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Evoked response experiments provide an important class
of situations in: which the basic responses recorded are
curvese In this paper a variety of modifications, to
the usual statistical procedures, are proposed for
handling such datas In particular analogs ofithe mean,
the general linear model, womcmﬁ\amm»m&wu& estimates,
experimental designs, analysis of variance and
parameiric models are investigatede.

1. INTRODUCTION

A traditional, (dating back to Caton in 1875), meams of studying the nervous
system involves applying sensory stimuli to a subject and examining the
ongoing electrcencephalogram (EEG) for an evoked response (FR) » The stimulus
may be auditory, visual, olfactory (an odour), somatomensory (an electric
shock) or gustatory (a taste) in character. Generally the stimulus is
applied for a time interval that is brief in comparison to the duration of
the response. The response, if one occurs, takes place with a small delay
(latency) and perhaps lasts half a second.

A general description of the evoked response technique may be found in Regan
(1975)+ He lists as principal applications: (1) revelation of specific brain
activities, (2) provision of an objective indicator of sensory funotion and
(3) distinction of organic disorders from psychogenic ones. The technigque is
fast and provides an effectively risk free means of testing hearing, vision
and spinal cord funotion that may be applied even to infantse

One specific example of the use of the procedure is related in Bergamini et
al (1967). Siamese twins were Jjoined in such a way that it was not possible
to determine, by traditional means, if the peripheral nervous pathways were
dependent. Before operating to separate the twins it was desired to examine
for their independence. Ongoing EEG's were recorded for each twins A series
of experiments were carried out in which the twins legs were stimulated, by
electrical shocks, in turne When a leg of one twin was stimulated, EEG
activily was noted only for that twine On the basis of this information the
twins were separated - successfullys

A second example of the use of the ER technique is provided by hearing exams
for newborn infants, (including sleeping infants). Ongoing EEG's are recordeds
These are examined for responses after loud clicks are made near the infante
Rapin and Graziani (1967) present examples of average evoked responses for an
infant with hearing difficulties wearing and not-wearing a hearing aide It
wag found that the aid had an objectively measurable effecte

The first and most basic obstacle to making use of the ER proocedure is that
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of seeing the ER's in an EEGe In almost all circumstances the ER's are much
smaller than the level of the continuing noise. Dawson (1951) demonstrated
that one way to surmount this difficulty was to apply the stimulus pericdically
at well spaced time points and then to average together the EEG values that
occur at the same time lag after the application of the stimuluse. Specifically
if Y(t) is the observed series and if the stimulus is applied at the times
Jo 4y j = lyesee,M one computes

M .

Y(u) = 3 & Y(u+jo) - )

J=1
0 £u LU . This statistic is referred to as an average evoked response
(AER) .« The interval width o is to be taken large enough that neighboring
ER's do not interfere with each other.

In fact it turns out that Laplace (1825) had earlier suggested the considera—
tion of sums of values of a series at fixed time lags relative to the times
of certain external eventse Namely, in Volume 5 of his Traité de smams»n:m -
Celeste he summed the difference between morning and evening low and high
tidal heights at lags of -1, 0, 1, 2, 3, 4 days relative to the times of
equinoctial syzygiese. Another early example of the use of the statistic (1)
is provided by the table of Buys-Ballot (1847)+ Buys~Ballot's concern was

the detection of an effect of period o, so that the values (1) were computed
for different o's as well as different u's « Yet another early example of a
related procedure was mentioned by Professor F+ No David « In the late 1800's
Galton superposed photographic negatives of faces of criminals, in a search
for common features. Doing this may be viewed as analagous to superposing the
' separate curves Y(u + jo), 0 $u £U , of (1) and performing the averaging
mentallye The radar memory tube that proved so important in World War II,

see Watson-Watt (1946), provides an electronic realization of Galton's
procedures

Other diverse applications of the statistic (1) include: (i) the stacking
technique that exploration seismologists employ in combining the seismic

traces obtained at nearby locations after letting off a series of shots,

(see for example Waters (1978)), (ii)the examination of average hourly

rainfall curves by Neyman Aww44w in a search for an effect due to cloud

seeding and (iii) the aligned activity records of amimals prepared by biologists
M.a a Wwwn.ow for circadian rhythms (see for example Figure 4+4.l in Pavlidis
1973)).

The computing of AER's has now become routine with fairly fleeible special
purpose computers available for the analysis including the ARC (average
response computer) and the CAT (computer of average iransients). In a senae
thepe computers may be viewed as providing the ¥ button of hand-held calcu—
lators for data comsisting of curvess

General references to the use and interpretation of ER's include: Donchin
and Lindsley (1969), Shagass (1972), John (1977), Thatcher and John (1977),
Callaway et al (1978) « References going into statistical concerns in some
detail are Qlaser and Ruchkin (1976) and Freeman (1980).

2. SOME FORMALIZATION

In order to proceed to an investigation of the statistical properties of
AER's and related gquantities it is necessary to set down some notation and
assumptions. It will be assumed that the experiment is not evolving in time,
that the noise processes present are stationary stochastic processes and
that functional transformations are time invariante.
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ewb»»smmowwvuuwnwwwouowm&wsﬁww will be den j
. oted by o J = 0, #1, 42, e4s
SﬁmV tw«p denote the corresponding point process with a#m m:swo& m&Jﬂdl !
”w isfying 0 ¢ o £ 1 denoted by M(t) + The response observed at tim# t will
be denoted by, Y(%) « The time period of observation will be taken as the
interval (0,] . Further, for convenience, we will set M = M(T) . The AER

T - L3y L/
u) = = % ; - =
% A (u + quv x.ﬁ“ Y(u + %) am(t) (2)
may now be seen to be able to be viewed ag an estimate of
Mwiﬂ + t) | stimulus at time ﬁw . (3)
48 such it is not a system invariamt but has the distributi )
: : W j
melded into ite Suppose one defines ! on of the qw
HMMNAev | single stimulus at t-u w = u+ a(t-u) (4)

with a(t) tending to 0 as t tends o0 co » This fun

. i . ction a(+) may be viewed as
w.memﬂos uu<mwum=¢. Supposing that stimuli are applied sufficiently apart in
time that their effects do not overlap, then from (4)

E{Y(+) | M(u), ut) = u + I a(t-o)
o.&t J

ul

t
= + J a(t-nu) ai(u) . (5)

00

This last expression leads to a consideration of the following model for the
response geries when stimuli of intensity I are applied at times G, e

J
:o@mw 1. Suppose M(t) is a step function Jjumping by 1 at each o, « Suppose
U 18 a constant and that a(e) is a fixed function vanishing for’ t< 0 .

WSbuomo that g(+) is a stationary noise process. The response series is given
Y

Y(t) = u + H.\B a(t-u) aM(u) + e(t) . (6)

-0

Hrmﬂo wnww been some investigations that suggest that Model 1 is reasonable
in certain practical situationa. Suppose that the function a(+) vanighes

outsgide wwm interval wu*ﬂu + Suppose that the stimuli are applied farther than
V time units apart, then from (6),

Y(u) = r + Ia(u)+ e(u) n

bhdnm.ﬂ + Under these conditioms the AER is seen to be estimating the function
B(+) directly. The experiments of Biedenbach and Preeman (1965) may now be
seen as examining the linearity in I and the superposability of the o, effects
required in Model 1 s+ They were concerned with responses evoked in th8
vumu%wHwan cortex of the cat by olfactory tract stimulatione In some of their
experiments stimuli of various intensities were applied at well separated
timess The AER's appeared to be linear in the intensity I provided I was above
s threshold, but not overly larges In others of their experimemts the stimuli
times were paired, O5s = 0ps 7 =4, for various d « The AER's obtained were
sompared with the refidlt <=1 ¢ superposing at lag d the AER's obtained

from well-geparated times. It was found that superposability was a reasonable
issumption provided that d was not too small e (The first AER's here were
somputed assuming the stimulus to be the pair of pulses d units aparts)
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3. INVESTIGATION OF THE AER FOR MODEL 1

Under regularity conditions large sample approximations may be derived for the
mean, variance and distribution of the AER in the case that Model 1 holdse

From expression (6) it is apparent that Y(u) is made up of a fixed part,

E Y(u), and a stochastic part,e{u) « These two parts may be discussed separatly.
The inwestigation may be carried through under the conditionms of Brillinger
(1973)+ Suppose I = 1.

These conditions include: (i) |M(%) - M(s)| 4 A + Blt-s| for some finite A and
B, (ii) ¥ = M(T)/T tends to p as T tends to o and (iii) for w » O
T~u .
Py
Pu) = [ (M(u+v) - M(v))aK(v) /P (8)
0
tends to P(u) as T tends to oo, for almost all u - These conditions require
that the stimulus be applied at fixed, but stationarly distributed, time points.
Now one has

EY(u) = %? + Ja(usvew) a(w))au(v) /(1)
= u+ Ja(u-v) Bv) S
- + fa(u—v) dar(v) /p (9)
as T tends t0 oo o 4 ,

Expression (9) is not generally the desired t. + a(u) « The distribution of the
times of application of the stimulus has been convolved in. Some particular
cases include:

a) Purely periodice In this case, oy

©a .
WMMHN =  Yv-jo)fo
Jm—ca
with §(+) the Dirac delta function, giving

= joand 8o p = 1/0 ,

EY(n) = u+Z alu-~ jo) . (10)

J
This reduces to u + af{u), for 0 $ u & V, in the case that a{u) vanishes for u
outside the interval o.ﬁ and that o > V «
b) Poisson process rate pe Suppose that the times of stimulation are those of
a Poisason process, then

&) | &v)p + p°

dv
giving
EY(n) = p+a(u) + pfa(v)dv . (11)

This is the desired function up to the level valuee The clear advantage of
this stimulation procedure is that no restrictions are placed on the support
of the funciion a( «) and the rate of application of the stimulus.

c) Stationary mixing point process. Suppose that M(.) is taken o be a realiza-
tion of a stochastic point process with rate p and autointensity function

GA.«V. then

L) . Yv)p + p(v)

dv
giving
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EY(u) = p+a(n)+ p(u-v)a(v)av/m o (12)
A deconvolution is meen to be required before arriving at the desired a(e) o
The variability of the estimate Y(u) is that of the stochastic part () o

Suppose that c(t) denotes ithe autocovariance function and £{A) the power
specirum of the series e(t) « Then

var Y(u) = var e(u) :

~ [ o(v) ar(v) [ . (13)

and the estimate is asymptotically normal, as T >0y, (using the' .&on&.wn of
Brillinger (1975).)

In the case of the purely periodic example above expression (13) becomes

<m.~...H.A=vl.M mAmWIWV /2% . (14)
Xk h

The AER will have inflated variance when the spectrum of €(+) has a peak at

frequency mu\q + Now EEG specira do have peaks, for example corresponding to

alpha rhythms The experimenter needs to be careful not to chose a gtigulus

interval corresponding to such a peak.

The problem of variance estimation will be returned to later in the papers
Traditional procedures include splitting the data stretch into a nuaber of
equal disjoint segments and viewing the AER's of the segments as independent
estimates and the (+) method based on the difference between the successive
responses of pairs of responses (see Schimmel (1967).)

4. USES OF MODEL 1

4n advantage resulting from having set dowm Model 1 is that a variety of
hypotheses of scientific interest may be examined in a formal fashion. These
includes

5 Is there an evoked response ? This is one of the questions examined in the
Rapin and Graziasni (1967) paper mentioned earlier. They were concerned with
whether or not infants were hearing certain loud clicks. The formal hypothesis
here is; is a(t) = O for all t 7

ii) Do two individuals have the same evoked response ? Lewis et al (1972) were
concerned with the degree of similarity of evoked responses for monozygotic
twins, dizygotic twins and non-twins. Supposing separate experiments are
carried out to estimate J.A.v and wmA ») for two individualse The formal
hypothesis may be writteni is wH:v = a, (t) for all t 7

iii) Are the evoked responses of am wumf«wmﬁww with respect to two different
stimuli the same ? McCormack (1977) measured the visual responses evoked in
an individual when different patterns were presented. This hypothesis may be
formalized as im ii)

iv) Are the responses evoked at two symmeirically related locations on the
skull the same ? John (1977) is concerned with this question in looking for
learning disabilitiese In this situation the response recorded ism a veotor of
curvess The component curves may each be modelled am im expression (6) « The
possibility that the ncise processes are correlated now has io be addresseds
v) If stimulus A results in a response and stimulus B results in another responss
is the result of simultaneously applying stimuli A and B the sum of those iwo
responses ? Diamond {1964) is concerned with this question in the case that 4
is a flash of red light and B a flash of blue light. To examine this question
the model (6) must be expanded to include point processes corresponding to each
type of stimuluse.
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vi) Are the effects of the individual stimulus m.uuu.wowﬁo:m superposable or
are there interactions (nonlinearitiea) ? Biedenbach and Freeman (1965)
examined this hypothesis in one mituation. They found interaciion effects in

the case that the e...U were close together.

5. A FORMAL (LINEAR) APPROACH

Suppose that r separate stimuli are available. Let the counting function M ()
provide the application times of the k-th of these stimulis Collect the
:w:v into an r vector, M(t) « Consider the model

X = x4 Sa(t-u) are) + e(t) (25)

v

with Y(t) a vector of s response series, u an g vector, a(t) an sXr matrix

(with the entry in row j and column k providing the effect of the k—th
stimulus on the j-th series), and with \m\:v a vector of s noise series.

Given data Y(t), M(t) OLt& T, with T sufficiently large, the parameters of
the model (15) may be estimated and hypotheses concerning them examineds

In this connection it is easier to proceed in the frequency domain. To this
end define

AA) = S exp(-12%) g(s) at (16)

7 T

SN = exn(-121) x(4) at 1)
T

) = [ exp(-idt) ap(t) - (18)

0

The transfer function A(A) may now be estimated by

B) - (z gGRY aBET)( 5 gl(ZBRd) gTERT) (19)
3 3

with the mE,..m in (19) over n distinot frequencies Nuu\a near A .

Suppose next that, among other things, the noise process M\A.v is stationary,
has mean O, spectral density matrix £()A) and satisfies, for example, the
mixing agsumption of Brillinger (1974). Then, for A ¥ O, z the estimate (19)
may be shown to be asymptotically complex normal with mean \»QV and with
vec 4(7) having covariance matrix

To2xiy LT 2857 \=1
SIS PHC-ORHE- . (20)
Purther estimates at distinct frequencies are asymptotically independente

Various hypotheses of scientific interest were indicated in the previous
section. In the cages i) = v) these may be written out as hypotheses oo»omu.uwum
the entries of the matrix A(A) « With the approximate distribution for A(A)
indicated above, & general linear hypothesis concerning the matrix A(2) may be
examined in an analysis of variance fashione ~

If desired, the function a(u) may be estimated by an expression of the form
Q-1
A -1 2rugy 2%
f) = @ 3 empZmE) R2m) (21)
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Advantages of setting down the model (15)

mw&.«w of gtimuli .Awnowﬂa»bm.m.«mm&. ones) may be handled with no ater
difficulty than single ones, 2) randomization analyses (where »umunﬁsﬁsa,
mvvww.mn is mmu.oo,.wo.w randomly from thome available) may be developed, 3)
meuu.wE..w:&mH designs Amﬁ. crogs—over, systematic, rotation nouowaom measurement)
may be incorporated, 5 analysis of variation may be wowawm»non. 5) best linear

unbiased estimates may be constructed, a i i
: pproximately.
introduced in Brillinger (1978) .) T are ©l: (This approach was

are now seen to include: 1) different

6. AN ALTERNATIVE VIEWPQINT

)
Consider once again the single stimulus, single responge series cases Suppose
that the function a(u) vanishes outside the interval [0,V] and that the times
of application of the stimulus are more than V units aparte. Suppose, further,
that the autocovariance function of the noige series is essentially zero after
lag V +» Then the linear model may be written

Mu.?v = w?+o..u.v

_ = u + afu) + nu?v (22)
for 0<udV, j = 1,.0,M(T) , with_the noise process e¢.(u) = Y(ut+o,) uncorel—
ated with €, (v) , j ¥ k « The AER Y(u) is simply the mian of the séparate
responges. The model (22) is now seen to be the linear model of multivariate
analysis and the model of mu.otﬁu, curves with replicated observationse

Adopting this viewpoint means then that one can take over ithe whole apparatus
and procedures from those fieldse. For example, a situation where a number of
distinet stimuli are applied may be modelled by

wu..u.?v =

with i indexing the various stimuli, j indexing the replicates, a(.) denoting
an overall effect and b, (.) providing the effect due to the i-th stimuluse
The results that have bsen developed for MANOVA of complex experimental

designs may be taken over directly.

Byg ot a(u) + b (u) + n:.?v (23

Brillinger (1980) is a review paper on the analysis of variance of curves in
the case that the noise process, AmuA.v in (22)), is stationary.

7. SUPERPOSABILITY

The nexi two sections examine certain effects resulting from a depariure from
the agsumptions of Model 1 and (15). These models were motivated by a
consideration of expression (3). Im the superposable case it turned out to
be enough to discuse the expected value (3) in the case of a single stimulus
time, namely to consider expression (4)e

It seems natural to move on to a consideration of characteristics like
Hmiu..,.nv | stimulus at times t, f«w . (24)

This latter may be estimated by an expression of the form

Awmevlw z iﬁiﬂuv m_o..._lo.wl‘\_ < uw . v {25)

itk
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with B small and MMw.wmﬂo defined to be 1 if the event E is true and O other-
vwigee.

This statistic crops up, for example, in a consideration of;

Model 2+ Suppose M(t) is & step function jumping by 1 at each o, « Suppose
that W is & constant and that a(.), b(.,+) are fixed functions.’ Suppose that
e(+) ig a stationary noise processs The response series ig given by

Y5 = uw o+ [a(tou) an(e) + m\v:é;-i a(n) an(v)
, -0 nEv

+ e(t) . (26)

This model allows an interaction between pairs of stimuli effectse If the
stimulus process consists of an impulse at times O and d alone then (26) gives

Y(u) = u + a(u) + a(u-d) + bluu-d) + e(t) (27)

for w > 4 « In the causal case a(u), b(u,v) will vanish for u < 0, v < 0 and
(27)will hold for all u .

It is clear from expression (27) may be examined via two-pulse experimentse
The computations are also direct in the case that the times of stimulus
application are those of a Poimson process, (see Krausz (1975).)

8. ROBUST/RESISTANT ESTIMATES

‘These days research workers are very much schooled in the sensitivity of the
mean to outlierss Now large transients, that are artifacts, occur commonly
in EEG's - movement, eye blink, EMG (muscle electromyograph), barbituate
spikes, mains pulses all occure These all affect the AER .

To deal with this problem: some researchers have computed the median response
at each lag, see for example Figure 222 in Rosenblith (1962). Some statistical
properties of this estimate have been derived, see Section 4.7 in Glaser and
Ruchkin (1976) . However, being nonlinear the median computation can exhibit
spurious harmonics of the noise components and behave in nonelementary fashions,
a case in point is illustrated in Figure 1 of Ruchkin and Walter (1975)« It is
clear that various trimmed means could be used in place of the medians

/
The median and the irimmed mean just mentioned operate separately at each time
pointe It seems worthwhile to develop an estimate that weights, (possibly
rejects), whole ER curves differentially.

ppose that the notation of the Alternate Viewpoint section is adoptede Let
9(u) denote the estimate, about to be constructed, at lag u » Let w.&mso&m an
estimate of scale and __M - o: a measure of distance, for example,

hy-ell?- %Es - o(u)?a . (28)
Set .
.m?v - WY (w) \w W . (29)
with.
Wy o= Wiy -8l (30)

W(+) being a non-negative weight functiens (An example will be given shortly.)
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. A
Both sides of equation (29) involve the desired estimate €(.) + In practice
an iterative procedure will be set up, based on an initial estimate, Aﬁmﬂrwvm
the AER), with iterations carried out until the current estimate is changing
littles (See belows)
As a specific example one can consider the trimmed mean

~

O(u) = I %uAﬂv \ BM (31)

A
with L' demoting summation over the BM smallest : wu - o: .

By analogy with equations (2.11), (2.12) of Huber (1977) one is led %o consider
parameters satisfying the relationships

By (Y(u) - a(u)) Wl ¥(u) =)l /p)} = © (32)

ejullr-ell/p) llx-6lf/p? - v(lly-ol/p)t= o (1)
The choice ‘
- .Fm 2 $u<
W) ” MH ) M&Mmﬁzwmw (34)

gives tie Biweight « The choice

2
U(u) = a 0¢ufa
( - ul agushb (35)
- b° b &u
and V(u) = 1 seems useful in practice.
If all of the data is available in a computer at the same time then the
estimate (29) may be computed in an iterative fashion as follows;
0 (36)
= , W
G (W) = B ) S8
%2 -8 1%z v (31)
sl " 2 Uk Iy -5l \u 3k
-8, I/ (38)
Wi o= Wy - /)
with du i and <u i defined by expressions similar to (38) »
1

9. A RECURSIVE PROCEDURE

The estimate introduced in the previous section has the disadvantage of
requiring the experimenter to retain all the datas A recursive procedure
requiring only the most recent estimate and the just-collected response will
now be set downs The procedure is motivated by stochastic approximatioeg and
the known-scale location estimate of Martin and Masreliez Awmdmv. Let ou
denote the estimate based on MH..... %u e Then set
~ A A ~
WQ.“HAG.V = OuA.c.v - -Huh iA = N.u....u. - Ou:\vuV AMQ..THA.SV - OuA..nvv AWWV

Baa = By = Houllyy, -8 W8) N, - 611245 - i mm.ﬁ._mm%
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for some constants L

The estimate of (39) will not be the same as (29), even when all the data has
been collected; however the two estimates will converge %o the same value,
(given by (32)) as T tends to oo «

In the case of the 1008 per cent trimmed mean the reoursive equations become,
for the choice L = 1/B in the first

A A ] S . ~ A
9, = . ~=(Y, -8, . - 8. i<y,
sl = ) o () <) i g, -9l e
\/ .
= ouﬁzv otherwise
B =By - i i v, =B llh, (a2
J+1 J it B J+1 0
N L s
= uu + B3 otherwise

The effect of employing the estimate (41) is to exclude from the averaging

any Aooaﬁwm&mv ewoked response that deviates substantially from the bulk of

the responsese The average response computers mentioned earlier typically

1ave circuits to detect signals albove an arbitrarily established amplitude

at some lag w + This procedure has the disadvantage of not rejecting responses
that are not quite abnormal at any u, but that over all lags are quite abnormal.
The estimates (29) and (39) are of multivariate nature.

10. RESISTANCE (FREQUENCY DOMAIN)

e above discussion refers to time domain proceduress. As the example of
tuchkin and Walter (1975) shows, such procedures can hawe undesired effects
m guasi-sinusoidal signals or noisee Some frequency-based procedures are now
sresented for constructing resistant estimates — estimates not substantially
iffected by frequency domain abnormalitiess

juppose that the various ER's are separated in time so that the data may be
lescribed by expression (22) « In the frequency domain this leads to

v o ..
A = LMy @) (43)
J 0

AN+ QM.._Q ¥ 0 (44)

w.+»d, o.mawmA
.u uuu uM um (¢5)
j m 1l,e¢e,M o In expression (45) here, dependence on v,rmm been suppressed in

the notations Forming the AER corresponds to averaging the a_, du with respect

wOUo J

ne means of detecting abnormal values is to plot, say for N n.ma<\< ) Vo=
Yylyees, V/2 , the points (a_,b.), ji= l,+¢+,M « The point corresponding to
the AER will sit in the midd¥e 8f a cloud of pointse

‘t is now apparent that one might proceed by applying scalar procedures to the
-ndividual components of (a_,b.) or (C.,;8.) or (log ¢.,5.) Alternatively,
taking note of the Tukey (1980J procedfire’for a singld sdries one might; (a)
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apply scalar resistance methods to §, , (or expi{i&3 ) witn result ¢
(or n.wﬂwmwmiwv“nwvwwwww scalar am&rmmm to log C. tmer result log c* onw
take the aveflage of the o*ﬁkwww&.w , (or of the I ¢¥d ex »\.w } as 4 tne
estimate at frequency N\ «° J 33 J

11. A PARTIALLY PARAMETRIC MODEL
Suppose that the model (22) is replaced by
Y. = + I.S(u+ . + 46
u?v K ;5(u va J?V (46)

for 0 $u& Vand j =1,0+¢,M » That is, it is allowed that the response not
ocour always at the same time lag (latenocy) afier the application of the
stimulus and it is allowed that the intemsity of the response is not always
the same. One hence has the problem of estimating the uh and Hu as well as
the desired signal S(.) e J

These parameters may be estimated via a frequency domain procedures To this
end set

V 21y V,2nv
Mu< - Q%uAlﬂl , w4 - QMA 7 v (47)

with a similar definition of ¢ « Then expression (46) yields

Jv
- 8
Yy, = S expliyemv/vl 4 e (48)
snk 0 - Now the e, may often be treated asm independent complex normal variates

with mean O and viFiance 27VE(2nv/V) + This last suggests setting down the
(approximate) negative log-likelihood

iv

, 2nv 2 mu(
w w ( 1og £(5%) + _ﬁ{ - m,..Hu.aGTu\u.mi\qw_ faxve(=E) ), (49)
and the estimation of the unknown parameters Yy the minimization of (49) -
In order that the model be identifiable constraints, such as,

Iy, = 0, £IZ =1 (50)
. 03 .

J J
will have to be introducede If an iterative procedure is employed in this
minimization, then: initial values for I_, ¥’ might be obtained by crosscorre—

lating qucv with one of the resistant #stiflates indiocating earliers
In the case that the noise speotrum f(.) is constant the Woody (1967) adaptive
filter may be seen to be one means of seeking the minimum of expression (49).

The above formulation is seen to provide a maximum likelihood interpretation
of Woody's procedure and an extemsion of it to handle autocorrelated noise.

12. A FULLY PARAMETRIC MODEL
Freeman (1975) has made substantial use of the following parametrio model,

‘a(ule) = W nﬁoavmldewoomANK¢ + va for u N.do

= 0 for u < u, (51)

with @ denoting the parameters « The model may be fit to each individunal
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response or to the AER itselfs If Uy ig known to sufficient accuracy that only
Y. (u) values with u > u, are employed, then the fitting is simplified. The

J fitting may be carriéd through in either the time domain or the frequency
iomaine. In the case that the error series e(s) is stationary it seems simplest
to work in the frequency domains This is done in Bolt ang Brillinger (1979)

vhere the computations required are laid out and the asymptotic distributi
of the estimates developede

ons
freeman Aywawv makes use of the model (51l) as it represents the response for
linear differential equationse. In one case involving two damped sine waves,

1e views the larger wave as representing intracortical negative feedback and
the smaller as representing other feedback loopse
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MEAN RESIDUAL LIFE
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The mean residual life function e at age x is defined to be the
expected remaining life given survival to age x; it is a function
of interest in actuarial studies, survivorship analysis, and
reliability. Here we characterize those functions which can arise
as mean residual life mc:nﬁwo:m..wﬁmmm:ﬁ.m:m study an "inversion
formula' which expresses the survival function in terms of e,

and collect a variety of facts about e and other residual moments:
inequalities for e, new characterizations of the mxwowm:nwmﬂ
distribution, inequalities for coefficients of variation, and
limiting behavior of e at 'great age'. We also discuss

applications to parametric modelling. -

1. INTRODUCTION

Let X be a non-negative random variable with right continuous distribution func-
tion (df) F, and survival function F = 1 - F, on u~+ and suppose that

F(0) = 0 and uw = E(X) = \mxmmmxv = \% F(x)dx < »; write T = 4ﬂ = inf{x: F(x) =

1} < w, The mean residual life (MRL) function or remaining life expectancy

function at age x is defined as
(1.1 e(x) = ep(x) = E(X-x]X>x) = I FdI/F(x), for x>0,
and e(x) = 0 whenever FE(x) = 0. We use I to denote the identity function and

+
Lebesgue measure on R .

The discretized version of the MRL function e has had considerable use in life
table analysis (see e.g. Chiang, 1968, pages 189 and 213-214; Gross and Clark,

1975, page 25ff), and estimation of e = e on the basis of samples from F has

F
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