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ABSTRACT

Statistical concepts and techniques are basic to scientific investigation. One concept that enjoys
both a theoretical and a physical existence is the spectrum. A spectrum may be described as
a display of the intensity or variability of a phenomenon versus period or frequency. Spectra
are particularly useful in the study of systems subject to resonance, but have many other uses.
This paper begins with some of the historical development of the field, describing a sequence
of contributions by Michelson, Schuster, Einstein, Fisher, Bartlett, Tukey, and Whittle. The paper
next presents collaborative applications to the study of the free oscillations of the earth, to the
dispersion of seismic surface waves and to nuclear-magnetic-resonance spectroscopy. Finally, there
is mention of open problems and opinions on future directions.

RESUME

Les concepts et les techniques statistiques sont a la base de toute étude scientifique. Le concept de
spectre existe tant dans un cadre théorique que dans un cadre physique. Un spectre peut étre décrit
comme étant la représentation de I'intensité ou de la variabilité d’'un phénomeme en fonction
de la période ou de la fréquence. Les spectres sont particulierement utiles lors de 1’étude de
systemes soumis a une résonance, mais ont également bien d’autres emplois. Cet article débute
par un historique des développements dans le domaine, décrivant les contributions de Michelson,
Schuster, Einstein, Fisher, Bartlett, Tukey et Whittle. Cet historique est suivi d’applications des
spectres a I’étude des oscillations libres de la Terre, a la dispersion des ondes sismiques de surface
et a la spectroscopie de résonance magnétique nucléaire. Enfin, questions et opinions pour des
recherches futures sont mentionnées.

1. INTRODUCTION

Gerhard Herzberg’s research field is the analysis of the spectra of molecules in order to
determine their structure. He did this experimentally by passing light through a prism, as
Newton had so many years earlier. On the other hand, statisticians have been concerned
primarily with spectra as theoretical parameters. It is noteworthy for a concept to have
these distinct existences.

To begin, this paper presents a historical development. A recent highlight of the history
of spectra is a just-noticed paper by Albert Einstein. This paper, written in 1914, laid out

*This paper is based on the Herzberg Lecture presented at Carleton University 14 February 1992. The lecture
is meant as a vehicle for scientists speaking on topics of general interest to academics and to the public at
large. This research was supported in part by the National Science Foundation Grant DMS-8900613.
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a practical definition of the power spectrum and a corresponding estimation procedure;
see Yaglom (1987a, b). An estimate of the spectrum of sunspot numbers, computed
as Einstein might have, is provided here. The work of A.A. Michelson, A. Schuster,
R.A. Fisher, M.S. Bartlett, J.W. Tukey, and P. Whittle is highlighted. The second part
of the paper provides applications of spectral techniques to the phenomena of free
oscillations of the earth, of seismic surface waves, and of nuclear-magnetic resonance
spectroscopy. The applications each show a progression from a spectrum analysis to a
conceptual-model-based analysis.

By presenting a combination of history and examples it is hoped to interest other
statisticians in the topic and to display how statistical concepts can interact with scientific
ones.

2. HISTORICAL DEVELOPMENT

Spectrum analysis has its roots in physical science. In 1666, when Newton employed a
prism to cast the rainbow on the wall, he coined the term spectrum and began the formal
study of the subject. His work was part quantitative, with the counting of the number of
colors and the measurement of the widths of the bands; see Topper (1990). In 1801 J.F.W.
Herschel measured the temperature at various positions along the image; see Sobel (1989).
Herschel’s work is more in line with the idea of the spectrum as measuring intensity. A
related important step was provided by Gouy (1886), who proposed the representation
of light by a Fourier expansion.

2.1. Early Numerical Work.

Michelson (1892) was concerned with finding a length standard. To this end he caused
particular substances to emit light. Then, via a mirror, he superposed that light on itself
with a time delay. When the superposed light was viewed appropriately, fringes could
be seen. The phenomenon is referred to as interference and is understood if one views
the original signal as cos Az and hence after superposition as cos Af +cos A(t + u), ¢
denoting time, u delay and A frequency. As Michelson changed u the clearness of the
fringes varied and was recorded. This gave a function V (u), the visibility curve. A variety
of examples of the visibility curves he found are presented in Michelson (1892, 1902).

Supposing f(A) = g(A— Ap) to denote the spectrum (for the moment undefined) of the
light source at frequency A to be narrow and centered at A9, Michelson (1891) argued
that the visibility curve is given by

V(u) = \/{f cos uh g(A) dA}? + { [ sin uk g(A) dA}2. (1)

Michelson called the problem of determining g(-) from V(-) an inverse problem and
obtained answers by guessing. One of his most important inferences was that the red
hydrogen line was a doublet. This inference of splitting led ultimately to important
developments in quantum mechanics. Rayleigh (1892) however pointed out that the
inverse problem of (1) did not necessarily have a unique solution.

2.2. The Periodogram.

By 1898 Michelson had developed a “harmonic analyser” (Michelson and Stratton
1898). In Michelson (1913) it was employed to compute Schuster’s periodogram for
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Ficure 1: The top graph shows monthly relative sunspot numbers for 1750 to 1910. The bottom
graph is the periodogram computed for those data. The periods listed are those that
Michelson (1913) indicated.

some sunspot data studied by Kimura (1913). For data Y (¢), t =0, ..., T — 1, and period
T, the Schuster periodogram is given by

PT(1) (SY ) 21tt)2 (g Y(0) si 21tt)2 @
1) = Hcos — | + f)sin — | .
( t=0 ( T =0 T
The square root of this quantity was introduced in Schuster (1898). The basic components,
in (2), are seen to be correlations of the time-series data with cosine and sine functions
respectively. In consequence the periodogram may be expected to highlight periodicities
in a series Y ().

Figure 1 presents the stretch of data analyzed by Michelson, and an attempt at repro-
ducing the periodogram he computed. There were 161 observations in the series. The
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periodogram of Figure 1 was derived numerically, while Michelson employed the har-
monic analyzer. Because Michelson’s analyzer could handle only 80 observations and
there are 161 here, the reproduction is necessarily approximate. The numbers in the figure
are the periods that Michelson mentions, and he seems to mention one for each bump in
his estimate. The main hump, in the center of the picture, is near the traditional period
of 11 years. The large value near frequency 0 occurs because Michelson did not remove
the mean of the data prior to the Fourier analysis.

2.3. The Dark Ages.

Michelson (1913) listed 11 periods for the sunspot series. In a like manner Beveridge
(1922) lists 19 periods for a wheat price index. Figure 2 provides Beveridge’s data and its
periodogram. Many peaks are apparent. Another early researcher eager to ascribe peaks
in a periodogram to periodicities was Brownlee (1917), who listed 7 periods for measles
data for 1838 to 1913 and in fact remarked:

It might also be said, in the language of voLtamrg, that, if these periods were not found, they
would require to be invented.

Frightening words to a statistician. Of such period-chasing, Tukey (1980) remarks:

More lives have been lost looking at the raw periodogram than by any other action involving
time series!

Something was clearly amiss with the naive use of the periodogram.

2.4. Progress to Understanding.

In fact Schuster (1898) had been concerned with whether peaks in the periodogram
might simply be due to chance. For an individual T he assessed their significance
(prob-value) via the result

P’(1) —x
ob { ave(PT) > x} ~e ™, 3)

where ave(PT) refers to the average of all the periodogram values.
Later Fisher (1929) recognized that the periodogram was being examined not just at
a single period, but as a function of 1. He derived the more pertinent expression for

P'(1)
Prob {mrax avePT) >x} ) 4)

Both of the results (3) and (4) were derived for the case of Gaussian white noise. It was
for Whittle (1952) to derive the needed result for a stationary time series. He found that
in Fisher’s result one replaces P7(t) by PT(1) /f(2m/7), with f(-) being the true spectrum
of the series.

2.5. Definition and Estimation of the Spectrum.

In a remarkable paper Einstein (1914), mentioning sunspots as a motivating example,
may be seen to define the spectrum and to provide an estimate. He sets down a “mean
value”

c(u) = ave {r+wrw} 5)
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Ficure 2: The top graph shows the wheat price index data of Beveridge (1922). The bottom graph
is the corresponding periodogram, on a linear scale.

and then considers its Fourier transform
f) = / cos Au c(u) du, 6)

referring to the intensity of Y (-).

To estimate f(-), Einstein proposed taking the “mean value” near n of the A2 of the
development

Y(t):ZA,,cos(nTm), 0<t<T. %

1 [T nmt
- /0 cos(7) Y () dt ®)

These A, are given by
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Fiure 3: An estimate of the spectrum of the sunspot data, smoothing the A2 of (7) over the
indicated bandwidth.

Here A, corresponds to fluctuations at frequency A = nm/T. For the sunspot data
considered above, the results of computing the A2, employing a discrete approximation
to (8), are given in Figure 3 as the dashed line. The solid line corresponds to taking a
“mean value” over the interval indicated by “bandwidth” on the figure, which produces
a much less pronounced 11-year period (0.09 cycles/year).

As provisos, one has to say that Einstein does not make it clear what the “mean value”
referred to is, nor whether he had stochastic functions in mind. The notation employed
here differs from his.

2.6. The Modern Era.

The modern era of spectrum analysis may be said to begin in the research of Maurice
Bartlett and John Tukey in the late 1940s. In particular one may point to the references
Tukey and Hamming (1949), Bartlett (1950), and Tukey (1950). The work of these
individuals provided an effective estimate of the power spectrum of a stationary time
series, given sufficient data. Their research further determined useful approximations to
the sampling fluctuations of the estimates. Figure 4 provides an estimate for the sunspot
data analyzed earlier. The dashed lines provide approximate 95% confidence limits for
each frequency about a heavily smoothed version of the periodogram. From the figure it
is apparent that sunspots are far from having a precise period of 11 years. Examination
of the series itself shows the lengths of the cycles to vary from 7 to 14 years and for the
cycles to be of different shapes.

2.7. Discussion.

It now seems that (6), the formal definition of the power spectrum, is due to Einstein,
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Ficure 4: An estimate of the power spectrum of the sunspot series with (marginal) confidence
bounds indicated.

not Wiener (1930) as had been thought. It also appears that the first effective estimate is
due to Einstein, not Wiener (1930) or Daniell (1946) as might be claimed. However, it
was Wiener’s work that had the influence on the development of the subject. Also some
(Masani 1986) doubt Einstein’s priority.

It needs to be mentioned that various researchers have made notable contributions to
the statistical study of power spectra. One reference to the history and details of others’
work is Yaglom (1987b). Another reference on the general history of spectrum analysis
is Robinson (1982).

3. SOME APPLICATIONS

Three analyses of scientific data are now presented. This work required close col-
laboration with substantive scientists. The examples have in common: that frequency
analysis elucidates the situation, that a physically based model later provides insight, that
a numerical approach is highly flexible, and that a statistical approach handles error and
uncertainty.

3.1. Free Oscillations of the Earth.

The empirical spectral analysis of the earth’s motion following the great Chilean
earthquake of 1960 is viewed by many as the success story of numerical spectrum analysis
of the sixties. See Tukey (1966), Bath (1974), for example.

After a great earthquake, the Earth “rings” for days at various resonance frequencies
(Press 1965). The particular resonance frequencies depend on the structure of the Earth.
It is this structure which has long intrigued geophysicists and seismologists. In particular
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Ficure 5: The trace of the great Chilean earthquake, corrected for tides, and the corresponding
periodogram, on a linear scale.

they have studied the inverse problem of inferring the Earth’s structure from the resonance
frequencies.

Figure 5 presents a record of the Chilean event recorded at Trieste. The data is
described in Bolt and Marusi (1962). The lower figure is the periodogram of that
record, graphed against period. (This is the usual seismologist’s display.) A variety
of peaks are apparent. Values for the periods may be read off, and it seems that the
values have varying uncertainty. The periodogram is clearly an important display for
assessing the situation, but the trace is far from stationary, and more is needed. In
an attempt to estimate the uncertainty (and this is why the seismologist turned to a
statistician), one is led to the following steps.

The equations of motion of the earth are approximately linear with constant coefficients
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— see Aki and Richards (1980). Such equations have solutions of the form

Z axe P cos(yit + &), t>0; 9)
X

see Hochstadt (1975). One is thus lead to choose estimates of the o, B, v, & so that (9)
is near Y (¢) for the given data.

A likelihood-motivated analysis of the Chilean data is carried out in Bolt and Brillinger
(1979), separately by frequency band. The approximate standard deviations of & and
ﬁk /T, when derived, are found to have an interesting and intuitive form. Namely they

are both proportional to
\ FO)/0G T3,

where f(-) is the noise spectrum. The estimate of y; is more precise for small f(A;), for
large oy, and for large T.

The derived frequency estimates and associated standard errors can now be taken as
input data to the inverse problem of determining the structure of the earth.

3.2. Seismic Surface Waves.

Seismic surface waves are earthquake waves whose energy is trapped near the Earth’s
surface. They have the property that their velocity of transmission depends on frequency.
Figure 6 presents an example of the velocity-frequency relationship for one earth model
and Rayleigh waves.

The relationship may be validated by the computation of an empirical dynamic spec-
trum. This is a display of the estimated intensity of the phenomenon as a function of
both time and frequency. A naive way to compute such a spectrum is as

2

2
(Z Y(t — u) cos Ku) + (Z Y(t — u) sin ku) , (10)

where u sums over a restricted time interval. Ridges will appear if the different frequency
components travel with different velocities. Figure 7 presents, at the top, the vertical
displacement trace of the 7 December 1988 magnitude-7.0 Armenian earthquake, as
recorded at Berkeley. Below, on the same time scale, is the corresponding dynamic
spectrum. One sees the lower-frequency components arriving first, about 1000 seconds
after the record starts. In this computation, first a running autoregression was fitted, then
(10) was computed based on residuals. The statistic (10) was then corrected for the
autoregressive fit. This prewhitening and recoloring is done in order to reduce the bias.
The geophysicist and seimologist hope to learn about the structure of the earth from
such data. Figure 8 provides an example of a simple earth model, one of a homogeneous
surface layer above an infinite underlayer. For given values of depth h, compressional
velocities a.j, 0y, shear velocities By, ., and densities p;, p, one can compute curves
such as the one of Figure 6; see Bolt and Butcher (1960). This suggests that one should
be able to put together the arrival times of the various frequency components with the
theoretical arrival times for a given earth model parameter 0, and thereby estimate 6.
In particular one can proceed as follows: determine 7(A), the time at which the fre-
quency A component arrives. One knows the distance x from the observatory to the
earthquake location. Thus velocities U(A) = x /1(A) may be computed. Next, suppose
one measures the nearness of model parameter 6 to the true value by the sum of squares

SH{OM - UGe),
A
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FiGure 6: Velocity as a function of frequency for an earth model of the form of Figure 8.

summing over the various A, and then estimates 0 by the minimizing value. Figure 9 gives
the U()) and the fitted curve U(A|0) for the Berkeley station. The fit appears reasonable,
particularly at the lower frequencies where the signal-to-noise ratio is greatest. One can
aggregate the data for several stations to obtain a group solution and further obtain
estimated standard errors for the parameters. Details are provided in Brillinger (1993).
A full likelihood procedure for the semiparametric modelling of the seismogram itself is
currently under development with B.A. Bolt.

In this example the idea of spectrum has been central to the development of an
estimation procedure for parameters which have direct physical interpretation.

3.3. NMR Spectroscopy.

Nuclear magnetic resonance (NMR) is a quantum-mechanical phenomenon. A res-
onance effect occurs in particular substances when an oscillation frequency of a sur-
rounding radio frequency field coincides with a nuclear precession frequency of the
substance. The purpose of the spectroscopy is to infer the structure of the substance. The
data consist of the fluctuating voltage response Y(¢) to an applied magnetic field X().
Various inputs X(-) are employed, e.g., a pulse, sequences of fluctuating pulses, and sine
waves. Becker and Farrar (1972) is one review paper.
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Ficure 7: The top graph gives the trace of the 7 December 1988 earthquake in northern Armenia.
Below, on the same time scale, is a dynamical spectrum expressed as a contour plot.

Ernst and Anderson (1966) proposed the computation of the periodogram

2 2
(Z Y (1) cos M) + (Z Y(#) sin lt) ,
t t

0 <A <m, for such data following a pulse input. An example is given in Figure 10 in
the case of a simulated model for the substance 2,3-dibromothiophene (2,3-DBT). The
top graph is the response itself, the bottom the absolute value of the Fourier transform
of the response. There are two doublets. These result from two hydrogen atoms of the
2,3-DBT. It is much easier to read the lower graph than to puzzle out the structure from
the upper one.
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Ficure 8: Schematic of an earth model of a surface layer of depth & over a half space. The wave
propagates from left to right. The parameters are represented by a, B, p.
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Ficure 9: For each frequency, the points give the velocity at which the dynamic spectrum is largest.
The line is the fitted curve.

Later Ernst (1970) and Kaiser (1970) proposed taking the input X(-) to be random or
pseudorandom and employing a form of cross-correlation analysis. Figure 11 shows 4
seconds of actual response of an experimental sample of 2,3-DBT to binary-noise input.
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Ficure 10: Top: plot of response of a simulated 2,3-DBT molecule to a pulse. Bottom: the absolute

value Fourier transform of the response.

The lower part of the figure provides the square root of the periodogram. As in Figure 10,
two doublets are apparent, but reading their locations is not easy. Since the input X(-)
is available, cross-spectral analysis is a more appropriate tool. Figure 12 provides an
estimate of the modulus of the transfer function of the system,

|fo(7»)|
Hx )

where fyx(A) is obtained by smoothing the cross-periodogram

@n7)~! (Z Y(t)e—”“) (mee”“)

an
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Ficure 11: Top graph: response of 2,3-DBT to white-noise input. Bottom graph: absolute value of

the Fourier transform of the response.
with f”xx(-) a similar smoothed periodogram of X(-). This figure is much nearer to the

ideal of Figure 10.
In fact there exists substantial theory concerning the NMR phenomenon. In particular
it may be described by the Bloch equations, which take the form
das(t
# = a+AS() + BS(HX (), (12)
13)

Y(t) = Re{c"S(n)}
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FiGure 12: Graph of the statistic (11).

for S(-) a 16-dimensional state vector with complex entries, and X(-), Y (-) corresponding
input and output of the system. The parameters of interest are entries of A, B. The vector
¢ is given by the experimental setup. The parametrization of A, B is provided by the
chemist.

The estimation problem may now be approached by nonlinear regression. For given
A, B and initial state S(0), the solution of (12) may be determined numerically in the
case that the input X(-) is piecewise constant, as it is here. Then the parameters may be
estimated by putting the data Y(-), t = 0,...,T—1, up against the value determined from
(13) and the numerical solution. In this way one obtains estimates and associated standard
errors. Further details on this work may be found in Brillinger and Kaiser (1992).

3.4. Discussion.

These examples each involve a progression from a naive (spectral) analysis to a
likelihood analysis founded on substantive subject matter. This last leads to efficiency,
uncertainty estimation, and the ability to make general statistical inferences.

Because of the complication of the basic circumstances, it seems necessary to collab-
orate with substantive scientists on these problems. In these cases it was not the data
analysis that suggested the model, rather it came from the scientific background.

4. FUTURE PROSPECTS

So what is ahead for spectrum analysis in the pot of gold at the end of the rainbow?
Spectrum analysis has already found many uses, and there are quite a number of questions
it can address. John Tukey, for example, has emphasized its role in the discovery of
phenomena; see Tukey (1966, 1980). Tukey (1980) contains other speculations on the
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future of time series. Brillinger (1987) mentions a variety of specific problems related to
Fourier inference. They are repeated below and some additional ones added.

Turning to future possibilities, there are near-immediate generalizations of the vast
majority of time-series techniques to other types of “function” data, such as images,
point processes, moving surfaces, and tesselations.

One can speculate on various aspects of contemporary and future research on the
spectrum analysis of time series. Many times it has been said that statistical spectrum
analysis is part art and part science. The need to be an artist is likely to diminish
as automatic bandwidth selection algorithms are developed, analagous to those coming
into use in density and nonparametric regression estimation. For making inferences it is
necessary to have some indication of the sampling variability of the statistics computed.
Various jackknife, perturbation and bootstrap techniques are under development. It will
be some time before that research is finished, for procedures will be required for infinite-
dimensional parameters and nonstationary series. In connection with nonstationarity, it
may be remarked that effective procedures for estimating spectra from short stretches of
data are needed, because many series appear to be at most locally stationary. Perhaps those
estimates will come from semiparametric approaches involing both finite- and infinite-
dimensional parameters. An examination of the contemporary literature shows much work
being carried out on non-Gaussian series, on long memory series, on nonlinear models,
and on self-similar processes. Finally, new scientific devices, such as lasers and nonlinear
crystals, are leading to high-quality data sets with unusual inference problems.

Some particular research problems related to the topics of the paper are:

. Diagnostics, influence, robust/resistant procedures.

. Missing values, quantization, jitter.

. Estimation of dimension, e.g., by AIC.

. Inverse-problem formulations, e.g., ridge regression.

. Local asymptotic normality, contiguity.

. Adaptive procedures.

. The absorption model.

. Signal-dependent noise.

. Law of the iterated logarithm, large deviations, rates of convergence for the
estimates.

10. Random-effects models.

11. Vector-valued cases.

12. Partially parametric formulations, e.g., the periodic case.

13. Models for point-process and telegraph-signal cases.

14. Expansions for distributions.

15. Distributions of test statistics, e.g., of

O 00 AN HA WN —

T-1 .
Z p‘e_lMY(t)
su}? =0 —
P,
Z p2t
=0

or of

sup min {IT(\), IT(W), I"(L+p)}.
Ap
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Properties of the estimates when the model is untrue.

The broadband-signal case.

Parametric analysis of the frequency case.

Approximate distribution of the likelihood-ratio test statistic for the presence of a
plane wave crossing an array.

Sampling properties of the NMR estimates.

Techniques for handling small amounts of nonstationary data and massive amounts
of regular data.

Uncertainty evaluation for the non-i.i.d. case.

Errors in variables.

Irregularly observed values.

Parametric models for nonstandard processes.

Asymptotics when the parameter dimension tends to infinity.
Characterization of covariance and spectrum functions for 0-1-valued series.
Characterization of the spectrum of a stationary point process.

Properties of i.i.d.-motivated techniques in dependent cases.

Aliasing regions for higher-order spectra of stationary spatial processes.
Simulation of processes with given higher-order spectra.

Combination of groups of experiments.

Populations that are mixtures.

Design, e.g., of NMR input.

Study of causal networks of general processes.

Less-biased estimates of coherence.

Detection of long lags between series.

Properties of empirical Fourier transforms of unusual processes.

Stable algorithms for fitting ARMAs.

Employment of contemporary optimization methods.

Special models for abstract-valued processes.

Automatic determination of bandwidth parameters.

Modelling of wildly nonstationary values, e.g., TV signals or computer tasks.
Analysis of qualitative-valued processes.

How to define “trend” and “period”.

Fast computation of Fourier transforms for irregularly placed data.
Assessing goodness of fit for process models.

Measuring association of abstract-valued processes.

Strong approximations for statistics based on process values.

Detecting change in, or the presence of, a signal.

Incorporation of symmetries and invariance.

Analysis of censored data.

Improved estimates.

Relating processes observed at different locations.

Study of multivalued random functions.

Statistical aspects of determining g(-) from V(-) in (1), including the case when
V(0) is unestimated.

5. CONCLUSIONS

Statistics has long had an intimate connection with the physical sciences. Some statis-
tical concepts, like the spectrum, have been motivated by physical considerations; others
have arisen abstractly and gone on to influence practice. (The cross-spectrum and bispec-
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trum might be mentioned as examples of the latter.) Statistics researchers benefit from
looking towards science for suggestions of new concepts and techniques. There is often
a further bonus: the scientific circumstance suggests a path towards a solution. Students
are often surprised that statistical concepts have direct physical interpretations.

This paper is part historical and part contemporary collaborative research material.
One learns from history. In the case of the present topic one sees the important ideas
of spectrum, direct spectrum estimate, and FFT missed for a number of years. [For a
discussion of the FFT case see Heideman et al. (1984).] It is important to know the
past; otherwise gems are missed. Further, history can be a stimulating pedagogic tool for
introducing the important concepts and ideas, and often the independent reader will find
the original writers much clearer than the later ones.

The applications had in common that a spectral analysis started the investigation, then
substantive subject matter was employed to develop a conceptual model and a likelihood
analysis carried out to complete the work.
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