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Resumo

Uma rede estatistica é uma colegio de nés representando varidveis aleatérias e
um conjunto de arestas que ligam os nés. Um modelo estocéstico por isso é chamado
um modelo grifico. Estes modelos, de gréficos e redes, sdo particularmente tteis para
examinar as dependéncias estatisticas baseadas em condigbes do tipo das que ocorrem
frequentemente em economia e estatistica. Neste artigo as varidveis aleatérias dos nés
serdo séries temporais ou processos pontuais. Os casos de graficos direcionados e
néao-direcionados sao apresentados.

Abstract

A statistical network is a collection of nodes representing random variables and
a set of edges that connect the nodes. A probabilistic model for such is called a
graphical model. These models, graphs and networks are particularly useful for ex-
amining statistical dependencies based on conditioning as often occurs in economics
and statistics. In this paper the nodal random variables will be time series or point
processes. The cases of undirected and directed graphs are focussed on. ’

Palavras-Chave: Graphical model, network, point process, time series

Cddigo JEL: C32, C35, C34

* Based on a talk presented at the Sixth School of Time Series and Econometrics, Vitéria, ES

- 31 July to 2 August, 1995. Prepared with the partial support of the National Science Foundation
Grant DMS-9300002 and Office of Naval Research Grant ONR-N00014-9-1.
ol Department of Statistics, University of California, Berkeley, CA - 94720, USA.
1 gratefully thank Silvia Lopes Troya for her help in translating this Abstract to Portuguese.

R. de Econometria Rio de Janeiro v. 16, n9 1, pp. 1-23 Abril 1996




Graphical models for time series
1. Introduction.

Graphical models, that is probability models on networks of ver-
tices and edges, are experiencing a surge of research development
today. One can point to the books by Whittaker (1990) and by Ed-
wards (1995) as well as to many papers, for example those listed in
the References section. The study of graphical models has become
important in the field of statistics and in the social sciences generally.
It can be anticipated that such models will prove useful in addressing
basic questions arising in economics concerning structural and causal
modelling.

Given its historical roots in path analysis, simultaneous equa-
tions, structural and finally recursive models, research on graphi-
cal models is of importance to economists and econometricians. An
economy can be viewed as a vast system or network of interconnected
processes. In various circumstances the connections (or edges) are of
particular interest and the processes are either time series or point
processes. Structural approaches, e.g. via time series or economet-
ric models, are well known to economists and econometricians, see
e.g. Granger (1980), Hendry and Richard (1983) and Harvey (1989).
This paper focuses on some of what graphical models have to offer.

As an example of a conceptual economic network, of some his-
torical interest, one can mention the Philips machine, Philips (1950),
Swade (1995). Pictures of the machine may be found in those ref-
erences. Figure 1 presents a graph of Philips’ Simple Model. The
machine was meant to represent the behaviour of the British econ-
omy in the late forties. The arrows indicate the direction of the flow
of liquid in the machine. Water is pumped to the top and flows down-
wards. Savings (S) are siphoned off into a separate loop and fall into
a tank (M’). Portions of these rejoin the main flow as expenditure
(E) and investment (I). The net flow at the bottom accumulates in
a tank. The level of the tank represents the working balance (M)
required for a given level of economic activity. The liquid is pumped
back to the top. The flow of water represents the movement of money
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and the accumulation of money is represented by the water collecting
in tanks. Results are read off from scales located at various places.
Flow is initiated, for example, by altering expenditure. The series
involved here are (continuous) time series.

Less often economic data of point process form, {r;}, occur.
That is the measurements are the times of occurence of certain
events, such as the times of change of a country’s prime interest
rate or the ticker of stock sales. Economic data may also be of
marked point process form, consisting of times and associated values
(marks), e.g. the times of change of the prime rate together with the
value of the new rate, {(r;, M;)}. In this paper time series and point
processes are labelled by the nodes of a graph and corresponding
statistical models discussed. The models may involve the processes
at vertices u and v being conditionally independent given the re-
maining vertices. Such a question may be formulated as involving
the existence or nonexistence of an edge connecting vertices v and v.
Recognizing such structure allows decomposition of the estimation
problem into simpler components, in various cases. The question of
measuring the strengths of connections present is also addressed in
this article.

The use of graphs to represent statistical models dates back at
least to Wright (1921) and his work with path models. One can
also mention the graphs of Tinbergen (1939), page 138, for causal
connections between disturbances and profits and of Wold (1956),
page 45, for a demand-supply model. Another example is provided
by the schematic diagrams so often employed in systems analysis.
Networks are present in compartment analyses (see Jacquez (1972)).
Here substances flow between and are retained in certain compart-
ments. Influence diagrams and Bayesian networks are related top-
ics, see Smith (1989), Normand and Tritchler (1992). Pearl (1995)
presents a framework for causality and the manipulation of prob-
abilities associated with such graphical models. Causal analysis is
further discussed in Glymour et al. (1987). An example of a marked
point process is provided by a queuing network. Here there is a
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set of interconnected nodes, each node consisting of a queue, where
customers wait for service, and there are one or more servers. (See
Brémaud (1981), for example.)

This present work constitutes a simple begining discussion of the
time series and point process cases of graphical models. It is to be
noted that the meanings of graphical representations differ between
authors and applications, and this needs to be kept in mind when
reading the literature.

The layout of the paper is: first some basic concepts of graph
theory and graphical models are presented, then consideration turns
to the case of continuous and discrete ordinary random variables,
finally the time series and point process cases are addressed. The
paper ends with a discussion and summary.

2. Graphical Models.

A graphical model is a statistical model embodying a set of con-
ditional independence relationships which may be summarized by
means of a graph. This section presents some general concepts and
then moves on to the specific cases of undirected and directed graphs.
The goal, for inferential purposes, is the likelihood function. Gen-
eral references include: Whittaker (1990), Lauritzen et al. (1990),
Wermuth and Lauritzen (1990), Cox and Wermuth (1993), Edwards
(1995).

A graph is a pair G = (V, E) where V is a finite set of nodes (or
vertices) and E, the set of edges, is a subset of V x V, the ordered
pairs of distinct nodes. Figure 2 provides an example with 4 nodes
and 2 edges. An edge (o, ) in E is called undirected if both (a, 3)
and (8,a) are in E. An undirected edge is indicated by a line. A
graph is simple if there are no multiple edges or loops. (This will
be assumed throughout the paper). This is the case in Figure 2. A
cligue is a maximal set of nodes, joined to each other. For Figure 2
the cliques are: {1}, {2,4)}, {3,4}. An undirected graph is one with
only undirected edges. An edge (a, B) is called directed if (o, B) is
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in E, but not (3,a). A directed edge is denoted by an arrow —.
A directed graph is one in which all edges are directed. Figure 3
and 4 provides examples of directed graphs. There are two edges
in Figure 3 and three in Figure 4. An acyclic directed graph has no
paths beginning and ending at the same node. The graphs of Figure 3
and 4 are acyclic, while the graph of Figure 1 is cyclic (feedback is

present).
Y
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Figure 1. Philips Simple Model. C: consumption, E: total expen-
diture, I: investment expenditure, M: surplus balances, M’: transfer
balances, S: savings, Y: income.
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Figure 2. Example of an undirected graph, with 4 nodes.
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3

Figure 3. Example of a directed graph, with 4 nodes and 2 directed
edges.

3

Figure 4. Example of a directed graph, with 3 nodes and 3 directed
edges.

2.1. Undirected Graphs.

A set B of vertices separates the sets A and C if all paths from
vertices in A to C pass through B. An undirected graph possesses the
global Markov property if for any triple (4, B, C) of disjoint subsets
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of V, such that B separates A from C, the variate (Ya)aca is statis-
tically independent of the variate (Y.).cc given the variate (Y3)be -
Conditions for this occuring may be found in Lauritzen at al. (1990).
In broad circumstances it may be shown that the probability density
of Y then has the form

) =T] ¢+ (2.1)

where the product is over all the cliques v of G. For the graph of
Figure 2 this means

fy1,92, 93, v4) = 9(y1) h(y2, v4) i(y3, v4).

Here the variates Y, and Y3 are independent given the variate Yjy.
This type of conditional independence is typical of undirected graphs.
Taking f(-) to be say a multivariate normal density, the factorization
can indicate directly parameter values which need to be set to 0.

For the case of undirected graphs, Geiger and Pearl (1993) show
that every axiom for conditional independence is an axiom for graph
separation and that every graph represents a consistent set of inde-
pendence and dependence constraints. They conclude that graphs
provide a safe language for encoding statistical dependencies.

There is also a form of the results for discrete variates, with the
densities replaced by probability mass functions.

2.2. Directed Graphs.

Consideration next focuses on directed graphs in the acyclic case.
In empirical analyses the arrow may represent a direction of influence
or of causation or of a variate value at an earlier time point. For a
and b vertices, a is a parent of b if there is a directed edge a — b.
The set of parents of the vertex b is denoted pa(b).
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A directed acyclic graph possesses the directed global Markov
property if the density admits a recursive factorization,

@) = T] koo, Yoawy) (2.2)

veV

for some functions k,. The term kv (Y, Ypa(r)) has the interpretation
of the conditional density of Y, given Y,a(). Conditions for this
property are given in Lauritzen et al. (1990).

For the graph of Figure 3 the factorization is:

f1(y1) f2(v2) f3(ys) fa(ya | v, y3)
with pa(4) = {2, 3}. For Figure 4 it is

f1(v1) f2(y2 | y1,v3) fa(ys | v1)

with pa(2) = {1,3} and pa(3) = {1}. One might consider the hy-
pothesis
fa(y2 | v1,y3) = fa(y2 | v1)

i.e. that there is no direction connection of vertex 3 to vertex 2.
The expressions above lead directly to likelihood functions useful for
inferential purposes.

2.3. Strength of Connections.

Suppose there is a graphical model. One may wish to describe
the strength of connection associated with a particular edge. Two
(related) measures may be considered. The first is the mutual infor-
mation, the second is the change in deviance when an edge is removed
from the model. The measures will be seen to be quite related.

Consider continuous random variables X and ¥ with joint den-
sity p(z, y) and marginals px (z) and Py (y). The mutual information
between X and Y is

= T _______p(w,y) T
et //p( v log px(z)py(y) —
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It is seen to be 0 in the case that X and Y are independent and
> 0 otherwise. For some discussion of this quantity see Granger and
Hatanaka (1964), Kanter (1979) and Parzen (1983).

The mutual information may be related to the differential en-
tropy of a random variable. For a random variable Y, with density
Py (y), the differential entropy is

Hy = —/py(y) log py (v) dy

and one sees that
Ixy =Hy — Hy|x

in particular.

The deviance of a stochastic model is minus twice the loglikeli-
hood, ~2logpy (y). The change in deviance that results from fitting
a submodel proves a useful quantity. Consider fitting the submodel
of independence, p(z,y) = px (z) py (z), then the change in expected
deviance is

- 2//px(w)py(y)logpx(w)py(y)dwdy
+2 / / p(z,y) log p(z, v) dzdy

=2Ixy.

Deviance change and mutual information are thus closely related and
either may be considered as a measure of strength of a connection.

In the case of a graphical model one can study the change in
deviance when one fits, both including a particular edge and not.
The values may be added to a graph in a presentation of the results
of the analysis. The edge might be directed or not. Some computer
programs are available for carrying out the computations, e.g. MIM
of Edwards (1995).
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3. The Continuous Case.

Suppose one is dealing with random variables having continuous
distributions.

3.1. The Undirected Case.

In the Gaussian case, conditional independence corresponds to
zeroes in the inverse of the covariance matrix. Such models were
studied in Dempster (1972) and are referred to as covariance selec-
tion. The model on the graph will have the conditional indepen-
dences built in and estimates will need to reflect this. The inverse
matrix corresponds to an undirected graph in the sense that the en-
try in row u, column v being 0 corresponds to no edge (u,v) in the
graph whose nodes are all the labels. More specifically let {Y,,veV'}
be normal with covariance matrix X. Suppose vertices v and v are
unconnected in the independence graph. The variates Y, and VY, are
then statistically independent given the rest and

(E_I)uu =0= Ruu[rest

where R is the matrix of partial correlations. See Whittaker (1990)
for a development of this result.

To examine the possibility of 0 partial correlation empirically,
one can look for near 0 entries in an estimate R of R or examine the
change in deviance resulting from assuming first Ry, |res; is arbitrary
and then that it is 0.

3.2. The Directed Case.

On would work with joint densities factorizing as in (2.2) and
examine the difference in deviance between the models with the edge
present and absent, e.g. for Figure 4 the cases

fy1,92,93) = f1(v1) f2(y2 | v1,v3) falys | v1)
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or .
Fy1,92,93) = f1(v1) folv2 | v1) falys | v1) (3.2.1)

4. Discrete Case.
4.1. The Undirected Case.

In the case that the random variables Yy, veV, are discrete-
valued, undirected graphical models may be described by loglinear
models. With Y such that

Prob{Y =y} = n(y)

one may write

logn(y) =Y ga(ya)

where a ranges over the subsets of V. Then Y, is independent of Y,
given the rest is equivalent to g, = 0 if {u,v} is in a, see Whittaker
(1990), Edwards (1995).

The conditional independence hypothesis may again be exam-
ined by the edge exclusion deviance, that is the change in -2 log-
likelihood when the edge is removed from the graph.

4.2. The Directed Case.

Now one would work with conditional distributions, given par-
ents, and a joint probability function as in (2.2) and in the case of
Figure 4 for factorizations like (3.2.1).

4.3. Extensions.

There are mixed discrete/continuous models, see e.g. Lauritzen
(1989), Whittaker (1990), Edwards (1995). In the contemporary
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research on this topic, given the discrete variables, the continuous
variables are typically assumed jointly Gaussian.

5. Time Series.

Now random sequences and functions are under consideration.

5.1. The Undirected Case.,

Consider the stationary vector-valued series Y (t) where t is dis-
crete or continuous. The strengh of association of the u-th and v-th
components may be measure by the crosscorrelation function

corr {Yyu(t + 5), Y,.(t)} (5.1.1)

as a function of lag s or alternately by the coherency function

Ruy(X) :Th—l}go corr {Ze"i’\tYu(t),Ze"i’\tYy(t)} (5.1.2)

t

as a function of frequency \. As written, in (5.1.2), time is discrete
and the sums are over ¢t = 0, . . . T —1. Both (5.1.1) and (5.1.2) are
identically 0 in the case that the series Y,, and Y, are statistically
independent. The coherency matrix is a close analog of a correlation
matrix being correlations of the components of frequency A in the
series Yy and Y,. see Brillinger (1975).

In the case of a stationary Gaussian time series {Y(t)}, the mu-
tual information of the components Y,, and Y, is

'—51;' /log {1 - 'Ruu()‘)lz} dA

see Pinsker (1964), Granger and Hatanaka (1964). The coherency
function (5.1.2) occurs in this last expression. The measure is 0 when
Ry, =0 and oo when R,, =1.
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Suppressing the dependence on A, the partial coherency of the
series Y, and Y,, removing the linear time invariant effects of the
other series, is given by

Ruv!rest = (Ruu - Rulrest-ﬁulrest) /\/(1 - !Ru!restlz) (1 - IRulrestlz)
(5.1.3)

with the overbar denoting complex conjugate. This is the en-
try in row wu, column v of the inverse of the coherency matrix,
R(A) = [Ruw())]. Tt is a function of frequency, A and so distin-
guished from the continuous variate case of Section 3.1. This func-
tion will be identically 0 for stationary Gaussian Y when Y, and
Y, are independent given the rest. References to the concept of
conditional coherency include: Tick (1963), Granger and Hatanaka
(1964), Brillinger and Hatanaka (1969, 1970), Gersch (1972).

Following Granger and Hatanaka (1964), the partial mutual in-
formation of ¥, and Y, given the rest is

1 2
—57-; / lOg {1 - IRuu|rest(A)l } dA

and one sees the appearance of the partial coherency. Coherency
Is an acausal concept, being identically 1 if either series involved is
a linear time invariant filtered version of the other, i.e. two-sided
filters are allowed.

Sometimes one may wish to consider one-sided models and cor-
responding likelihoods. For example consider the stationary autore-
gressive Gaussian case. Suppose

AlY](t) = E(t)
with Y and E r-vector-valued, with

AlY](t) = a(0)Y (¢) + a(1)Y (¢t - D+--+a(p) Y(t - p)
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and with
varE(t) = 6%,  cou{E(t+3s), E(t)} =0 for s #0

consider looking for 0 partial coherencies. The inverse of the spectral
density matrix is

B —

2r A(A)TA(N)/o?

and one sees that the entry u, v is 0 for all A if and only if

Z Z awu(t + 8)ay, (t) =0

w=1 0<t+s, t<p

for all s.

The strength of connection in these two cases may be estimated

by the change in deviance when model is fit both with some entries
of A(:) identically zero and not.

Some distributions and estimates appropriate to the problems
considered in this section may be found in Andersen et al. (1995).

5.2. The Directed Case.

One would set down a joint density function appropriate to the
situation. In the case of Figure 4 it might be derived from

Y] free

Ya(t) = Y an(s)¥i(t - s) + D ass(s)Ya(t — s) + ea(t)

T82>1 s>1

Y3(t) = ) a3i(s)¥a(t - 5) + e3(t)

s2>1
with e9(t) and £3(t) independent of past values of X3, Y3, V3.
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5.3. The State Space Case.

The book Harvey (1989) shows the ubiquity of the state space
model in economics and econometrics. Vector ARMA’s and AR-
MAX’s are particular cases of this model. So too are models with
complex, nonstationary trends and behavioral econometric models,
Included too is the case of time varying parameters.

One formulation is provided by

S;=AS; ;+BX;+E;
Y:=CS; +¢;

with S; the unobserved state vector, X; an exogenous series and
Y: the endogenous. The variates (E¢, et) represent noise. The first
equation is the transition equation, while the second is the observa-
tion.

This state space model may be usefully described by a graph,
see Figure 5, and Normand and Tritcher (1992). The Kalman filter
and algorithms developed by researchers in graphical modelling may
be employed to predict and smooth Y, here.

X X Xs

Figure 5. A directed graph representing the state model with the
exogenous variable X;, the state variable S, and the endogenous
variable Y.
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6. Point Processes.

The realizations of stochastic point processes are sets of points
on the real line
LTI TI< Ty < -

For example, the 7’s might correspond to time of: economic deci-
sions, security sales or bankruptcies. A point process can also be
described via counting functions, specifically with I an interval one

can set
N(I)=#{rn in I} N(t) = N(0,1]

dN (t) = 1if point in (¢,t + dt]

= 0 otherwise.

References to point process analysis include: Snyder (1975), Daley
and Vere-Jones (1988).

6.1. Point Process Descriptions.

Under general conditions, the conditional intensity function
characterizes a vector-valued point process N. It is given by the
vector-valued variate [, (t | Hy)] of

Prob{dN,(t) = 1| He} = py(t | H.)dt

where H; = {dN(s), s < t}. The conditional intensity provides the
likelihood and so is basic to the analysis of point process data, see
Snyder (1975), Daley and Vere-Jones (1988).

6.2. The Undirected Case.

The crossproduct density, of the components » and v of the sta-
tionary point process N, provides a measure of strength of associa-
tion and is given by

Prob{dNg(t + @) =1 and dN,(t) = 1} / dtdu. (6.1.1)
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The association may also be studied via the coherency function

Ru(A) = Tli_’moo corr {Z e TAIm Ze“i’\“} (6.1.2)
m n

where " and 2, sum over points of the two types available in
(0, T]. These concepts are analogs of the crossvariance and coherency
functions of time series mentioned above. There are also hybrid
measures for time series and point processes.

The partial coherency of components u and v, given the rest, is
again defined by (5.1.3). One can make two arguments for consider-
ing the partial coherency as a measure of conditional independence
in the point process case. First, the empirical Fourier transforms
appearing in (6.1.2) satisfy a Central Limit Theorem, i.e. are ap-
proximately normal and one can look to the inverse of their covari-
ance matrix as a measure of conditional dependence. As an alternate
argument, suppose that it is possible to write

dNu(t) = | > [ aj(t —s)dN;(s) dt + dTy(t)
U

with 'y, a noise process such that
E {dTy(t) | Nj, j # u,v} =0

and
cov {dTy(s), dT,(t)} =0

then the partial coherency of Y, and Y, will be 0.
6.3. Directed Case.

Suppose there is a directed network with three nodes having
point processes as in Figure 4. The arrows now mean that, for ex-
ample, the behavior of process 2 at time ¢ depends on the past of the
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other two processes. A structural model leading to associated point
processes Y71 and Y in the presence of a third process Y3, follows.
Write Y1 = {0} and Y3 = {7,} and

Ut) = Z a1t —om) + Z az3(t — v,)

om <t Yo <t

for summation functions as;(-) and a23(-). Suppose now that a Y,
point occurs at time ¢ when U (¢) upcrosses a random threshold 6(t).
The question of whether Y, and Y; are independent given Y3 in this
case may be phrased as: is ag3(-) = 0?7 Given data this question
may be addressed by fitting the model both with and without a3(-)
present.

As an approximation to the likelihood based on the conditional
intensity one procedure is to replace the point processes here by 0~
1 discrete time series M;, Ni, O:, and to estimate parameters by
maximizing the log likelihood

> [Nelog 8(Ur — ) + (1~ Ny)log (1 (U; — )]
t

where, for example, ®(-) is the standard normal cumulative, and

oo oo
Ui = Z me_ M, + Zot—uOu
u=1 u=1

and
0t = pu+ ey

Here it may be assumed that noise values ¢; are independent iden-
tically distributed normals. The strength of the edge 3 — 2 may be
measured by the change in deviance occurring when the function oy
is set to 0 identically.
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For related models and empirical analyses, motivated by biolog-
ical neuron networks see Brillinger (1991, 1995).

Explanatory variables may be included, e.g. one corresponding
to the presence of an intervention. Set S(t) = 1 when the interven-
tion is present and = 0 otherwise. One might assume

dNu(t) =1 if aS(t) + Z/ auy(t — 8) AN, (s) upcrosses 6, (t).
v#u 0

As a measure of the strength of connection one can consider the
change in deviance resulting from refitting with some Ay () = 0.

7. Difficulties.

There may be unmeasured variates or measurement error, see
Robinson (1986). Interpretations can be fraunt with difficulties, as
in the case of path analysis, see Freedman (1987). Feedback may be
present, complicating the construction of the likelihood function.

8. Discussion and Summary.

In distinction with the ordinary random variable case, the time
series and point process cases lead to the consideration of parameters
that are functions, functions of frequency or lag.

Graphical representations have been found to be valuable in the
sense that they force one to think hard about the characters of the
dependencies involved. Such considerations are basic to economics
and econometrics, see Hendry and Richards (1983). Econometricians
are often lead to think about the issue of causality, see e.g. Geweke
(1984), and the current work on causality and graphs, see e.g. Pearl
(1995) and its discussion, has pertinent specific techniques to offer.

The referee made the basic point that temporal systems can be
time-varying, the graph may change (as an example I mention that
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nodes may appear or disappear) and a more sophisticated structure
is needed. I agree and thank the Referee for this and other comments.

Experimental systems can provide a testbed for econometric
techniques. The techniques presented here have been validated, to an
extent, by experimental data from neurophysiology, see Rosenberg
et al. (1989), Brillinger (1991, 1995).

Submetido em Outubro de 1995. Revisado em Fevereiro de 1996.
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