi— h; be
Given finite A;<Bj, =1,...,kand h; >0, let Ny=(By Aj) /hy be

an integer, then
ZHL. ZWL
(4.20) hp..hy Y . L o(Aghn, .., A+hn)
n,=0 n, =0
1 k
B By
n% .‘ ﬁc%:.vcxvacp.:acr+m
A bw

where , E <{ Mw f.vw with K bounded and depending only on k.

Proof of Lemma 3.

A +h As+:
X HH % ( vas
4.2 (Mh)a(A+hn,...,A +h n )~ cee ) ooluge,up x
(4.2 (Th) glhpHh R, A TR A 1
Ath(n+)
) ( u,)]du,... du
% % ﬁ@fy +h P >W+U swvlm gy Uy 1 duy
>+5b
i
and so
(4.22)
ZHL Z -1
Y .. M :::@; N H a@?: w ) duy...duy
Swno DWIO 1
Zwlw ZWH >+U Ab +1)
<Yl %% la(a+hyn .oy By thy 0 n) =gl u) duyeduy
H|o s_nlo >+UHJ ¥

2 -1 le >+5 Abi:n

< M M % % AMw JM(A +h n w ..,A 4 n Ec . duy
|o t -0 A, ,13 n,
=0 m=0
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where wn =n; if bu.+ ff is nearer the origin than >u_ + :U.A ny +1)

t

and n; ui otherwise. We see that (4. 22) does not exceed
ZHL ZWL
(4. 23) M 2, M(A +h s_...ip +h sw:M: Vi
=0 bﬁ =0 H
Hl k-

K k o o0
<
<2 AM{ %..%ZEH,:;chc_:.%w

giving the stated result.
Proof of Theorem 1.

We are interested in the expected value of expression ( 2. 55).

This is given by

00 ) 27s 2ms
k-1_-k+1 1 k
(4.24) (2m) T YooY W (A U W )
1 T k T
S. =0 g ==0
1 k
.AANﬁmH 2T (1) AN._._.mH N._._.mwV
yeeey yaeey
T mﬁ..mw T T
2ms 27s
_n_. -k+1 H k
=(2m) M... M W M=y oo M=)
mH!.8 E
. N.z.mH N.:.mﬁ ] AN._._.mH N._._.m_.nv
yeees yeens
T T mH...mw T T
0 0 2ms 2ms 2Ts 27s
-k 1 k 1 k
$T T D WO A B e, =) O
m._.Hloo mWHloo

from ( 4.13). The presence of ® causes the disappearance of the
At's after the first, because @ =0 on any of the submanifolds.
From Lemma 3, we see that
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(4. 25)

Kol -kl Wo, Nde N.:mw, mﬂmH Nﬁ.mw
.H, -}

OO
M éaf-‘el,:..yw-e\ﬁ
§. == §, ==

1 k

(2m)

w k
={... aéeflgw..;yw&xviMJV%H. ..de +R
-0 00 1

where |R| AWH Hmaw.

We saw that mmp... ay had uniformly bounded first derivatives;
consequently the product <<m3:. ay continues to satisfy the bound-

edness conditions of Lemma 3 and we see that the first term on the
right hand side is given by

(4. 26)

o ® Wn, 11
S WoN e, N~ )f (@, e )n( Le)de)...de +Of T ).
|8|8H.HH wer.:mrw k H_ mH.
The proof of the theorem is now completed. Since
(4.27)

© k
Jo JwWo e e )E (@ a ) MJV day. .. de,

0 1% 1
;co ,\,oo
=i W ..., )f
) ) T K a a6 =B - mapxin_b)pzaae. @ .

Thecorollary follows from a standard convergence theorem.

Proof of Theorem 2.

Under the conditions of the theorem,

t -
(4.28) we._mx:; B s M7 Bp )
w.; 5 (-B)P  ,p » nH Py
= ]
v.uo . Lv o bw UWL wa P ,Jn 1 ...QWL
roPral BN BN, |

k-1
P P
+mim_{ )R
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where R is bounded. The stated result follows on substituting from
(4. 28) into (4. 27) and noting that

1 X
(4.29) — w(0,...,0)
i @_,u_ mme
17 k-1
0 W p P k
3 . 1 k-1
(=P [ [a’ . .o " We,...,a)s(), @)de,...de
|\8 :.\8 1 k-1 1’ ’ 'k M. _.v 1 k
Proof of Theorem 3.
The covariance in question is given by
o0 [oe] [ve]
2k— N -2k+2 Y \
(4.30)  (2m) 23 3 2
Hu.lloo H.WHIOO mHH$8 mWHIoo
2ms 2Ts 2nr 2wr
1 1 k
A, -, . - - —
( T 7y YWl oty =7 ey iy =)
2 2
s i 2wy 2ty _2k+2
H yrets .H. v A .H. ERR ) H VANﬁV
Ndm 27r
T
EH&A : :Z EALQ

In the proof of Lemma 2 we saw in (4. 15) that the expression in

square brackets was given by M<O<H. ..C, , where the summation
p
extends over the indecomposable partitions of the table (4.16), C

is the joint cumulant of the y; with je v, and

2ms Nﬂ.
|QS,VA||PV for j =1,...,k and <u.+r :J:

L.

s

u u
The expression in square brackets may therefore be written
(4.31)

Nd@t NdQ“\ Nqﬁ Nd@.
Yiem P a (—1y e (——+on].lag o lnm
- 1 % T A=D1 ( 1+0(1)

1 kS
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,

where g denotes a collection of r's and s's and b a collection
of a's and a''s. Due to the presence of the @ terms in ( 4. 30)
any Agp term in ( 4.31) corresponding to a submanifold all in one
row of (4.16) drops out. When (4. 31} is substituted into (4. 30),a
characteristic term of the latter is

% oo oo 0 % N#mH Nﬂmw
(4.32) T )00 T L WO T )
=_00 1 =~00 5 ==00 g =-00
1 k 1 k
27r 2nr 2ms 2ms 27r 27y
1 k 1 k 1
<<<H.A By T T.JITWI T uBA T ytte VQA T :Ndv
= 1 1
2ng ) Nﬂ@é N.qﬂ<_ Nﬂ@tm
. ! L1 + 1
I I e e L e U M e RS
v v
1 2
From Lemma 3 we see that this takes the form
- - 2k-¢-1 2k -
(4.33) T mwA 2) NWI.IH ! ( 2) p
[«] 00
e W e Sﬂﬁt = =B)
|Mo goo ™1 w w 1 H. > Tk Tk
h s
. oy 3 i t 1
(%, (T, Il D) LBE, (4, )-8, (Y, )de... dey Py dBy
1 2 1 1 v, 1 v ot
1 £
+ a lower order term,
where vy denotes a collection of a's and B's. We see that (4.33)

is O mehiﬂ The principal term in ( 4. 30) oosrn.mncwbﬁq occurs
for { = k. Remembering that terms on submanifolds drop out,we
see that the covariance is given by
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[ [v o]
-1
(4.34) 2xT m,h.%..séefla_z.;Jﬁngéi‘f-mw:;-cw-nxv

k k
(e By )l F Po( -1y M @) n( Mm By

e (a.)de... .da dp....dB + O(B.<T?r
T3 ar de...day dp)...dBy + O(Bp - D),

i°p(p !

from which the stated result follows.
We turn to the proof of ( 3.13) of the corollary. Integrating
out the PB's in (3.1l) and then carrying out the substitution
-1

(4.35) T, =B (-p ta

j T : 1 -2mL))

Py
we see that ( 3. 11) may be written

0

[ H 0 [s o}
(4.36) Yoo ety [ f wmxi
§.=-00 g =_00 P -0 -0
1 K <
-1 -1
LW _ - - _
(B CJ rwﬁ :+Ni: awA :_:;wH ?w rwﬂ E+ miL 4& EV
£ 0x k+2
S W(T, . ! -
(r) uwviwbjﬁvﬁw.m_ by By Tpgpy) AT AT OCBL D)

from which (3. 13) follows under the stated regularity conditions.

Continuing with the proof of the corollary, (3.14) follows
once one notes that under the conditions on the \'s and p's the
summation over permutations in ( 3. 13) contains but one term, the
stated one. (3.15) now follows immediately under the stated con-
ditions.

Proof of Theorem 4.

The theorem will be established if we can show that the
correlation of estimates of different order tends to zero and that all
cumulants of order three or more of the suitably normalized estimates
tend to zero. It is clear from Theorem 3 that asymptotically the

order of meaﬂam of the standard deviation of an estimate of order

k is Hm_.m.i_ T]"2. We therefore normalize the j'th estimate by
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dividing by the factor mmﬂw :JLE|W. The covariances and cumu-
lants of these normalized estimates are computed.

Consider first the covariance of two normalized estimates of
order k) Mrm .. The covariance can be written in a form paralleling
(4.32) .

SRR )

(
(4.37) T T8,

Hk,-1) !
(2)% 72
B

T

—k,+1 -1 (1 -k +1 -1
.m _M Nmm: 1 <<Eamas ?E.N?w ymﬁ%v 2 égams ({2) 218
2@

W

-

wﬂn< Nﬂn<

E H h
) A=) A oD,

(1)

27s
T

21s
T

- ) &(

where one sums over all allowable partitions P. The A terms
provide £ linear restraints linking mANv variables with wt )
variables. Keeping in mind the restraints on sum of st variables,
zero, and the sum of s{2) variables, zero, use these linear re-
straints to solve for an s(2) variable in terms of s(1) variables
and possibly other mA 2) vyariables. In this way either £-1 or

2, s{2) variables are eliminated, depending on whether the £ linear
restraints involve all s{1) and s{ 2} variables or only a proper
subset. The product of the Ag terms contributes at most a factor
7 1et & be 1 or zero according as to whether the £ linear re-

straints involve all variables or not. By absorbing the factor
ki +l () -kotl-g48 -kj-kyt2+a+d
mmc 1 m% ) 2 T 17"2

of W terms we can approximate it by a bounded integral. Here
heavy use is made of the bounds in Assumptions I and II. We have
yet to investigate the remaining factors in the sum corresponding to
one such possible partition. They are

k. -k_+1 k +k_-2-2+8 245 (k-1 Hx
17727 "1 2 1.(2) (1327177 (2
(4.38) T T T By, B, By
k-1 k-1 s
L.&mﬁc 2 5(2) 2
T T

in the sum of the product

2

=T

: .

A

Now np<kj if & =1 and np <kj-l1 if & =0 since the partitions
are irreducible. Since wm.:M wl%wv with WHA ) 0 it is clear that if
§ =0 every term goes to zero. If & =1 all terms go to zero except
for those with nz =kj =kz.
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Now let us consider the asymptotic behavior of cumulants of
] normalized estimates, J2> 3. Such a cumulant can be written as

k-1 JL
(5 N N A
.39) . - By
-k, +1 -1 (1 k. +1
D LA (D-l2ms_y gD T
e T T T T
- S
N.:m 2mq
(§)) {1 (83} v v
(N, (N-1,(7) 2ws 2%s 27s : 1
- W By LN & Na( o )2 EHA = ) Al yO( 1)

where one sums over all allowable partitions P. We'd now like to
show that for each partition P the sum over the s{i's tends to
zero. The Ag terms as before, provide { linear restraints linking
the s{i) variables, i =1,...,J. Also the sum of the sl varia-
bles is zero for each i =1,...,J. It will be convenient to refer to
the rows of the table

{ 4. 40)

mﬁ_: P mMa: .
]

We say that a set of linear restraints ends on the ath row if the
variables with highest superscript involved are of the @th row. The
detailed argument that is given here is for the case of a partition in
which all the elements in the ath row are not in sets ending on the
athrow, @ =1,...,J-1. We shall show that the sum over the s{i)is
tends to zero for such partitions. For other partitions, similar but
more elaborate arguments can be used. Let & =1 or 0 according
as to whether all the s wvariables or only a proper subset are in-
volved in the # linear restraints. Use the £ linear restraints to
solve for variables of the highest superscript involved in terms of
those of the same or lower superscript. In the ath row there are
initially k-1 free variables due to the condition on the sum of the
s( @) variables being zero, if @ <J. Let ny be the number of
linear restraints ending on the «th row. Since all the variables on
the ath row are not governed by these restraints, it follows that we
can eliminate n, additional variables by the procedure described
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N

above. Thus, there are k,-l-n, free variables left in the ath row,

@ <J. In the Jth row a similar argument shows that there are L(@)-1
ky-l+ng + 6 free variables left. If we account for a factor T By
for each free variable in the ath row, the sum over the product of
the W's aside from these factors can be approximated by a bounded
integral using Assumption II on the W's and techniques used so
often in previous theorems to replace a discrete sum by an integral.
We have only to account for the remaining product of factors in terms
of the Bp's and T's. They amount to

o X k-l k-l k-1
P S
T Hmmcvf-w st ) R Hmmcﬁ.rﬁ; w?.ft...w?ji
H e -1 U.|H -n+6
HHL\?mmMu: 2 wAHNV N:.ww: > ;

since ©n, =£. This can be rewritten as

EL JLM&L B
2 2 2 2
wﬁ 1) mE
HL\NJ&. T T
(2) (3)
Br By
k. -1 ko-l
1 7-1
— 4.t -Nn.=-..-n k-1 k-1
2 2 2
mA J-1) ] Lmu+:.+|w|-umx:.»$+m
T mS
o mA 7 T
T
Since El
k. 4.4k -1
(4.42) L % 5o 4n
: 2 Ty

for a <7, the above is less than or equal to
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(4.43) [9]
5 _ _ Iz
-3 - 10
N AN C AN E) -0 P s Lo}
2 P B Y e T _ gl )
(2) (3) (4) ) (n T
By B By By [11]
gt : 1 1 el [12]
1z [Br (272 (172 (Tt _
=T e By oo By By = o 1)
T [13]
as T o ,
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