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Collections of occurrence times of events taking place irregularly in time provide a fairly common, but not broadly discussed, data 
type. This article is concerned with the particular circumstance of firing times in nerve cells that interact and form networks. The 
article reviews a progression of statistical analysis techniques: description, association as measured by moments and correlation, 
regression, and finally likelihood. The data is point process, but may be seen as that of regression and of multivariate analysis in 
standard parlance. A simple description of data collected simultaneously for one or more cells is provided. 
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". . . the purpose of inductive reasoning, based on empirical ob- 
servations, is to improve our understanding of the systems from 
which these observations are drawn." 
Sir R. A. Fisher (1956) 

The above statement sets down the spirit of applied sta- 
tistics. The related goal of this article is a better understanding 
of the nerve cell system and the construction of better quan- 
titative models of the neuronal firing phenomenon. On the 
substantive side, the author's collaborator J. P. Segundo has 
remarked that "the biological goal is understanding in strictly 
biological terms." This may be viewed as an ultimate goal. 
The models will change, but the biology will remain. 

R. A. Fisher was central to the development of statistics, 
in particular to the progression of data analysis techniques 
from description and simple measures of association to the 
tools of association and regression analysis and finally to 
likelihood analysis. This article aims to illustrate the same 
progression for a data type of some contemporary interest- 
point process data-and to continue on to nonparametric 
and semiparametric likelihood analysis. 

The article is concerned with a particular biological sys- 
tem-small networks of neurons communicating with each 
other and responding to stimuli. The system studied is of 
basic interest on both scientific and theoretical grounds. Sci- 
entific interest follows from a concern as to how the nervous 
system works; theoretical interest results in part from the 
system's strong nonlinearity. 

Data from two different living preparations are studied. 
First discussed are some data for the cat collected by 
A. E. P. Villa at Lausanne, Switzerland. In Villa's experi- 
ments, cats were subjected to sound stimuli and data for 
eight nerve cells recorded simultaneously (Villa 1988, 1990). 
Also studied are simultaneous data for networks of two and 
three identified nerve cells (in particular cells L2, L3, L5, 
and LIO) of Aplysia californica (the sea hare) collected by 
J. P. Segundo at the University of California, Los Angeles 
(Bryant, Ruiz Marcos, and Segundo 1973; Bryant and Se- 
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gundo 1976). Aplysia is commonly studied by neurophysi- 
ologists because the nerve cells are large and accessible and 
a number are repeatedly identifiable. 

As is the pleasant feature of most time series analyses, a 
broad variety of figures are presented. These figures are cen- 
tral to the analysis. 

Important aspects of nerve cell firing not addressed in this 
article include spatial effects and intracellular data collection 
and analysis. 

1. WHAT IS A NERVE CELL? 

Neurons (or nerve cells) are basic building blocks of an 
animal's central communication system. They are input- 
output systems of a particular structure having important 
functions. It is pertinent to discuss both structure and func- 
tion, because in biology often the two seem directly related. 
Functions include accumulating, processing, and transmit- 
ting information. A nerve cell receives messages through its 
dendrites, root-like strings susceptible to chemical stimulus. 
The messages propagate to the cell body, or soma. Out of 
the soma grows the axon, with many branches ending at 
synapses, the junctions of neural networks. Figure 1, taken 
from Cajal (1895), shows a collection of neighboring neurons. 
The arrows indicate the flow of information. The cell bodies 
are the five blobs, four of which are labeled A, B, C, and D. 
The axons run vertically downward from the bodies-except 
for E, which is an axon entering from a distance. The den- 
drites include the three treelike structures at the top suscep- 
tible to influence from E. 

The dendrites absorb input from other neurons through 
chemical processes that change ionic conductances and 
thereby induce current flows. The input is thence converted 
to a membrane potential throughout the soma. At the axon 
hillock (or trigger zone), the membrane potential occasionally 
reaches a threshold and the neuron fires, that is, generates 
an action potential (or spike). This action potential propagates 
along the axon to synapses, at which point a chemical trans- 
mitter is released to affect other neurons. The action poten- 
tials are of near-identical size and shape; see the spikes in 
Figure 2, which shows measured voltage fluctuations within 
cell R2 of Aplysia (Bryant and Segundo 1976). It may be 
argued that, because of reduced sensitivity to noise, the firing 
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Figure 1. Drawing of Cajal (1895) Illustrating a Network of Five Cells 
of the Cerebral Cortex. The arrows () J suggest that the input arrives 
along the fiber E and progresses from it both directly and indirectly to the 
cells A, B, C, and D of different types. 

times are the crucial variates in communication among neu- 
rons. Some discussion of the reduction to point processes is 
given in Segundo, Altshuler, Stiber, and Garfinkel (1991). 

Synaptic connections may be excitatory or inhibitory; that 
is, depending on the type of connection, the firing of one 
neuron may make a second neuron either more likely or less 
likely to fire. Neurons also may fire spontaneously with no 
outside stimulus. Further is the phenomenon of refractori- 
ness, wherein after a neuron has fired, the chance of it firing 
again is reduced (perhaps to zero) for a period. 

Questions of interest include: 

1. Can an analytic model incorporating the basic features 
of neuron behavior be developed and fit? 

2. Given the firing times of a network of neurons, can 
one infer their causal connections? 

Transmembrane Potential 
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Figure 2. Fluctuating Intracellular Voltage of the Cell R2 of Aplysia 
Showing the Occurrence of Point Process Data. The amplitudes of the 
spikes are approximately 100 milllvolts. Figure adapted from Bryant and 
Segundo (1976). 
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Figure 3. Rastor Plots Providing Nerve Cell 7 Firing Times. Each row 
of asterisks represents the events in a time interval of 1,000 msec. In the 
left panel, there was no experimental stimulus. In the right panel, a noise 
stimulus was applied at the beginning of each time interval, so each column 
represents the events occurring at the indicated lag after the noise stimulus. 

General references for pertinent neurophysiological back- 
ground information include Koch and Segev (1989), Segundo 
(1968, 1984, 1986), Segundo et al. (1991), and Stein (1972). 

2. WHAT ARE POINT PROCESS DATA? 

A stretch of point process data is a set of ordered numbers 

r1 Tr2 < . . . < TK, 

to be thought of as the times of events that occurred in some 
time interval, say (0, T). Usual examples are the times of 
telephone calls and the times of particle emission by some 
radioactive material. A naive descriptive statistic derived 
from such data is the observed rate, given here by K/T. This 
statistic has dimensions of counts per unit of time and is 
useful in elementary comparisons of point process behavior. 
For the data studied in this article, the rates range from about 
1 spike per second to about 20 spikes per second. Figure 2 
shows 7 spikes in about 14 seconds. 

Descriptive statistics conducive to insight are provided by 
the plots in Figure 3. These plots are based on data collected 
in experiments studying the auditory system of the cat. Mi- 
croelectrodes were inserted in a cat's brain at a location re- 
lated to hearing. The plots refer to firing times for a single 
particular nerve cell (cell 7) which the probe happened upon. 
In the case of the lefthand plot, there is no applied stimulus. 
To describe the plot, suppose that the observation period is 
broken up into L segments, each 1,000 milliseconds long. 
Let -rkl refer to the time elapsed since the start of the /th 
segment, of the kth spike of that segment. The points plotted 
are now {(rki, k), k = 1 ..., K,} for I = l, ..., L. No 
dramatic structure is apparent in the lefthand panel. The 
second panel of Figure 3 refers to the same experiment but 
with a noise stimulus introduced into the ears of the cat 
every 1,000 milliseconds. The points are plotted as before, 
with X referrng to the time elapsed since each stimulus pre- 
sentation. This picture shows that this neuron typically fires 
a short time after the application of the stimulus. Then there 
is a time period during which the neuron is unlikely to fire 
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Figure 4. Times of Neuron L3's Firings Relative to L10's Firings. Each 
row corresponds to a single firing of L10. 

and perhaps then a rebound period when the cell is more 
likely to fire. Plots such as those in Figure 3 are known as 
rastor plots. 

A second set of experimental data of some interest comes 
from experiments with Aplysia, the sea hare. Suppose that 
firing times are available for two related neurons-in the 
analysis to be presented, neurons L3 and L0 of Aplysia. 
Let {urj} represent the firing times of L1O and {rk} represent 
the firing times of L3. In the case of these neurons, it "has 
been demonstrated almost beyond reasonable doubt" that 
L1O drives L3 (see Bryant, Ruiz, Marcos, and Segundo 1973 
p. 205). Figure 4 plots the points {(rk - j, j), k = 1, 2, ..., 
Kj} forj = 1, 2, 3 .... This plot is consistent with the idea 
that firing of LlO tends to inhibit firing of L3. There is an 
indication of a brief acceleration or rebound at a lag of about 
.5 second. The bulk of the points appear randomly distrib- 
uted. 

To progress with the analysis, it is convenient to introduce 
some probability structure. A stochastic point process is a 
random process whose realizations are collections of points 
{ Tk}, ordered by Tk < Tk+I, on the interval (-ce, oc). Such 
a process can be described by giving the joint distributions 
of all the N(11), . . ., N(Ij), where Ij is a Borel set and N(Ij) 
is the number of points falling in Ij for j = 1, . .. , J and J 
= 1, 25 .... The process is said to be stationary when the 
joint distributions are unaffected by simple time translation, 
I -* I + t. An alternate way to describe a point process is 
via the joint distributions of the intervals Yk = Tk+l -k 

between successive points. In the stationary case, the rate of 
the process is given by E{N(I)}/ I 1, where I I I is the length 
of the interval. 

It is worth remarking that there are many similarities be- 
tween the concepts and techniques of time series analysis 
and those of point process analysis; see Brillinger (1978), as 
well as the classic reference for the analysis of point process 
data, Cox and Lewis (1966). 

3. ASSOCIATION-SECOND ORDER MOMENTS 

In the case of a bivariate stochastic point process (M, N) 
with components M-={oj} and N-={'rk}, one can define 
the cross-intensity function 

lim Pr{N point in (u + t, u + t + h] I M point at t}/h. 
hNO 

This will be a function of lag u alone in the stationary case. 
This parameter may be estimated by 

#{U + ffj < rk <!~ U + uj + h} 31 
#{{ j hr + (3.1) 

for small h > 0. Figure 5 gives the estimate for the data of 
Figure 4. It is essentially the histogram of the {Tk - rj} and 
comes from counting the points in vertical strips of Figure 
4. In fact, because of simpler sampling properties (including 
more stable variance, more symmetric distribution, and more 
near normal distribution), it is often more convenient to 
plot the square root of the estimate (Brillinger 1976); this 
was done here. The horizontal dashed lines provide ?2 stan- 
dard error limits set about 0. The diagram shows a period 
of initial inhibition after LlO's firing, followed by a rebound 
at about .3 second. In some sense, Figure 5 does not add 
new information to that of Figure 4; but it does provide a 
specific way to interpret and assess the phenomena that oc- 
cur. This cross-intensity function provides a precise measure 
of second-order association in the stationary case. 

If two processes are associated, one can anticipate that 
functions of their realizations will be correlated. A particular 
function to study, because of its simplifying characteristics, 
is the empirical Fourier transform. Consider the Fourier 
transforms of two stretches of point process data, specifically 
ZO0<j<T e iXG , O<rk?T eT k for 0 < X < oo. The quantity 

RMN(X) = lim corrf{ e-ixcrj e-iXTk} 
T-co 

is called the coherency at frequency X. Its modulus-squared, 
I RMN 12, is called the coherence. The coherence lies between 
O and 1 and measures the extent of linear time invariant 
association between two processes (Brillinger, Bryant, and 
Segundo 1976). 

Figure 6 provides an estimate of the coherence for the 
LIO-L3 data above. The estimate is seen to be highest for 
frequencies X/2ir less than 1 cycle per second. The dashed 
line in the figure gives the (approximate) 95% upper point 

Square root crossintensity L3 given Li 0 
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Figure 5. The Square Root of the Cross-intensity Statistic (3.1). The 
dashed lines give upper and lower two standard error lmits placed about 
0 level. 
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Figure 6. An Estimate of the Coherence of Neurons L10 and L3 Obtained 
in the Fashion Described in Brillinger, Bryant, and Segundo (1976). Dashed 
line gives 95% null point. 

of the null distribution of the estimate. Except in the case of 
simple translation of all the events by a common amount, 
mappings between realizations of point processes are inher- 
ently nonlinear. In view of this, the high magnitude here of 
the coherence estimate at the low frequencies is surprising. 

4. REGRESSION-A LINEAR MODEL 

Consider next a model 

lim Pr{N point in (t, t + h] I M}/h = ,u + , a(t - oj). 
h;O 

(4.1) 

This model is linear and time-invariant. The function a( ) 
is meant to represent the various chemical, electrical, spatial, 
and temporal delay processes involved in the influence of 
neuron M's firing on neuron N's firing. For example, if the 
Tr's were given by rj = (j + Yj, with the Y's independent and 
of density function a( * ), then the result (4. 1) would hold 
with ,u = 0, see Brillinger (1974). The model (4.1) may be 
fit by cross-spectral analysis (Brillinger 1974). The resulting 
estimate of a( * ) for the Aplysia data addressed in Section 3 
is given in Figure 7. The estimate is seen to mimic that in 

Impulse response of L3 given Li 0 
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Figure 7. An Estimate of the Function a(g) of (4.1) Obtained in the 
Fashion Described in Brillinger, Bryant, and Segundo (1976). 

Figure 5. The distinction is that, as is the case in ordinary 
regression analysis, one is nearer to an object unaffected by 
elementary reexpressions. This analysis for this particular 
data set is not dramatically enlightening, but interesting ex- 
amples may be found in Brillinger, Bryant, and Segundo 
(1976). The following section presents a more satisfying 
analysis of the present data in any case. 

5. LIKELIHOOD-CONCEPTUAL MODELING 

A model with a long history in neurophysiology involves 
a neuron firing when the membrane potential at its trigger 
zone exceeds a threshold. The threshold is a time-varying 
quantity that is reset to a high level on the neuron's firing 
and then is subject to slow (although not always monotonic) 
decay. The effect of the reset is to prevent firing from recur- 
ring immediately, and thus to incorporate the phenomenon 
of refractoriness. The model may be described in formal 
terms as follows: Let M = { rj} refer to the times at which a 
first (or input) neuron fires. Given the function a( * ), consider 
the following time-varying state variable 

U(t) = E a(t - aj). (5.1) 
o7J?t 

The quantity U(t) is meant to represent the membrane po- 
tential at time t at the trigger zone of the neuron whose firing 
is of interest. Here, a( * ) is a summation function, meant to 
represent the various processes involved in the influence of 
M's firing on N's firing. The character of the function affects 
whether the firing of the neuron M increases (excites) or 
decreases (inhibits) the chance of the neuron N firing. The 
threshold decay is represented by the function b( ). 

Figure 8 provides a layout of the situation. The bottom 
two panels give hypothetical a( * ) and b( * ) for the case of an 
inhibitory synapse. (Shortly, empirical estimates of a( * ) and 
b( * ) will be provided.) The vertical asterisks of the top plot 
are the firing times of the input neuron, M. The hook-shaped 
curves are the translates of the function b( ), with a new 
translate introduced with each firing of the principal neuron, 
N. If yt denotes the time elapsed since N's last firing, then 
the threshold curve may be represented by 0(t) = b(yt). The 
lower continuous curve of the figure is U(t). One is concerned 
with the membrane potential, U(t), crossing 0(t). 

Consideration turns to developing a stochastic version of 
this model and of a corresponding likelihood function to 
employ in analyzing available data. Suppose first that the 
point processes are simplified to discrete time (t = 0, + 1, 
?2, * * *) and to 0-1 valued series. That is, a sampling in- 
terval of small length is selected such that only 0 or 1 points 
occur within each interval, and one defines Mt = 1 if there 
is a point in the unit interval starting at t and Mt = 0 if there 
is no point, for t = 0, + 1, +2,. ... Corresponding discrete 
versions of N and a( * ) are similarly defined. Now 

U(t) = , a(t - oy) - at-uMu, (5.2) 

and it is convenient to represent the effect of the threshold 
by 

a= z bVts (5.3) 
v=l 
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Membrane potential and threshold function 
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Figure 8. The Threshold Model. The lower curve of the top panel gives 
U(t) of (5. 1) with a(.) given by the lower left function. The hook-shaped 
functions of the top panel are translates of the function of the lower right 
panel initiated each time the curve U (t) is crossed. The spikes of the top 
panel are the times of M firing. 

with y, again the time elapsed since the last N firing. (That 
the expression (5.3) is linear in the parameters aids in their 
estimation.) 

Suppose that there is noise, with c.d.f. P( ), superposed 
on the threshold. This makes the model stochastic. The con- 
ditional probability of the neuron firing, given the past, is 
taken to be 

Pt = Pr {Nt I I the past} P(^6t), (5.4) 

where 

{t=zauMt-u -Ot. 

The log-likelihood is 

2: [Nt log Pt + (1- Nt)log( I- Pt)]. (5.5) 

Estimates of the a's and b's may now be determined by the 
maximization of (5.5), employing iteratively reweighted least 
squares algorithms such as those described in McCullagh 
and Nelder (1989). 

Figzure 9 presents the results of these computations, taking 

Pt* t e ( , hestnar nralcuultve(a n r0i 

analysis) and the ampling interval o b 05scns h 

esimte sm atonfucio au ssen o wngnea0v 

diecl. hi oresodstoMs orL1 's irngihii0n 

the N's (or L3's) firing. This effect of L10 appears to last for 
approximately one second. No apparent rebound effect is 
present. The estimate of the decay function b, is oo for the 
first five coefficients, reflecting the fact that no output spikes 
occurred closer than .49 second for this particular data set. 
The standard errors are estimated via the usual formulas of 
probit analysis. For convenience of display, in the case of du 
the errors are graphed about the horizontal axis. 

The preceding analysis involved the assumption that the 
perturbing noise values had a standard normal distribution. 
Suppose, however, that the noise comes from an unknown 
distribution and that it is desired to estimate that distribution. 
It is convenient to write that distribution as 

P() = X(g()), (5.6) 

with the consequence that g( * ) will be linear if the noise is 
in fact normal. (The function g( * ) is not assumed monotonic 
here.) 

The estimation procedure employed in this case is locally 
weighted maximum likelihood. The computations are carried 
out recursively. To begin, set #() = k and g'(f) = 1. 

Step 1. Given Nt, , * '(*) obtain estimates of the re- 
maining parameters of the model, and in particular t by 
ordinary maximum likelihood. 

Step 2. Given Nt, At obtain ( ,'(*) to maximize the 
locally weighted log-likelihood 
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Figure 9. Estimates of the Functions au and bu of (5.2) and (5.3). The 
dashed ilines provide two standard error ilimits. 
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2: W( - i,t)[Ntlog Pt + (1 - Nt)log(l - Pt)], (5.7) 

with w(*) a weight function concentrated near 0 and with 
g(O) = a + 3V assumed (locally) linear. (This assumption of 
linearity means that except for the additional weight term, 
the computations are usual probit ones.) The weight function 
focuses the local estimation towards the center of the func- 
tion's support. The estimate of g(V) is now taken to be &a, 
+ 0f3; the estimate of the derivative, A+. 

Step 3. Return to Step 1 until convergence is achieved. 
The function estimation procedure of Step 2 here may be 

found, at various stages of development, in Gilchrist (1967), 
Cleveland and Kleiner (1975), Brillinger (1977), Cleveland 
(1979), Hastie and Tibshirani (1984), Tibshirani and Hastie 
(1987), and Staniswalis (1989). An early version of GAIM 
(Almudevar and Tibshirani 1990) gave the author confidence 
that this procedure was feasible for the present situation. 
The weight function of (5.7) was taken to be the tricube, as 
in Cleveland and Devlin (1988). 

Figures 10 and 11 present the results of these computa- 
tions. The dashed lines give estimated ?2 standard error 
limits. In the case of g'( * ), they are placed about the level 
1.0. The derivative estimate g'(*) is seen to not deviate much 
from 1.0 in the region of apparent probability mass. The 
computations are seen to support an assumption of linearity 
of g( * ) and hence of normality. This is further reflected in 
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Figure 10. Estimates of the Functions g( *) and P( *) of (5.6) and of the 
Derivative of g(.*) 
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Figure 11. Estimates of a, and b, for the Case of Unknown P(.) 

the similarity of Figures 9 and 11 giving the respective esti- 
mates of au and b,. The approximate standard errors were 
determined via the jackknife (Mosteller and Tukey 1977). 
In this case, replicates were based on 99% of the data, and 
20 replicates were formed. 

Consideration next turns to an alternate type of experi- 
ment involving Aplysia with a different stimulus and a cor- 
respondingly altered state variable. In the experiment, noise 
current is fed directly into the neuron L5 and evoked spike 
times are recorded. Some input and corresponding output 
are provided in Figure 12. Numerous neurophysiological ex- 
periments have suggested that neuronal firing depends on 
more than a single-state variable, such as the membrane po- 
tential's crossing a threshold. For example, the speed of the 
crossing, perhaps quantified via the derivatives of the func- 
tions involved, also appears to be pertinent (Segundo 1968). 
The preceding threshold model suggests consideration of the 
state variable 

U(t) at-uXul (5.8) 
U?t 

with X the input noise and {t the corresponding linear pre- 
dictor 

At = U - d et - zt2 _gzt3,(5.9) 

where Ot iS here restricted to have cubic form. (In these com- 
putations it was convenient to take the threshold decay func- 
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Neuron L5 - Noise Driven 
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Figure 12. Input and Output of a Neuron. The neuron L5 of Aplysia ih 
stimulated directly by the Gaussian noise of the lower panel and fires a, 
in the upper panel. 

tion to be cubic in order to avoid excessive computations. 
Consider also a second state variable 

P=t cxtau (5.10 

Suppose further that 

Pr{Nt = l I the past} = 1(t)4(1) (5.11 
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Figure 13. Estimates of au and cf, of (5.8) and (5.10) and of thJe Cubib 
Decay Function of (5.9). 
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Figure 14. Firing Probability. The bottom panel gives the right side of 
(5.1 1). The top pane/provides the observed proportion of times the neuron 
fires as a function of the first and second linear predictor values. 

as a naive extension of(5.4). It is assumed that approximating 
the actions of the two state variables as independent will not 
lead to wildly deviating estimates. Figure 13 gives the results 
of fitting this model. The fitting here is carried out iteratively, 
first assuming the coeficients of i,t given and estimating those 
of v,, then assuming the coeficients of v, given and estimating 
those of 4'. In both cases, the estimation procedures are 
probit. The second panel gives the estimate of c,, with two 
standard error limits set about 0. There is evidence for the 
presence of a second state variable, although in the case of 
the present computations it does not have the appearance 
of the derivative of the first. The estimate of a, given in the 
first panel shows how the noise current is exciting the neuron. 

The problem of assessing goodness of fit has not yet been 
commented on. Figure 14 provides an informal procedure 
for the model (5.1 1). The top panel is a plot of (5.1 1), the 
bottom panel gives the empirical firing probability as a func- 
tion of the first and second predictors. To obtain this, one 
bins the values of the predictors and computes the corre- 
sponding proportion of firing occurrences. The agreement 
does seem reasonable. One could proceed to formal good- 
ness-of-fit tests based on the quantities just graphed, such as 
chi-squared statistic, but this seems premature because the 
temporal dependency leaves the sampling properties in 
doubt. 

Brillinger and Segundo (1979) fit the threshold model to 
some Aplysia data by maximum likelihood. Brillinger 
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Network connections / causal models 

N 

0 

Figure 15. A Network of Three Neurons. Neuron M influences neurons 
N and 0, but one wonders if there is a direct connection from N to 0 or 
vice versa. 

(1988b) provides a number of references to the threshold 
modeling of nerve cells' actions and presents further empir- 
ical examples. 

6. NETWORKS-3 CELL 

Suppose one has three neurons, M, N, 0, which may be 
influencing each other. In the experiment analyzed below 
(see Brillinger, Bryant, and Segundo 1976), it was understood 
that neuron M was driving both neurons N and 0, but it 
was not known if there were direct connections from N to 
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Figure 17. Estimates of m(.) and o(.) of (6.2) and of the Cubic Decay 
Function of (6.3). 

O or vice versa. The scheme of the situation has been illus- 
trated in Figure 15. One tool for addressing questions of 
connectivity is partial coherence. The partial coherency at 
frequency X of point processes M and N, given the point 
process 0, is defined as 

RNO- RNMRMO 
V(i - IRNM 12)( 1 - I RoM I2) 

Here, RNO denotes a coherency of two stationary point pro- 
cesses as before. Dependence on X has been surpressed to 
simplify the display (6. 1). The partial coherency may be in- 
terpreted via 

RNOIM = lim corr{dN - ad , d3 - d T, 
T-oo 

with 

d;(X) = e'j 

for example, as before. Here a and : are the regression coef- 
ficients of dT on djT and of d3 on d T . The intent of their 
inclusion is to remove the (linear) effects of the Fourier 
transform of M from those of N and 0. 

Figure 16 provides the results of such computations for 
data on a network of cells 0 = L2, NV = L3, and M = LlO 
of Aplysia. The particular experiments are discussed in Bril- 
linger et al. (1976). The effect of the analysis is quite dramatic. 
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Figure 18. Rastor Plots of the Firings of Eight Cells Following Application of a Noise Stimulus Every 1,000 msec. 
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From the fourth panel, one can infer that the apparent as- 
sociation of cells N and 0, as shown in the first panel, is due 
to their common association with cell M. 

This problem can also be addressed from a likelihood ap- 
proach by employing a threshold model. Suppose the firing 
times of cell M are denoted by { o} and those of cell 0 by 
{pI} . Consider the membrane potential of cell N at time t to 
be given by 

U(t) - z m(t - u1) + , o(t - PI), (6.2) 
1 I 

and suppose 

Pr{N, = l I the past} = 4(U, - d - e'y -f - 

(6.3) 

zy being the elapsed time since N last fired. Here, m( * ) and 
o( * ) are summation functions associated with the effects of 
neurons M and 0. One wonders if the function o(f) = 0. 

Figure 17 on page 267 gives the maximum likelihood es- 
timates of m, o, and the decay function. The two standard 
error limits for the cell 0 = L2, set at about 0, suggest an 
insignificant effect. This is consistent with the results of the 
coherence analysis. One could do a similar analysis relating 
O to M and N and achieve the same result. 

Various references relating to network analysis are given 
in Brillinger (1988a), as are further examples. Tick (1963) is 
an early reference to partial coherence analysis. Gersch (1972) 
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Figure 19. Statistics to Investigate the Association of Cells 2 and 7. 
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Figure 20. Statistics to Investigate the Association of Cells 2 and 6. 

discusses empirical partial coherence analysis as a tool to 
study causality in electrophysiological signal analysis. More 
examples are provided in Rosenberg, Amjad, Breeze, Bril- 
linger, and Haliday (1989). 

7. NETWORKS-8 CELL 

In the next analyses presented (albeit preliminarily, as this 
is work in progress), data were collected in an attempt to 
understand the auditory pathways of the cat. Microelectrodes 
were inserted with location tuned to an apparent response 
to sound and to anatomical knowledge, and responding neu- 
rons were located. 

The animal was stimulated by white noise bursts of 200 
msec duration and at the rate of one per second, through 
speakers inserted in the ears. The stimulus was applied 364 
times. For the eight cells located, Figure 18 on preceding 
page provides rastor displays of firing times for lags up to 
1,000 msec following stimulus application. Various behaviors 
are exhibited, ranging from the strong association of cells 1, 
2, and 6 to the weak association of cell 8. One sees excitation, 
inhibition, and rebounding. 

This work has defined various measures of association of 
point processes. Figures 19-21 provide them for a selected 
three of the 28 possible cell pairs. In Figure 19, concerning 
cells 2 and 7, the cross-intensity and coherence show asso- 
ciation. Not much is present, however, when the stimulus is 
"4removed" by partial coherence analysis. This inference is 
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Figure 21. Statistics to Investigate the Association of Cells 2 and 8. 

confirmed by the directly measured coherence between the 
two cells in the case of no applied experimental noise stim- 
ulus. Figure 20 provides the same information for cells 2 
and 6. Again, the cross-intensity and coherence estimates 
show association. In this case, however, the partial coherence 
does suggest that the cells are related beyond the dependence 
introduced by the common noise stimulus. This inference 
is again confirmed by the coherence for the case of no ex- 
perimental stimulus. Figure 21, based on cells 2 and 8, sug- 
gests little, if any, connection for these cells. This is consistent 
with the apparent weak dependence of cell 8 on the stimulus, 
as shown in Figure 18. 

8. DISCUSSION AND SUMMARY 
The article has sought to follow the historical statistical 

progression of description, association, regression, and like- 
lihood analysis. It then continues to the contemporary topics 
of semiparametric maximum likelihood and causal structure 
recognition. The data is of a particular type-point process- 
and is taken from the field of neurophysiology. The paper 
has illustrated that a calculus is available for point process 
data analysis and that the calculus allows the computation 
of standard errors to provide uncertainty measures. 

It has been seen that linear techniques-specifically co- 
herence analysis-can elucidate highly nonlinear situations. 
It has also been seen that stochastic models incorporating 
basic features of neuron firing and network connections can 
be set down. 

Work ahead includes inferring causal connections for the 
8-cell cat network (taking note of the issues and techniques 
mentioned in Wold 1956, for example), maximum likelihood 
analysis of the cat data, modeling at the ionic level and, as 
is topical in contemporary statistical work, improving esti- 
mates by borrowing strength (e.g., via random effects 
models). 

[Received September 1991. Revised October 1991.1 
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