7o

DEVELOPMENTS IN STATISTICS, VOL 1

Comparative Aspects of the Study
of Ordinary Time Series
and of Point Processest

DAVID R. BRILLINGER

DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA AT BERKELEY
BERKELEY, CALIFORNIA

AND

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF AUCKLAND
AUCKLAND, NEW ZEALAND

1. Introduction 34
1.1.  Time Series and Some History of Their Study 34

12. Point Processes and Some History of Their Study 3

. 1.3.  Some Notation kL]
2. Foundations 39

21  Formal Definitions of an Ordinary Time Series 19

22, Formal Definitions of Point Processes 44

23, Other Formal Definitions 52

24,  Parameters for Ordinary Time Series 55

25  Parameters for Point Processes 6l

2.6, QOperations on Time Series (2]

27 Operations on Point Processes 73

2% The identification of Time Series Systems 79

29, The ldentification of Point Process Systems 84

2.10. Some Particular Time Series 90

211, Some Particular Point Processes 94

3. Inference 112

! - 3.1, Linear Statistics for Ordinary Time Serics 112
3.2, Linear Statistics for Point Processes 1ES

13, Quadratic Statistics for Ordinary Time Series ti7

34,  Quadratic Statistics for Point Processes 119

3.5 General Parameter Estimation for Ordinary Time Serics 21

36 General Parameter Estimation for Point Processes 25

References 128

+ This research was partially supporied by the 1. 5. Guggenheim Memorial Foundation
and National Science Foundation Grant MCS76-06117.

33

Copyright 4 FT8 by Acadomie Prews, bne.
Adl rights of reproducton i any form reserved

FSBN 0-12-4266 050



34 David R. Brillinger

1. INTRODUCTION

Both the literature concerning the subject of ordinary time series analysis
and that of point process analysis are large and are rapidly growing. The
following books may be mentioned: Bartlett (1966), Whittle (1963), Roz-
anov (1966), Box and Jenkins (1970), Hannan (1970}, Anderson (1971),
Koopmans (1974), and Brillinger {1975a) in the case of ordinary time series,
and Harris (1963), Cox and Lewis {1966), Kerstan et al. (1974), Srinivasan
(1974), Snyder (1975), and Murthy (1974) in the case of point processes.
Generally speaking, the literatures of these two subjects have developed quite
independently of each other, although Bartlett (1966) and Brillinger (1972}
are exceptions. There are many similarities between the two subjects and it
appears that each can benefit from a consideration of the methods of the
other. The intention of this chapter is to indicate cases in which the concepts
and procedures of ordinary time series (or point processes) have direct
analogs in the study of point processes (or ordinary time series). Certain
cases in which one subject has unique facets and there are no apparent
immediate analogs will also be mentioned. There are gains to be had from
adopting a unified approach. Indeed, nowadays data are being collected that
are hybrid, part ordinary time series and part point process (e.g., see Bryant
and Segundo, 1975), so some unified method of analysis is clearly called for.
The structure of this chapter is one of parallel sections indicating corre-
sponding results for ordinary time series and for point processes. The reader
is generally referred to the original literature for detailed statements of
theorems and most general results. About half of the material was presented
in lectures to graduate students in mathematics at the University of Auck-
land during March to July 1976. Alan J. Lee made helpful comments con-
cerning the manuscript. :

1.1. Time Series and Some History of Their Study

The general phenomena studied and recorded by scientists depend on
time. In many circumstances this dependence on time may be ignored. The
intent of this work is to study phenomena that depend on time in an essen-
tial manner. Measurements corresponding to continuous real-valued func-
tions of time are called time series and are denoted by X{t), 0 <t < w0,
assuming their domain of definition may be thought of as the interval [0, ).
Simple examples of time series include the current at a particular junction in
an electric circuit as it varies in time, the displacement of the needle of a
seismometer from its rest position as a function of time, the temperature at a
given location on the earth’s surface as a function of time, and finally the
height of a sea’s surface along a given parallel of latitude as a function of
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longitude. {In this last example the “time™ parameter is really a distance
parameter.) The books mentioned in Section | may be consulted for specific
references to a wide variety of interesting time series.

The scientific analysis of time series has a very long history. It may be
thought of as having commenced in 1664 when Issac Newton decomposed a
light signal (or time series) into frequency components by passing the signal
through a glass prism. A multicolored image was cast upon an opposite wall.
He called this the spectrum. This analysis corresponds to the bandpass
filtering operation discussed in Section 2.6. Newton did not carry out a
quantitative analysis of his time series. However, in 1800 W. Herschel did, by
using thermometers. He measured the average energy in various frequency
bands of the sunlight’s spectrum by placing thermometers along that spec-
trum. Mathematical foundations began to be laid in the mid-1800s for the
analysis of time series when Gouy represented white light as a Fourier series.
Later Rayleigh replaced the senies by an integral. In 1881 S. P. Langley
refined Herchel's experiment considerably by measuring the light energy
with a spectral bolometer. (A device that he had invented, it makes use of
electric current generated in a wire by incident radiation.)

in 1872 Lord Kelvin built a harmonic analyzer and a harmonic syn-
thesizer for use in the analysis and prediction of the series X () of the height
of the tide at a particular location and time 1. His devices were mechanical,
based on pulleys. During the same time period a variety of workers (e.g., G.
G. Stokes) were carrying oul numerical Fourier analyses using computation
schedules. In particular, in 1891 8. C. Chandler carried out an analysis of the
variation of latitude with time. His analysis led him to suggest that the
motion of the earth’s pole of rotation was composite, containing compo-
nents of period 12 and approximately 4 months.

A substantial advance in the analysis of time series corresponding to
light signals occurred in 1851 when A. A. Michelson invented the interfer-
ometer. This device allowed the measurement of the average value

:.M [X(1) + Xt + ] s“ \q (LL1)

for large values of T and nominated values of the lag u. In consequence, it
allowed the estimation of the autocovariance function (see Section 2.4) of the
incident signal. In 1898 Michelson and Stratton described a harmonic analyz-
er (based on springs) and used it to obtain the Fourier transform of the
function (1.1.1). This Fourier transform provided an estimate of the power
spectrum of the signal. Michelson envisaged the signal as being a sum of
cosines. He saw the estimated spectra as descriptive statistics of the light
emitting sources.
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In 1894 M. 1. Pupin invented the electric wave filter {also a sort of
bandpass filter). This device considerably broadened the frequency domain
over which time series could be analyzed. The power of an clectric signal
could now be measured in a range of frequency bands.

In a series of papers written during the years 1894-1898, A. Schuster
proposed and discussed the periodogram statistic

T 2
hM, exp{— it} X(1) (1.1.2)

_u.mm& on an observed stretch of time series X(t),t = 1,2, ..., T. His motiva-
tion was a search for *hidden periodicities.” In the succeeding years period-
ograms and their equivalents were computed for a variety of phenomena
by many workers.

In 1922 Crandall and MacKenzie at Bell Telephone Laboratories used
resonance tubes to measure the energy distribution of speech as a function of
frequency. Once again, the frequency domain over which phenomena could
be studied was usefully broadened. Also during the 1920s time series of
turbulent flow were investigated by G. I. Taylor (who may have been the
first to define the autocovariance function of a time series). Certain of
Taylor’s methods were applied 1o meteorological series by G. Walker.
During the 1920s and 1930s the field of quantum mechanics and its related
form of spectral analysis underwent considerable development.

. In En time period 1930-1950 substantial developments in the area of
time series analysis were provided by N. Wiener, H. Cramér, A. N. Kolmo-
gorov, M. S. Bartlett, and J. W. Tukey. Details of their contributions may be
found in the books mentioned in Section 1.

The range of problems studied by time series analysts covers smoothing,
_.aqonmmm:w, control, seasonal adjustment, detection, parameter estimation,
discrimination of series from different populations, checking for association
cﬁ,.znou series, and isolation of more elementary series. A variety of these
topics are discussed in this chapter.

L2. Point Processes and Some History of Their Study

The preceding section was concerned with phenomena evolving contin-
uously in time. Point processes refer to isolated events occurring haphaz-
ardly in time. A stochastic point process is a random, nonnegative,
integer-valued measure. If [ is an interval of the real line and w is a random
clement, then the values of this measure may be denoted by N{-, w) with
N{l, w) denoting the number of points in the interval I for the realization
corresponding to w. Here the atoms of the measure correspond to a particu-
lar set of points. Throughout this chapter, the notation N(t) = N{(0, {], @)
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will be employed. Then dN(t) refers to the number of points in the small
interval {1, t + dt]

The variety of data that arise in practice and have point process charac-
ter is staggering. Subject areas leading directly to the collection of point
process data include traffic systems, queues, neuronal electrical activity,
microscopic theory of gases, resistance noise, heartbeats, population growth,
radioactivity, seismology, accident or failure processes, telephone systems,
cosmic rays, and fluctuation of photoelectrons. A wide variety of examples
are discussed by Snyder (1975) and in Lewis (1972). A recent paper discuss-
ing point processes in seismology is that of Udias and Rice (1975), and one
in neurophysiology is by Brillinger et al. (1976).

Point process data are typically stored either in terms of actual times of
events (locations of points) or in terms of lengths of successive intervals
between cvents. In the case of points of several types, the data may be stored
separately for each type or by the actual times of events with a “flag” 1o
indicate the event type. Point process data are processed in both analog and
digital manners.

The beginnings of the study of point processes may be found in the
history of population mathematics. J. Graunt (1620-1674) constructed a life
table. Such a table corresponds to the superposition of many independent
point processes, each containing a single point at the time of death of an
individual. Other workers in this area were C. Huygens (1629-1695) and E.
Haley (1656-1742). Much of their concern was over the mean duration of
life, the disadvantages of such a measure, and the calculation of the values of
life annuities. Specific functional forms were proposed for the force of mortal-
ity by de Moivre, Lambert, Gompertz, and Makeham among others. This
early history is described in some detail by Westergaard (1968).

The next area of point process research activity related to the Poisson
distribution and process. The distribution is credited to de Moivre in 1718
and Poisson in 1837 (see Haight, 1967, p. 113). The name of von Bortkiewicz
(1868-1931) is closely associated with the Poisson distribution, especially
because of his use of it to model the frequency of death by horse-kick in the
Prussian Army. The Poisson process was introduced over a long period. In
1868 Boltzmann determined the expression exp{— ut} for the probability of
no points in an interval of length ¢ (Haight, 1967, p. 114), and in 1910
Bateman determined the counting distributions by solving a set of differen-
tial equations (Haight, 1967, p. 120). In 1903 F. Lundberg investigated a
process of which the Poisson is a particular case (see Cramér, 1976}

In 1909 Erlang applied the Poisson process to traffic studies, proposed
the truncated Poisson, and considered the process with intervals made up of
right displaced exponentials (Haight, 1967, p. 121-123). Erlang’s interest was
in building better telephone systems, for example, determining the optimum
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number of circuits. He may be said to have initiated the study of queueing
systems—involving input and outpul point processes corresponding to
times of arrival and departure of customers. Later workers who made sub-
stantial contributions to queueing theory include Molina, Fry, Khinchin,
Paim, and Pollaczek {see Bhat, 1969).

Another class of point processes with a long history of study is that of the
renewal processes. In these the successive intervals between points are
independent nonnegative variates. Lotka (1957) ascribes the first serious
investigation of these processes to Herbelot in 1909. Other historically im-
portant references may be found in Lotka's paper. A modern reference is
Cox (1962).

The work of Bateman, mentioned earlier, was stimulated by problems of
particle physics. The late 1930s saw the commencement of substantial
developments in the modeling of point processes by physicists. Point
processes occur in radioactive decay, in particle bombardment experiments,
and in coincidence experiments among other areas of physics. In 1937 Bahba
and Heitler and simultancously Carlson and Oppenheimer applied sto-
chastic methods to the cascade phenomena of cosmic ray showers. The
Bhabha-Heitler approach led to the Poisson process. Furry criticized it and
proposed a simple birth process instead. This approach was criticized in turn
by Scott and Uhlenbeck who proposed a further model. Explicit details of
this work may be found in the books by Bharucha-Reid (1960} and Sriniva-
san (1969).

A class of point correlation functions was introduced by Yvon (1935) to
study the dependency properties of certain point processes. Later multi-
dimensional product density functions were introduced by Ramakrishnan
(1950) to study the higher order dependencies of point processes. These had
appeared earlier in a specific situation in an article by Rice (1945).

The doubly stochastic Poisson process may be said to have been in-
troduced by Quenouille (1949). The name of D. R. Cox is often associated
with it also. The early history of branching processes, another form of point
process, is described in some detail by Kendall (1975).

A point process may often be characterized by its conditional intensity
function y{t, w). McFadden (1965) introduced this concept and used it to
show that the rate of change of the entropy of a point process may be written

Efy(t, w){1 — log {t, w}}}
Wang (1968) provides an early example of a y(t, @) of nontrivial form.

1.3. Some Notation

It is convenient to collect in this section some of the notation used
throughout this chapter. When a concept is introduced its name will be
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displayed in italics: € means “ is an element of” The semiopen interval of real
numbers ¢ salisfying @ < t < b is denoted (a, b]. If I'is the set of real numbers
{r:re I}, then I + t represents the set of corresponding translated numbers
{r + t:re Il I 1 is an interval, |1} is its length. The set of all real numbers,
{0, o), is denoted by R. If s is a complex number, Re s denotes its real
part; i is ./ — 1. Given two sets, I and J, I x J denotes their direct product
made up of pairs {r, s) with r € I and s € J; log refers to the logarithm base e.
[1;cs a; represents the product of the a; with jeJ. Given Q. with
j=1,...,Jand k=1, ..., K, [Qu] represents the matrix with the ele-
ment Q in row j and column k. The notation N'® means
N(N — 1) - (N — K + 1). When a domain of integration is not indicated, it
is to be taken as the whole space. 3{t) denotes the Dirac delta function with
the property

[ 3)s0) de = £(0)

for functions f(t) continuous at 0.

Turning to probabilistic considerations, 2 denotes a sample space. B(Q)
is the smallest Borel field generated by certain of the subsets of Q) (e.g., when
Q has a topology, by ali open sets). P denotes a probability measure with
values P(4) for A € B{Q). Integrals with respect to P are given cither by
[ f(w) dP{w) or { f{w)P(dw). Given a random variable Y(w), its expected
value is denoted by EY(w) (or by EY when there is little chance for confu-
sion). Its variance is var Y. The covariance of two random variables is
written as covlY,, Y;}. The joint cumulant of K random variables is
cumiY,, ..., Yx}. A stochastic time series is a function-valued random var-
iable X({t, w), t € R, w € Q. It is sometimes denoted by X (t} and sometimes
by X. when confusion seems unlikely. A stochastic point process is a non-
negative integral step-function-valued random variable N{t, w), t€R,
w e Q. On occasion it is written as N(t) or N. Differential notation is often
used with dN(t) = Nft + dt) — N(t} for infinitesimal increments dt. When 6
is a parameter, { stands for an estimate of 0. T means the length of the time
period of observation of a time series or point process. In asymptotic studies,
T — 0.

2. FOUNDATIONS

2.1. Formal Definitions of an Ordinary Time Series

Several approaches are available to the theory of ordinary time series.
The intent of each approach is to provide a structure within which one can
manipulate and deal with real-valued functions X (¢) for ¢ in some index set.
[In this work the index set is the interval [0, co)and it is assumed that X () is
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a continuous function of t.] The various constructions allow the definition of
certain useful parameters.

One means of proceeding is to consider a function of two variables
X(t, w), with ¢t in {0, 0) and @ in Q, where (Q, B(Q), P) is a probability
space, X(f, w} is a measurable function of w for each t, and X(t, w) is a
continuous function of t for almost all w. The section X (-, w) for fixed w is
called a realization or trajectory of the stochastic time series X. In this setup
X(-, w) may be regarded as a random continuous function. An example of
proceeding in this manner would be to define

X(how)=pcos(Mt+w), 0O0<t<w

where p, A are fixed and « is a uniform variate on (—n, n). A more com-
plicated example would be a diffusion process defined through an integral
equation involving Brownian motion,

A second means of proceeding is to imagine a collection of consistent
finite-dimensional distribution functions

mﬂ.kA.KT..:\ﬂkw ~—......:ﬂv ANmmv
— 0 < Xy .o Xg <0050y, ., 1y < 00, with {2.1.1) thought of as being
Prob{X(t,) < x,, ..., X{tx) < xx} (2.1.2)

The Kolmogorov extension theorem now indicates the existence of a prob-
ability space (€, B{Q2). P} and X({, w), 0 <t < o0, w € Q, such that (2.1.2)
equals (2.1.1) for all 1, ..., tx, K=1,2, ..., with X(¢)= X(t, -). Further
conditions must be set down in order to ensure that X (-, w)is almost surely
a continuous function. An example of proceeding by this approach is when a
Gaussian process is defined by stating that all the finite-dimensional distri-
butions of the process are consistent multivariate normals.

A third means of proceeding is to imagine being given [0, oo) as the
space of continuous functions on [0, o), with an appropriate Borel field of
sets for the function space, and then to assume the existence of a probability
measure on the space. In terms of the previous notation, & = C[0, «c}. Many
useful theorems have been developed for this structure. This approach is
considered by Billingsley (1968) and Nelson (1959) for example.

In some circumstances one proceeds through conditional distribution or
transition probability functions, for example, by assuming the existence of
the functions

Prob{X(t)e A|X(t,), ... Xlts)s 0=ty <ty < <tx< 1 (213)

for A in (—o0, o), K= 1,2, ..., and of an initial probability function
Prob{X{0) € 4]
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This is the usual means by which a Markov process on [0, oo} is defined. It
may be used to define an autoregressive scheme of finite order also. Far-
reaching generalizations of the notion of studying processes through condi-
tional variates are given by Schwartz (1973) and Knight {1975).

Another means by which a stochastic time series may be characterized is
through its characteristic functional {or, equivalently, the distribution of a
broadly defined linear functional). The characteristic functional is discussed,
.2, by Bochner (1960) and Prohorov (1961). It may be thought of as being
given by

C[¢] = E exp “m [ ewx) &“ (2.1.4)

Provided a functional C[- ] satisfies certain regularity conditions for £(- }in a
sufficiently large function space, there is a corresponding time series. One
thing needed is consistent characleristic functions for all finite-dimensional
distributions. Stable processes are usually defined through the characteristic
functional {see Bochner, 1960).

As a final means of introducing stochastic time series, consider the class
of harmonizable processes. This is made up of series of the form

X(tw)=|  expfile} dZ(4, w) (2.15)

for Z(4, w) a complex-valued random process, with the integral of (2.1.5)
defined in a probabilistic manner {e.g., as a limit in the mean of approximat-
ing Stieltjes sums). Harmonizable processes are discussed by Loéve (1955,
p. 474). X(t, w) is seen to be a linear function of Z(4, w) so its moments can
be given directly in terms of those of Z(4, w). This manner of introducing a
time series proves especially useful in the case of stationary series.

By a stationary time series is meant one with the property that the char-
acteristics of finite collections of its values

IX(+uy) . X (0 + ug)) {2.1.6)

do not depend on tfor 0<t+uy, ..., t+uxy<ocand K=1,2,.... In
particular, the finite-dimensional distribution of the variate (2.1.6) should
not depend on t. In the stationary case there arc alternative ways of
beginming.

One is 1o suppose that a probability space (Q, B(Q2), P}is given as well as
a semigroup of measure-preserving transformations of ). Then the series is
constructed through setting

X{t, w) = Y{U,w) (2.1.7)
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for some random variable Y(w), with U,, 1 € [0, o0), the generator of the
semigroup. This approach is discussed, e.g, by Doob (1933, p. 507). It is
apparent that (2.1.5) implies, for example,

X{t + s, w)= YU Uw)= X(t, Uyw), t,s=0

Immediate ways of constructing stationary time series include beginning
with a consistent family of finite-dimensional distributions that are invariant
under shifts {u,, ..., ug)— (¢ + uy, ..., t + ux) or beginning with a charac-
teristic functional C[-]} unaffected by the transformation {(t) -~ &(t — u),
0Lt +uw

An important means of introducing stationary time series is through the
spectral representation (2.1.5). One can assume that the characteristic func-
tional of the process Z(4, w), namely

E exp “M ._. £(A) dZ(A. é“

is invariant under the transformations &(4)-» &(4) exp{idu} or that the
process is determined by its moments and the moment measures

E{dZ(A,) - dZ(Ax)} (2.1.8)
are concentrated in the hyperplanes

L+t Ae=0, K=12..

Fach of the preceding approaches has been stochastic in character. An
observed stretch of time series is to be thought of as a segment of some
realization of a stochastic process. Wiener (1930) introduced a structure
based on single nonstochastic functions. For a given function X(1).
0 <t < oo, limits such as

lim :.“.XS&“\H lim __. _ﬁ.x: + 5&3&“\41

F=x T ﬁ

are assumed to exist {and in the case of the latter to be continuous at 0). This
approach goes under the name of generalized harmonic analysis.
Throughout this section, the basic time domain has been taken to be the
semi-infinite interval [0, ov). In the stationary case, the series may always be
extended to be stationary on the whole line (— 0, o). One simply takes for
the finite-dimensional distribution at any collection of time points
-l < by <ty <t <ty < 0o, the distribution at 0, £; — ), ..., Ik~ 1,
The Kolmogorov extension theorem then indicates the existence of a process
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defined for —oo <t < oo, The extemsion of a discrete time series
(t=0,1,2, ..) is considered by Breiman (1968, p. 105). An alternative
means of carrying out an extension in the case of continuous time 15 pre-
sented by Furstenberg (1960).

This section concludes by mentioning that certain function spaces pro-
vide important representations of time series. To begin, consider a time
series X{t, w) having finite second-order moments. Then L,(X; 1) is defined
to be the closed linear manifold spanned by the values X{u, w) with u <!
and the norm of an element U taken 1o be E|U |*. That is, it is the smallest
Hilbert space which contains ali random variables of the form

ﬁ._k.:-. Ev.*.....fhkk.ﬂ:n, Q.-v

for real numbers ¢, ..., cx, for ty, ..., txy s t,and K= 1, 2, .... The spaces
L,{X; t} are most uselul in problems concerning linear prediction. They are
all contained in L,(X)= Ly(X, o0). Using these spaces Cramér has
developed many important properties. Cramér’s work may be found in the
book by Ephremides and Thomas (1973). A Gaussian process is determined
by its first- and second-order moments. Consequently, when studying such
a process, it is often enough to consider these spaces L,{X t).

In the general case, however, it is often necessary to consider N,{X; t),
the smallest Hilbert space which contains random variables with finite
second-order moment and of the form

g(X{ty). .- X(tx))

for t,..... tx <tand K =12, ... (see Parzen, 1962). The space N{X; t)is
contained in L,{Q) = N,(X; ov)for each 1. It is especially useful in problems
concerning nonlinear prediction.

Before indicating the next class of function spaces, it is necessary to
mention the existence of reproducing kernel Hilbert spaces. Let Riy, ) bea
real nonnegative definite function on the product space ® x ®, for some
index space ®. Aronszan {1950) has shown the existence of a Hilbert space
H(R) of real-valued functions f{¢). ¢ in @, with the following properties: (i)
R{-. ¢) belongs to H(R) for each ¢; (i1}if { , ) denotes the inner product of
H(R). then /(- 1 R(-, ¢)> = f(¢)for every fin H(R ): (i) H{R)is generated
by linear combinations, and limits of these, of the functions R{-, ¢), ¢ in ®.
This space, H(R), is called the reproducing kernel Hilbert space correspond-
ing to the kernel R. Some of the reproducing kernel Hilbert spaces important
in time series analysis include those corresponding to (a) ® = [0, w) and
R, @)= E{X (W)X ()} {see Parzen, 1959). The members of this H(R) have
the form E{UX(¢)} with U in Ly(X). (b) ® = {$(t) for suitable ¢(-)} and
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R(p. ¢) = E expli § X(0)[W(t) ~ ¢p(e)] dt} = Cly - ¢] (sec Hida, 1970). (c)
© = {(do. ¢1(t,) P2ltys £2) d3lty, 12, 13) ..} and

RW. 9)=F [ [ Wslsi s sdxltns oo ta)

Tk

x mﬁkﬁhmv e kAthkAN—v e Xﬁmhx ﬂ&,.m— i &h.‘ &q_ e th ANMQV
in this case and when the series X is determined by its moments, H(R}) is
congruent to L,{Q) = N,(X, wo}

Hida (1960} used the reproducing kernel space of (a) to show that purely
nondeterministic series may be represented as

N
X@W)=Y | gdt u)dz(w) (2.1.10)
i=1 "~
where N (< o0) is the multiplicity of X (t), the dz,(u) are mutually orthogonal
random innovation processes, and the g;(r, ¥) are nonstochastic. The rep-
resentation (2.1.10) is useful in that the best linear predictor of the value
X(t + h), h > 0, based on {X(u), u < t} may be written
N !

S [ e +hu)dzu)

i=170

2.2. Formal Definitions of Point Processes

There are a number of approaches to the foundations of point processes
and certain of these correspond directly with the preceding constructions for
ordinary time series. Once again assume that the time domain is [0, o0}
Assume also that the processes have no multiple points.

Initially, consider a probability space {2, B{Q), P)and take a (stochastic)
point process 1o be a function N(t, @), 0 <t < o, w in £, with N(t, w) a
measurable function of w for each ¢; N(0, w) = O or 1 (depending on whether
or not there is an initial point at the origin}); for each w, N(t, w) is finite,
nondecreasing, purely discontinuous but right continuous, with unit jumps.
This is one way of defining a point process.

Instead of dealing with functions in 1, another means is to deal with
atomic measures and to consider N{I, w), I € B{0, ), w € Q, with N{I, w)a
measurable function of w for each I; and for each w, N(-, w} is a measure
with discrete support and mass 1 at each point of the support. The N{t, w}of

the preceding paragraph may be determined from this N(-, ) through the
correspondence

N(t, ) = N([0, }, ) (2.2.1)

Comparative Aspects of Grdinary Time Series and of Point Processes 45

The correspondence (2.2.1) may likewise be used to deduce N(I, w) from
N(t, w) . o

A procedure analogous 10 the second one of the _u_.mmo,d_:m section is to
assume a consistent family of finite-dimensional probability functions

Flrgsoong i 1) (222)

forny, ....ng =0, 1,2,...;bounded I, ..., Ixin B[O, o0}, K = 1,2,...,tobe
thought of as giving

Prob{N(I,) = i, .-, N{Ix) = n&} (2.23)

Consistency now includes requirements necessary for the realizations of the
process to be a measure such as, for disjoint Iy, 13,

\.?_.:?:mw:L??CMLH_ il n +ny=ny

=0 otherwise

(see Jagers, 1974). The Poisson process is usually defined in this particular
manner. . B .

When they exist, the infinitesimal probability functions, or product
densities,

ﬁRAh—q Sy m—nv Rnp T &nk = mU—.Qﬁvm&»Z.Amnvuﬂ r ey &zﬁnkv“ ~v AMAN.&V

ty, ..., tx distinct, corresponding to (2.22) and (2.2.3), often prove very
useful and even characterize a point process under certain conditions.
(However, there are examples of distinct point processes .ww,::m ,.wn same
product densities; see Ruelle, 1969, p. 106.) Product %:2.:.8 are a_%:mm&.
e.g. by Macchi (1975) and Brillinger ﬁﬁ.m.&. The conditional Poisson of
Macchi (1975) is defined via product densities. . .

A surprising result concerning the theory of point processes IS that point
processes N(I, w), without multiple points, may be characterized by their
zero probability functions

(I} = Prob{N(/, w} = 0} (2.2.5)

for bounded [ in B[0, ) (see Kurtz, 1974; uumm_.m_._wqﬁ. Given m.?:cm_wm
#(!) on B[O, o) satisfying certain conditions, there s a noznmmcmnsm vo_u:.
process satisfying {2.2.5). Equivalently, one only :oenm to specify f 6,.. .0
I,,.... Ix) of (2.2.2) for finite intervals Iy, ..., I in order to specify the
process. For example, the Poisson process with parameter measure u(l) may
be characterized as the point process with

$(1) = exp{— 1)}
for bounded I in B[O, co) (see Renyi, 1967}
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The zero probability function and product densities are related through

o(1) = _,M._‘. Armw;”f%__ *h Plty, .o ) dry oo dyy

=g
py(t)de =1 — $lt. t + di)
palty, ) diy diy = 1 — ey, 1y + dty) — Bl 1; +d1y)
+ @(lty, ty +dty)or (1, 1; + dty))
pilty, ... tx)dty - dtg = (~ 1Ay, - Ay (D)

where A, ¢(1) = (1 of (¢, t + dr}) — ¢(I} and & denotes the empty set (see
Kurtz, 1974).

A point process may also be characterized by giving a probability gener-
ating functional G[¢], to be thought of as

G[¢] = E exp "._. log &(t) %3“ (2.2.6)

satislying certain regularity conditions (see Daley and Vere-Jones, 1972,
Theorem 3.10). This is the way the Gauss-Poisson process is defined, for
nxm._ﬁ_u_o (sce Milne and Westcott, 1972), as well as the infinitely divisible
point process. The probability generating functional may be written out in
terms of the product densities, specifically

Gle] = Mm; ) = 1) ) - Dt ) dy e (227)

{e.g., see Vere-Jones, 1968). The finite-dimensional distributions of (2.2.3)
may be determined from G[£] by setting
ey=z,  for

=1 otherwise

tin I,

and then determining the coefficient of z}' -+ z3¥ in the Taylor series expan-
sion of the functional.

An approach to the foundations of point processes which is related to
those just given, but yet has a somewhat different character, involves taking
Q 10 be the set of all locally finite subsets, w, of [0, c0). A stochastic point
process is then defined 10 be a probability measure on € or, equivalently, a
measurable map from a probability space into (2, B(2)). The connection
with the previous approach is indicated by setting

N(I, @) = card(l N w)

for I in B[O, ) and w in Q. The individual elements of the subsets are called
points of the process.
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Because points on the real line are ordered, it might be desired to
consider. instead of the space of the preceding paragraph, the space
T = {te e In): 0 <o <1y <0 < Ty < 003 N=12..} and to
consider a stochastic point process 10 be a measurable map into & froma
probability space (Q, B(Q), P} A realization of the process can then be
denoted to(w), T5{w), ..., with the 7,(w) the points of the realization. The
connection with the previous approach is seen through setting

N(I, w) = the number of 7{w)in /

In the reverse direction one has the following connection: t,{w)is the t such
that N[0, t) = j < N[O, t} If e{t] denotes the point measure of mass 1 at ¢,
then an alternative way of writing the realizations of the process is

NG, @)= T eft o))

Turning to specific descriptions of the probabilistic structure of the
process within this last framework, the process may clearly be described by
the finite-dimensional distributions of the discrete process {1o(w), T3(@)
1,{w), ...} or by the conditional distributions

(2.28)

Macchi (1971) gives the joint probability density [unction of the g successive
points following t being at t, <t < " <[, a8

I, “. '. P.:A:. coa g ey :L du, - du, AN.N.E

(g
This expression may be determined directly from the probability generating
functional {2.2.7) by using it to evaluate

Prob{N{t, t;)= 0, dN(t,) =1, N(t,, t;)=0,dN{r;)=1, ..., dN(t,) = 1}

A further space to consider is [0, c0) x ¥ where Y ={(yy s W)
0<y,....ynvs N=1,2,...}. These y terms are to be thought of as the
distances between successive points of a realization of a stochastic point
process, y; =1, — T;.1. i = L, 2, .... The individuat points of the process
may be reconstructed from 1, and the y; through the relationship 1; = 1o +
YA Hyai=h 2, Defining a measurable map from a probability
space {Q, B{Q), P) into {0, o) x ¥ is now seen to be a further means of
constructing a stochastic point process. A realization of the process is now
denoted 1o(w), yi(@), ya(w), .... This is the means by which a rencwal
process is generally constructed, or the Markov interval process studied by
Vere-Jones (1975a), or the autoregressive model of Gaver and Lewis (1976)

Given a stochastic point process N, certain conditionat probabilities, the
Palm probabilities, are occasionally important. These are conditional prob-
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abilities given that a point of the process occurs at a particular location, and
may be denoted by

P(A|t) = Prob{A |1 is a point of the realization}

for events A in B(2). P(4|t) may be defined as the Radon-Nikodyn deriv-
ative of the relationship

.ﬁ N(I, w) dP(w) = b P(A]1) du(t)

for I in B[O, «c), A in B(Q), and where u is the intensity measure of the
process (see Jagers, 1974, Section 6). These probabilities may be chosen such
that for all 1, one has a corresponding point process which will be denoted by
N( |t). In fact the original process N is determined by the specification of
P{A]1) and p. For example,

Prob{N(l) = k} = n _ Prob{N(I|t) = k} QSV \k (2.2.10)

for k=1, 2, .... It is clear that the zero probability function of N may be
determined using expression (2.2.10).

The product densities of the process N( |r} may be determined directly
from those of the process N, namely

Pty oo telt) = Pt ths s )/Pa(2) (2.2.11)
Its probability generating functional is therefore given by
Gleld =Y (kY [ [ €)= 1) @) - 1)
X Praafl Ly ooy ) dty - d/p,t) (22.12)

It follows from (2.2.9) and {2.2.12} that the joint probability density function
of g successive points being at t, <1, <--- <1, following an immediately
preceding point at ¢ is given by

Pl

(see Macchi, 1971).

By analogy with the transition probability functions of (2.1.3), one might
be led to consider a conditional intensity function y(t, w) defined by

ProbldN(t) = 1| #,} = y(t, w) dt 2.2.13)

where #, denotes the Borel field generated by the variates N{u), u < t. Such
a y{t, w) need not always exist {an example of nonexistence is given by Segall

1 -1
Mi.ﬁ ‘P:f._ﬁ, [ STIRUPIRY I T 2&&:_ - duy
’ :.rv..
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and Kailath, 1975); however, when it does exist it often provides a very
useful variate. If A is an event of &, then from (2.2.13)

ProbldN(t) = 1] A4} = b +lt, ©) dP(w) dt/Prob{A)

and so

Prob{A |dN(t) = 1} = r 1it, ) dP(w) | [pi0) (2.2.14)
where p,(¢) is the intensity of the process at :a.ﬁ.m The left-hand m_an. of
(2.2.14) may be interpreted as the Palm Eeg&::.c..cﬁ_; Expression
(2.2.14) indicates that the probability measure P(A|t) is absolutely contin-
uous with respect to the probability measure P over F, and :._o Radon-
Nikodyn derivative is y{t, @)/p,(t). (In the stationary case this result is

developed by Papangelou, 1974.) .
In the case in which the distributions of (2.2.8) are absolutely continuous

Yt 0) = —gnlts 1 J < NE)YGupt; 1o j < N(t))

- uw_om Gults 730 < N(E)) (2.2.15)
‘.o—. .ﬂZA:\:w MM A .ﬂ.ﬂc— ﬁ.—.—ﬁw
Gilt; ¢y, j<J)=exp ﬂl ‘ y(u, w) mzv (2.2.16)

{e.g., Snyder, 1975, p. 245). An important use of the conditional ES:&Q is
in calculating the joint probability function for the number n.v*. points in an
interval [0, T] and their locations. From (2.2.16) the expression is
T T .
exp 01_ yit, @) de + [ log ¥(t, @) dN(t, ev“ 2.2.17)
o Mt
(see Rubin, 1972; Vere-Jones, 1975b)
Defining

I(1, w) = E{N@Q)| #.i = _a_ y(u, w) du

ingate. This occur-
the process Nit, ) — I'(t, w) may be scen to be a martinga .
Esow {eads to many useful results (see Chou and Meyer, 1975, Segall and
Kailath, 1975). Among the results is the fact that the process N may be
iransformed into a Poisson process N* by the random time change

)= inf{r: () > u)
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Specifically, the process N*(u)= N(F~'(u)) is Poisson with rate 1 (see

wﬁuﬂm..a‘ 1974; Meyer, 1971; Aalen, 1975; Papangelou, 1974). In fact, the

Mwmm__mﬁmwm strongly suggested by expression (2.2.17) and may be seen from
The product densities px(-) of (2.2.4) may be determined from y(t, w) as
pelty, - )= Ely(t, o)) 1 E{r{t.. o)|points at ry, ... 6}

1<ksK

A.mno mmuﬂnm, 1975, p. 275). In particular the intensity or rate function is

simply given by Ey(t, w).

The conditional intensity function, as defined by (2.2.13), was based on
#,, the Borel field generated by {N(u), u < t}. On occasion it is convenient
to use a larger wﬁn_ field 4, o #, {see Segall and Kailath, 1975). This allows
one to study point processes that depend, for example, on some signal of
interest.

It is by now apparent that there are many intertwined yet different
uum:mn_‘m.cw _mz&:o_:m stochastic point processes. The particular one
adopted in any given &Em:o: relates to the peculiarities of the situation.

In the case in which the process is stationary, certain simplifications

occur. ,_.r.n joint probability functions of (2.2.2) are now invariant under
shifts of time:

.\,AZT..;;RP Nn ..Tm...,‘m_—n+hv..lh.\.Aan.....akuwu...jﬁﬁw

for _.m.mnr that the intervals I + t contain no negative values. The product
densities of [2.2.4) depend on one less argument

H\:n:-_ ‘..‘mhvﬂ ﬁkc» - mku haey mkt_ - m,ﬂv

The zero probability function is invariant under shifts

oI + 1) = ¢ll) (2.2.18)

fort m:n: that I + ¢ contains no negative values. The probability generating
functional {2.2.6) now has the property

G[$'¢] = G[¢] (2.2.19)

1&“% §'&(u) = &{t + u). Conversely, invariance as in (2.2.18) and (2.2.19)
implies stationarity of the corresponding process.

,._,:n process has so far been considered to have domain [0, ). As in the
ordinary time series situation, in the stationary case the process may be
extended to be stationary on the whole line (—o0, w) This may be
aniozm@mwna by the Kolmogorov extension theorem; alternatively, the zero
probability function may be used to construct the extended ﬂ.qog,ww.
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In the case in which the process is characterized by the location 1, of the
initial point and the interpoint distances yy, ¥z, ---» stationarity has a very
important consequence. Namely, y;, y;. ... i a stationary sequence condi-
tional on the location of t,, i.e., under the Palm measure P( |10 =1t) This
may be seen directly from (2.2.12). General proofs may be found in the
works by Ryli-Nardzewski (1961) and Neveu (1968). In this stationary case,
the Palm measure P( 1o = t) will not depend on 1, and on many occasions
7, is taken to be at 0.

A stationary N may also be thought of as a random counting measure
with the property N{I + 1, w)= N{I, U'w), for a semigroup of measure
preserving U* of Q. Using these maps U', simple expressions may be set
down relating the Paim and unconditional probability measures, namely

P(A]0) = .- : ' LU azsu dP(w)

0

P(A)=ps | “ﬂ_ 1U" ') &“%Ee (2.2.20)

c0

where U' is a typical map, p, the intensity of the process, y; the distance {0
the first positive point, A is in B((2), and 1, denotes the indicator function of
the event A (see de Sam Lazaro and Meyer, 1975, Ryil-Nardzewski, 1961).

A deterministic approach to the foundations of point processes in a
“stationary” case is also available. Consider an increasing sequence of
points 0 ST <t << along the half-line. Let N({t) denote the
number of 1, in the interval {0, t]. One now proceeds by assuming that limits

such as

im N(TYT. lim | _.wzc +u)— N(t)] mzs“ \ T (2221)

T T-vao '

exist (see Brillinger, 1973). The limit in (2.2.21) may also be interpreted as
that of

lim {number of (j, k) with 1; ~ 1, < ul/T

Tvo

Function spaces analogous to those introduced at the end of Section 2.1

are also of use in the point process case. The Hilbert space Ly(N; ) spanned
by linear combinations of the N(u), u < t, is introduced for prediction pur-
poses in the article by Vere-Jones (1974). The space N,(N; t) may be in-
troduced in a directly analogous manner, and also the reproducing kernels.
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The kernel (2.1.7) appears in Ruelle {1969} in a point process version.
Certain ordinary series may be associated with a given point process in a
direct manner, for example,

X(t)= % a(t, ) dN(x)
X()=N(, ¢+ 1]

X(t) = [ exp{—an(e — u)} dN(u)

The last series is discussed in some detail for the stationary case in the article
by Vere-Jones {1974).

23. Other Formal Definitions

The preceding two sections have provided separate discussions of the
foundations of ordinary time series analysis and point process analysis. In
fact, there are several methods by which one may simultaneously lay founda-
tions for time series analysis and point process analysis.

Both types of processes may be discussed as particular cases of the
random additive set functions of Bochner (1960). In Bochner's theory one
deals with random interval functions «(/, ), I an interval of [0, ), w in Q
with {2, B(Q2), P) a probability space, and

all v J, w)=a(l, w)+ afJ, w) with probability 1

for I and J disjoint intervals. The interval representation N{I, w) of a point
process is immediately seen to be of this character. If the ordinary series
X{t, w) is such that

.ﬁ_ E|X{t)] dt < o 2.3.1)

for bounded intervals I, then an additive set function may be associated with
X by setting

all, w) = b X(t) dt (232)

Bochner (1960) develops an extension theorem, defines a charactenistic lunc-
tional, discusses stationarity, and develops an harmonic analysis for such
random interval functions. Brillinger (1972) develops further aspects and
considers the particular case of point processes in some detail.

An essentially equivalent development would result from considering
time series and point processes as particular kinds of random signed measures
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on [0, o0). In fact, a point process corresponds directly toa random measure.
A time series with nonnegative values corresponds to a random measure
through the relationship (2.3.2)

The theories of time series and point processes may be subsumed under
the theory of random generalized functions (random Schwartz distributions}.
Let @ denote the space of infinitely differentiable functions $(t) of compact
support. A continuous linear functional Y{(¢) on 2 is called a generalized
function (Schwartz distribution). A measurable map from a probability
space (Q, B(Q), P) to the space of generalized functions is called a random
generalized function (see Yaglom, 1962; Gelfand and Vilenkin, 1964; Brillin-
ger, 1974). Its image may be denoted Y(4, w). A time series X (1), satisfying
(2.3.1), gives rise to the random generalized function

X(g.0)= [ $X (L w)d, ¢in® (23.3)
A point process N{t) gives risc to the random generalized function

N@.0)=[$()dN(L )  ¢in2 (2.34)

(see Daley, 1969). The generalized function of (2.3.4) may aiternatively be
denoted by

M. 3t — 1)) (2.3.5)

where &(- ) is the Dirac delta function (a generalized function!)and the 7; are
the positions of the points of the process. Further developments in the
theory of generalized random functions include work by Rozanov (1969),
who developed linear prediction theory and defined the space Ly(Y; t)
spanned by the Y(¢, w) with ¢ zero to the right of 1; Kailath (1971), who
considered the reproducing kernel Hilbert space associated with the kernel
R{Y, ¢) = EY(Y, w)Y($, @); and Hida (1970), who considered the Hilbert
space associated with the kernel R(y, ¢) = E exp{iY(y — ¢, o)}

The point processes considered so far are particular cases of marked point
processes. These are point processes with auxiliary values {(marks) associated
with each point. If the marks are constant, a marked point process is equiv-
alent to an ordinary point process. If the marks are real valued, the process
may be thought of as being piecewise constant, but jumping {up or down) by
the value of the mark at the points of the process. If the mark is M at the
point 7;, then the marked point process may be denoted

S M; 50 -1) (23.6)
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a notation extending that of (2.3.5). If the mark M is k-dimensional, then the
marked point process may be thought of as a standard point process with
domain R**', ie., a point process with points at the (r;, M;). A vector-
valued point process may be thought of as a marked point process with the
mark giving the type of point occurring at a given time. A point process with
multiple points may be thought of as a marked point process with the mark
giving the multiplicity of the point. A useful generalized process related to
the one of (2.3.6) is provided by

Y X(1;) 8l ~ 1)) (23.7)

where X({r) is an ordinary time series. The process of {2.3.7) corresponds to
sampling the series X at stochastic times.

Incidentally, if the moments EX(t)* of an ordinary lime series or the
moments EN(t)* of a point process grow more slowly than some power of t
as t — co, then Fourier transiorms of the moments and indeed of the
processes themselves are well defined using the theory of generalized func-
tions. This fact leads to a direct definition of certain useful parameters of the
processes, even in the nonstationary case.

The sample paths of both the time series and the point processes con-
sidered are members of D[0, o), the Skorokhod space of real-valued func-
tions on [0, co) which are right continuous and have left limits. In
consequence, general results, such as central limit theorems, developed for
random variables with values in D[0, oo} will apply directly to the processes
Mo%m:wﬁ.& in this chapter. One general reference is the book by Billingsley

1968

Further, the processes considered are particular cases of processes with a

more general time parameter, for example, of a spatial series

Xty -0 tph

or a spatial point process

ts .o tpin [0, o0)

NI, 1< B, oy

with N(I) giving the number of points lying in the p-dimensional interval 1.
A not so obvious correspondence is the one between random hyperplanes in
R” and random points in the hypercylinder R x [0, 2r) ™! (see Krickeberg,
1974). The correspondence is through the characterization of a hyperplane
by its angles of orientation and distance from the origin.

Processes of structure simpler than that considered so far in this chapter
are often very useful and illustrative. In particular, consider the discrete time
series

X(th), t=0,12,...
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for some k> 0. As h | 0, the behavior of these series comes close to that of
continuous time series. The particular case in which X (th) takes on only the
values 0 and 1 is a simple analog of a point process. This analogy is made use
of by Ryll-Nardzewski (1961), Breiman (1968), and Lewis (1970) for
example.

In the stationary case, both N(t, w) and {5 X (u, w) du are examples of
processes with stationary increments and helices. A variety of useful results
have been developed for such processes (e.g. see Doob, 1953, p. 551;
Yaglom, 1962; de Sam Lazaro and Meyer, 1975; Masani, 1972, including the
definition of Palm measures in the case in which the process is non-
decreasing {see Geman and Horowitz, 1973). Further, in the “stationary ™
case, it is possible to construct a generalized harmonic analysis for individ-
ual generalized functions if so desired {see Pfaffethuber, 1975) Certain
limits are assumed to exist in this development. The resuits may be
specialized to obtain results cither for individual time series or individual
step functions.

24. Parameters for Ordinary Time Series

The preceding sections have been concerned with the complete charac-
terization of time series and point processes. In fact, much information is
often contained in certain simple parameters related to the processes. In this
context parameters will be viewed as quantities providing descriptive fea-
tures of a probability distribution of interest.

Basic parameters of a time series include the moment functions

mlty, ..o tx) = E{X(t,) - X(tx)} (2.4.1)

K = 1,2, ..., when these exist. In some circumstances the moment functions
taken in totality characterizz the distribution of a time series. In terms of the
finite-dimensional distribution functions (2.1.1), the moment function (2.4.1)
is given by

‘ mt ;“ Xy o kkhﬂ!ﬁhkna ..;a&Hau “_.. ees m%v

Under regularity conditions {e.g. E|X (1)}* < C¥, for some finite C and K
sufficiently large), the characteristic functional (2.1.4) may be expanded in
terms of the moment functions:

[ ﬁ.H

Cll= 5 gy [ [ 60 Eodmalts, oo te) dty - dx 242)

K=0

and the individual moment functions may be determined by evaluating the
Gateaux derivatives of C[¢]}. The moment functions are seen to be symmetric
in their arguments from the definition (2.4.1).
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Of the moment functions, those of first and second order, m,{t) = EX(t)
and my(t,, t;) = EX(t;)X (t,), are used most often. m, {t} gives the level about
which the series fluctuates at time t. Its units are those of X; m,(t, t) =
E]X(t)]? gives an indication of the expected magnitude of the series at time
t. The function m,(t,, t,) is nonnegative definite, i.c.,

XX omslty, 1) 2 0 (24.3)
]

.,A.: times ¢; and scalars a;. That {2.4.3) is true is immediate, since the expres-
sion on the left is

E|Y aX(t) N

The functions m,(t} and m,(t,, t,) are most useful in the linear analysis of
time series and in the anlysis of Gaussian series.

In cases in which the values of a series are becoming less and less depen-
dent (statistically) as they are becoming further separated in time, the
moment functions possess certain factorization properties such as

Hm .~=.~+kAa—‘ eyl by + C-...o tyyx + QV

U—w
=myty, . kltsens oo tiak) (2.4.4)

Of course, for an m-dependent series (wherein collections of values more
than m time units apart are statistically independent } expression (2.4.4) holds
without the limit, provided U > m.

The degree of dependence of the values of a time series is more directly
measured by the cumulant functions

exlty, ..., tx) = cum{X(1,), ..., X(tx)} (2.4.5)

when they exist. These are defined, for example, by the functional expansion
£ -.k

log C[¢]= ) Ki % h. oleg) - Sltxdexltys -t} dty - dity (2.4.6)

k=1

Ea. have the property that c(t,, ..., tx) = 0 whenever any subset of the
variates X(t,}, ..., X(tx) is independent of the remaining variates (for a
discussion of this and further properties of cumulant functions, see Brillin-
ger, 1975a). ,m..wn degree of dependence of a time series (or degree of mixing)
may be described by specifying the rate at which its cumulant functions fall
to 0 as the |, | increase.

As in the case of the moment functions, the mean function c,{t)=
EX(t) = m,(t) and the autocovariance function

ety 1) = cov{X (), X{t;)) = myfty, t,) — myfty)my(t;)
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are the ones most often used in practice. The autocovariance function is also
nonnegative definite as

ﬂ:. M_,Un.k?,v ﬁM M. nh.n»nu?..:vwc
¥
The variance function, var X{t) = c,(t, 1), measures the extent of fluctuations
of the series X (¢t} about its mean level ¢,(¢) at time ¢.
It will be seen in Section 2.6 that both the moment and cumulant func-
tions transform in a direct manner when a series is subjected to a linear
transformation. Expressions for the moments and cumulants of polynomials

_in the values of a time series may also be set down, however not so directly as

in the linear case.

The moment and cumulant functions are based on expected values.
There are other expected values, based on time series, of some interest.
Suppose that the finite-dimensional distribution function (2.1.1) is abso-
lutely continuous with density .

SilX g oo Xxs gy ooy tx) (24.7)
Then it may be written as
EB(X (1) — x,) -+ 8(X(tx) = x)} (248)

where () is the Dirac delta function. Expression (2.4.8) suggests how the
density function (2.4.7) might be estimated by using an approximate delta
function. This is useful to do in the case in which it is possible that a time
series has finite-dimensional distributions of a specific form and it is desired
to check this possibility.

Another expected value which has a direct connection with the par-
ameters of point processes is provided by

m? .—h ﬁ.ﬁrvlnv.ﬁkﬁbtn:k.?: wkéa:&_&n

(249)

where X’(r) denotes the derivative of X (r). Expression {2.4.9) represents the
Kth factorial moment of the number of crossings of the level a, by the series
X(t), in the time interval L I gg(xy, .. Xk ¥io -0 Vi Lis ..., Ix)denotes the
probability density of the variate {X{t,), ..., X(tx), X't} ... X ‘(tx)} then,
under regularity conditions, expression (2.4.9) is given by

e

ﬁ.:v .:.ﬁe Yoo ykgalds - @ Ya o Vi s )

x dy, - dyg dty - dig {24.10)
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Matters of this sort are investigated by Leadbetter (1972).
Of course, conditional expected values such as

E{X(t+h)| X u<tl, h>0 24.11)

are very imporiant in prediction theory. Specifically, the random variable V
of {(2.4.11) provides the minimum of

E|X{t +h)— V]

for measurable functions V of {X(u), u <t}. Alternatively, (2.4.11) is the
variate, based on the past, having the highest correlation with X (¢t + h). The
value (24.11} may be viewed as a limit of expected values based on
the conditional distributions (2.1.3). Were the process Markov, these would
simplify. In addition in the Markov case, one would be interested in estimat-
ing the transition probability elements:

Prob{x < X(t + h) < x + dx| X{t) = xp}

Other parameters of occasional use in dealing with time series include the
fractiles (especially the median) and the fractile ranges.

In a situation wherein one has a number of realizations of a time series
available for analysis, one can proceed to estimate the parameters just
defined directly. More often, however, one has available only a segment of a
single realization. Even in the case in which the series involved is approx-
imately stationary, one can still set down reasonable estimates of parameters
of interest.

In the stationary case, the moment functions of {2.4.1) and (2.4.5) depend
on one fewer argument. Specifically,

sk:f . q’.v" SZAM_ - m?.. ey mkl— — Iy, Ov AN.&.MNV
exlty, o tx)=cxlty — 1y, ooty — 1, 0) (24.13)

This has the advantage that now a sensible estimate of (2.4.12) may be based
on the expression

[ XG4 ) X(ex + ) du

4 Sy

where the domain of integration is over the region of observation. In the case
of K = I, thc mean level of the series may be estimated by

_... ' X(uydul|/T (24.14)

given values of the process in the interval (0, T).
Because of the simplification of expressions (2.4.12) and (2.4.13), the* 0"
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appearing in them will be dropped and, in the stationary case, the definitions
mgluy, ... tig-q) = E{X (0 + wy) - X(e+ )X ()

ﬁkﬁ_\:. cevy Mg - nw == OF—BANAN + :—vu ey k: + Ug.. uv' kﬂaz
ill be stated. . .

) The mean function m, = m(t) = EX{t)= f:v = ¢, I§ nos,ﬁwmm wﬂmﬁ_o
stationary case. The series is seen (o be fluctuating about a constant lev _m;_.
The autocovariance function cy{u) = ooium A.H +.=y X ﬁw_npw..: wﬂﬂﬂansww

i i ides 1 tions o -

ful in practice. lts shape provides many indica : ch
“Mwnw of :mm series X. The value c,{u) measures the degree of linear statistical
i i its apart.
ndence of values of the series lag 4 time uni . B

anﬂx—un the case in which c,(u) dies off sufficiently rapidly as ju} - co, the
power spectrum at frequency 4, f2(4), may be defined by

[ £]

L) =@yt [ expl—idule;(u) du (24.15)

for — oo < A < oo, with the accompanying inverse relationship:

o

o= expliud}f(4) A (2.4.16)

&)

In the general case in ‘which ¢,(i) is finite m:m. continuous at 0, _ﬁww.;ﬂﬂ.”““
(1934) has shown the existence of a unique finite spectral measure I O

real line satislying

2 &)

ey (u) = —

i tive. Interpreta-

is last means, for example, that f(4) of (24.15}is nonnega :
M”Wm Mw f2(A) and F(dA) will be provided in a later section after the notion mm
a cmsavhmw filter has been introduced. The usefulness of the parameter \.L .v
is suggested by the remark that the large sample vanance of the statistic
(24.14) is 2nL0)T.

In the case in which
[ [ enturs o) duty o dugy <00 (2.4.18)

expliud) F{dA) (24.17)

as. for example, when values at a distance of the mﬂ.;nm are o:.«mimwr%
an._un:anmr the cumulant spectrum of order K of the series may be defined by

o Axa= @) 5 [ [ oot o4 At

bt 3]

XH.RAEw.....ae_R\—v&:u ...ﬁmﬁ’.l- AN.&.mcw
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with the inverse relationship

o

exlig, ooy tx-1) = ﬁ ‘, explifu A, + - + k-1 Ax-1 )}

X filhgs -on Ay ) dAy o dAx (2.4.20)

for K = 2.3, .... In general, there is no relationship analogous to (2.4.17) for
K > 2. However, provided the functions cx(uy, ..., Ux— ,) are of slow growth,
the Fourier transform of (2.4.18) may be defined as a generalized function,
with an inverse relationship analogous to (2.4.20).

In fact, a stationary series X(t) has a direct Fourier representation.
Under the conditions leading to the representation (24.17), Cramér (1942)
develops the result

aa

Xty = * explitd} dZ(4) (24.21)

with the “ integral " defined as a limit in mean of Stieltjes sums and with Z(4)
a stochastic function having the properties

E dZ(A) = (A}, dA
covidZ(4,), dZ(A,)} = 8(&, — Ax)F(dA,) dd;
where F(d) appears in (24.17). In the case in which (2.4.18) is satisfied,

cum{dZ(4,), ..., dZ{Ax)} = 8d, + - + Ax)fikdrs o Axo) dAy e dAy
(24.22)

“This last expression provides an interpretation for the cumulant spectrum of
order K. It is proportional to the joint cumulant of order K of the incre-
ments dZ(A,), ..., dZ(Ag) with 4, + =+ Ax = 0. In the case K = 2, [5(4) is
seen to be proportional to the variance of dZ(4).

Returning to the Cramér representation {2.4.21), the time series
expitA} dZ{4) appearing therein is called the component of frequency A in the
series X (t). If the series X (1) is extended to be stationary on the whole real
linc, then the function Z(1) may be determined as the limit in mean of the
variate

T .
ea) | xpy Lol =i,
-T — it
as T — o0,

In the case in which the series is not stationary, but its moments are of

slow growth, a representation of the form (2.4.21) may still be given, but now
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involving random generalized functions. Now, however, the reduction of the
values to the hyperplane 4, + -+ + Ax = 0 occurring in (24.22) will no
jonger take place. In the case in which the second-order moment function of
Z(A) is of bounded variation; the series X () is called harmonizable.

A class of time series that are nonstationary, strictly speaking, but yel
that possess many of the properties of stationary series is comprised of those
of the form X({t) = a{t) + £(t) where aft) is a nonstochastic, nonconstant
function and &(t) is a zero mean stationary time series. For this X{t), the
mean function is a(t), and so nonconstant; however, all of its cumulant
functions of order greater than 1 are those of a stationary series. In the case
in which a(t) is slowly varying, a(- ) is called the trend function of the series.
In engineering literature a(t) is sometimes called the signal and ¢(t) the noise.
Commonly used forms for aft} include a(t)=a+ ft and alt)=
p cos{wt + ¢). The first is called a linear trend model, the second a hidden
periodicity model.

The cumulant spectra of a stationary series may be obtained from the
expansion of the logarithm of the characteristic functional, specifically,

log C{¢] = log E exp "_. — EOX{r) &“

It

log E exp ”_, — E(A)dZ(4)

,M.wmg_ [ [ &) B R+ 4 A)
% filAyy ooy Aoy ) dAy o dAy

where (1) = [ &(¢) explide} dt.

i

2.5. Parameters for Point Processes

Point process parameters directly analogous to the product moment
functions {2.4.1) of ordinary time series analysis, are provided by the product
densities pglty, ..., tg) of

Pltys .- .» tgydty - dix = E{dN(t,) -~ dN(t«)} (2.5.1)

K =1, 2, ..., when they exist. In practice, because of the step function
character of N(t), it is only reasonable to expect the absolute continuity of
(2.5.1) to occur when 2y, ..., tx are distinct. It has already been assumed that
the points of the process are isolated. Suppose, in fact, that

Prob{N(I} = n} < L|I[" (2.5.2)
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for some finite L,, whenever I is an interval of length |I] < é. Then, for
example,

E{dN(t) dN(t)) = E dN(t) + O(dr?)
= p,{t) dt + Odr?) (2.5.3)

with similar reductions occurring in the case of general K whenever some of
the 1, are equal (see Brillinger, 1972).

The parameter p,(r) is called the mean rate of the process at time £. A
representation for it, as an alternative to (2.5.1), is provided by

.m p() du = EN(t) (2.54)

1t is a parameter with an intimate connection to the appearance of realiza-
tions of the process. When p,(r) is large, there tend to be many points in the
neighborhood of t. When p,(t) is small, points tend to be rare near t. In the
case K = 2, it follows from (2.5.1) that

t

*. *.. paluy, up) duy du; = E : dN(u,) dN(u;)
0 1Fuz

= L:c QZEVN - ﬁ Ez?i
= E{N{t)(N(t) — 1)} (2.5.5)

using (2.5.3). That is, the integral of p,(t,, ) gives the second factorial
moment of N(t). In general,

*Ti:.:E:...?nmzs.s E.s
“f “1

where N®' = N(N ~ 1) --- (N — K + 1), K = 1,2, ... [ desired, the ordin-
ary moment EN(I}* may be deduced from the factorial moments of order
less than or equal to K. The factorial moment generating funcrional of the
point process N is defined to be

E exp q logf1 + &(1)] azsu (25.7)

If the points of the process are represented by 9, 7y, ..., then (2.5.7) may be
written .

m“: (+ m?.z_ =E M%: {UNNE ﬁi“ (2.58)
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where 1;,, ..., T;, are distinct. It follows that the functional (2.5.7) has the
representation

M,Umm [ [ew) - et . ) dry -y (259)

In cases in which increments of the process, well separated in time, are
only weakly dependent it is often more convenient to consider functions ¢,
defined by the expansion of the logarithm of {2.5.7), namely by

log E exp ‘. log[1 + &£(t)] AN Sﬁ

- Mm;; [ et ety o 0 dty o di (25.10)

These functions are called the cumulant densities and have the interpreta-
tions

grlty, ..., tx) dty - dtg = cum{dN(t,), ..., dN(tx)} (2.5.11)

when the t, are distinct. They provide direct measures of the degree of
statistical dependence of a process N. Those of order ! and 2 are given by

4:(t) = pi(t), @2ty 82) = Palty, 12} = Palts)palts) The factorial cumulant of
order K of N(I) may be written

.ﬁ .__ qultss -, 1) dty - dig (25.12)
Conditions under which expansions such as (2.5.9) and {2.5.10) may be
manipulated may be found in an article by Wescott (1972).

Under a condition like {2.5.2), small increments dN{(t) generally contain
no or one point. It follows then that the product density has the further
imporlant interpretation

piltss --on tx} dty -+ dty = Prob{dN{t,) =1, ..., dN(tx) =1} (2.5.13)
for distinct ¢, and K = 1, 2, .... In particular,
Prob{dN(t)= 0} = t — p,(t) dt
Prob{dN(t) = 1} = p,(t) dt

The first product density, p,(t), is seen to give the mean intensity with which
points occur at time t. Its units are those of points per unit time. It is an
important parameter (o estimate in practice.

The product density of order 2, p,{t,, t;), provides a measure of the
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intensity with which points simultaneously occur near t; and near ,. A
related useful function is provided by

palts, 12)/py(t,) = ProbldN(t,) = 1| N{t,} = 1}/dt, (2.5.14)

This gives the intensity with which points are occurring near ¢, given that
there is a point at ¢,. It may be thought of as the mean rate, p,(t, |t,), of the
Palm process N{t|¢,). The measure (2.5.14) may also be written in terms of
cumulant densities as

qgy(t2) + q2(t1, t2)/q,(14) {2.5.15)

In the case in which well-separated increments of the process are approx-
imately independent, the measure (2.5.14) is seen to be approximately
pylt2) = g,(t;) since the second term in (2.5.15) is negligible.

The first- and second-order densities are important in constructing a
further useful point process parameter, the index of dispersion,

I{t) = var N(t) JEN{t)

it

+ | _c oy, ) duty duy || ay(u) du (2.5.16)
1 13

This index measures, to some extent, the departure of the process N from
being a Poisson process (for which the index is identically 1). Also usclul is
the variance time curve

Vi) = _o q,(u) du + _ _o ga{uy, uz) duy du, (2.5.17)
. o

A further parameter, based on expression (2.5.14), is the renewal function

Uu; t) = E{N(t, t + u]| Nfr} = 1}
‘.u.f—»

e ;i\;s (25.18)

J

m..ﬁnm the expected number of points (or renewals) within u time units of a
point at ¢. The higher order factorial moments

EIN(, ¢ + ufM|Njt =1}, K=12..

find some use in practice as well. They may be determined by integrating the
conditional product densities (2.2.11).

Certain other parameters based on the Palm process N{-|t) may be
defined. The survivor function (or distribution of lifetime) is given as

Prob{next point from an event at r occurs after u time units]
Prob{N{t. ¢ + u} = O|N{t} = 1}
I — Glu: 1) (2.5.19}

it

1
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where G(u; t) = Prob{N(1, t + u] = 1[N{t} = 1}. The hazard function or
force of morality is given by

p(u; 1) = Prob{dN(r + u)= 1[N{t} =1 and N{t, t + u] = O}/dt

= glu; ty{1 — Glu; 1)) (2.5.20)
where g is the derivative of G. The inverse refation to this last expression is

t+u
1~ G(u; t)=exp{— ‘ plv; t) dv
T
These parameters are often used in reliability theory and population math-
ematics. Many specific functional forms have been proposed for them. The
probability (2.5.19) is an example of the general Palm probability

Prob{N(t, t + u] = n|Nit} = 1}

As suggested by the result (2.2.10), these probabilities are directly related to
unconditional probabilities. Further details concerning this are given by
Cramér et al. (1971) and Daley and Vere-Jones (1972}

The parameters introduced so far have been based directly on the step
functions N(t). Certain other parameters are more casily introduced through
the sequence t;, j=0, 1, 2,.... of locations of points and the sequence
=t -t =L of interpoint distances. The forward recurrence
time is the variate Ty, — t. [ts distribution is given by

Prob{tyy — ¢ < u}=1— Prob{N(t, t + u] = 0}
=1 — ¢({r. t + u}) (2.5.21)

This distribution is useful in extrapolating the behavior of the process ahead
of t. Expression (2.5.21) may be given in terms of the product densities as

o |~ it
r _ ....QPQ::.LL&_ Sty

I

In the reverse direction, one has the backward recurrence timet — Ty - 3. Its
distribution is given by

Prob{t — ty-; <0} = 1 — Prob{N[t — v, 1) = 0}

The joint distribution of the two variates Ty, —t and — Tyg-y I8
sometimes of use, as is the distribution of their sum Ty — T -1 The
distribution of this last variate should not be confused with, that of any of the
Tier = unconditionally or based on a Palm measure.

Using the individual times of events, an alternative expression may be
given for (2.5.14). Let g, 0,, ... denote the times of successive points follow-
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ing 1, for the Palm process N(rjt;) Let g.(o:t) denote the probability
density of g,. Then it is clear from first principles that

Probjpoint in (¢, t + dt)|point at 1} = Y gilts1y) dt
k

and so
tyt
LEAUTE) S PR (25.22)
k

In the stationary case, the product densities and the cumulant densities
depend on onc less parameter than in the general case. Specifically,

E{dN(t + u,) - dN(t + - ) AN(t)}

= prluy.pp ity - Uk - ) duy o dugy dt (25.23)
cum{dN(t + u,), ... dN{t + ux ). dN(t)]
=gty oo gy yduy o duygy dt (2.5.24)

for uy, ..., ux_y, O distinct and K = 1, 2. .... This reduction has the impor-
tant implication that plausible estimates of the parameters can now be based
on single realizations of the process. For example, the mean rate may be
estimated by p, = N(TY/T given the data stretch N(1),0 <t < T. Asinthe
case of ordinary time series, the first- and second-order parameters seem to
be the most important ones in practice. It is convenient 1o describe these by

EdN(ty=p,dt=q, dt
E{dN(t + u) dN(t)} = {0(u)p, + pa(w)} du dt
cov[dN(r + u), dN(t)} = {8u)g, + qa(u)} du dt (2.5.25}

In the case in which

|

. |ga2(u)} du < oo (2.5.26)

-

the power spectrum of the point process N may be defined to be

o0

oAy = @2n)"! b exp{ - idu} cov{dN(t + u), &23“\5

= {2r) g, + (2n)”! , exp} — idu}q,(u) du (2.5.27)
for — 0 < A < 0. The parameter A here is called the frequency. One impor-
tant manner in which the power spectrum of a process satisfying (2.5.26)
differs from that of an ordinary series satisfying (2.4.18) is that

lim f;{A)=q,/2n# 0 (2.5.28)

Ao
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The power spectrum of a point process is similar to that of an ordinary time
series in that it is symmetric, fo(— 4) = f>(4), and nonnegative. inverse rela-
tions to the defipition (2.5.27) are provided by {2.5.27) and

g2) = | expliwdl[f2() — qi/2m) dA
In the higher order case onc sets down the assumption
— .‘. iy, v 1) iy - gy < 00 (2.5.29)

and the definition of the cumulant spectrum

Telhg ooy A ) = u) 54! _..._.211:_5 PP DTN
x cum{dN(t + uy), ..., dN(t + ux- ) dN(1)} ] /dt

{2.5.30)
—w<ig<ow, K=2,3,.... The definition is completed by setting
f, = p,. From (2.5.10) it is clear that the cumulant spectra may also be

defined as “ coefficients ™ in the expansion
. o 1 . . N "
g E exp| a0 = 5 (B B h == )
: k=0 U
X S t{As oo A ddy o di,
where &(4) = | exp{idr}£(t) dt.

In the general case in which N (t) is continuous in mean square, Kolmo-
gorov (1940} has developed the representations

cov{N(t + u), N} = | ) 21_.___.“%“1 F(dA) (2.5.31)
and .s
N = | explith) = 1 47) (2.5.32)

. id

-

where F{dA) is a measure satisfying | (1 + 2?)7'F(dA) < 0 and Z(1) is a
random process with the properties

E dZ(4) = d(A)p, dA
cov{dZ{4,), dZ{A,)} = 8(A, — A, )F{d4,) dA,
In the case in which {2.5.29) holds, Z(4) has the further properties
cumidZ(A,), ..., dZ(Ax)} .
=8A, + -+ A ilhy o5 Ag= i) dAy dig (2.5.33)
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K =1, 2,.... This relationship is identical to the corresponding result
(2:4.22) for ordinary time series. Expression {2.5.33) provides one possible
means of interpreting the cumulant spectra of a point process.

The spectral representation (2.5.32) gives a means of interpreting certain
ordinary series associated with point processes. Namely, if

X(t) = [ aft - u) dN(u)
then
X(t) = [ explita(d) dz(2)

where A(%) = [ exp{—ilt}a(t) dt. Using (2.5.33) it is now clear that the Kth-
order cumulant spectrum of the series X is given by

Aldy) - Al A=A = = Ago Wiy, -0 Ak-1) (2.5.34)

It is seen that if A(- ) does not vanish, then estimates of the cumulant spectra
of N may be determined directly from estimates of the cumulant spectra of
X.

In the case of a stationary point process, a whole new family of cumulant
functions and spectra may be associated with the process through the Palm
measure. It was seen in Section 2.2 that the random sequence y; = ;4 — ¥
of interpoint distances is a stationary sequence for the Palm measure P(10)
From (2.2.12) or {2.2.20) the mean level of this sequence may be seen to be
Ey; = 1/p,. As would be expected a high rate for the point process corre-
sponds to a small average between-point distance.

The second-order product density and the power spectrum of the process
N may be determined from the characteristics of the time series y;, j = 1,
2,..., via the relationship (2.5.22). The autocovariance function and the
power spectrum of the series y;, j= 1, 2, ..., may be determined from the
characteristics of the process N via the relationship (2.2.12). These matters
are discussed by Cox and Lewis (1966, Section 4.6). The relationships are
most useful in the case of particular processes, for example renewal
processes. Data benefit from an analysis both in terms of the step function
N{t) and the interpoint distances y;. It must be remembered, however, that
the latter is stationary for the measure P(-]0), and in practice it is the
process N(t) which is observed, not N(-|0). However, the two processes lead
to the same asymptotic results, so in situations in which the data set is large,
the sequence y;, j = 1, 2, ..., may typically be treated as stationary.

2.6. Operations on Time Series

A variety of physical operations are applied to time series before and
after their collection. Sometimes these operations are applied deliberately,
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but sometimes not. In any case, it is important that the effect of the opera-
lions be understood to the greatest degree possible.
One very common operation is that of forming some linear combination

Y= [2ox () d

for a suitable function £(-). The variate Y has already appeared in the
definition of the characteristic functional (2.1.4). It is apparent that Y is well
defined when, for example,  |E()]E{| X ()]} dt < co. The moments and
cumulants of Y are given by

EYX = .-. ..%ﬁa_v o Etmglty, oo 1) dty o dix

cumg ¥ = .— _. Efty) -+ Eltadelty, -, tx) dty o dix (26.1)

when they exist.

The preceding operation formed a real-valued variate from a given time
series. By far the most important operations form time series from given time
series. Consider, for example, the linear operation

Y(t) = % alt, u)X (u) du (2.62)

for a suitable function a(t, ¥). The moment and cumulant functions of this
new series are given by

b. .—.ncr ) alty, wmp(uy, ..oy ux) duy -+ duy

—> ‘— hﬁﬂng Epw hnﬂk. :Rvﬁknﬁ—v vens :tw &_—: &:R ANQ.uv

while the characteristic functional is given by

E exp “_. IR %ST c :_ afu, v) %@TG (2.64)

in terms of the characteristic functional of the series X (¢). The characteristics
of the two series are seen to be directly connected in this case.

A related linear operation is described by requiring that the series Y{t)
satisfies

[ bt )y () du = X10) (265)
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for some function b{t, u), given the series X(r). For example, the series Y (1)
might be defined to be the solution of the differential equation

& dv)
kMo Bo—u = X1)

in the case in which Y(¢) is K times differentiable. This is of the form {(2.6.5)
with
X dS(t—u
be.u)= Y B Eum,ﬂiv
k=0 L

In the case in which there exists a(v, t) such that

[ ate, 0)be, u) dt = 60 — u)

the solution of {2.6.5) may be written as (2.6.2) and the relations (2.6.3) and
{2.6.4) are seen to apply to this series Y{t) also.
On other occasions, the series Y(t) may be determined from the series
X (t) through a polynomial relationship of the form
J

Y(t) = .Mo [ ot wns oo )X} X)) duy -+ du; (266)
=
(see Wiener, 1958). Relations analogous to {2.6.3) may be written down for
the series Y{t) in the case in which the series X(t} is Gaussian; however,
matters are complicated in the non-Gaussian case (see Shiryaev, 1963).
The operations introduced so far have been smooth in character. On
occasion one wishes to apply a strongly nonlinear operator, for example,
Y(t) = G[X(1)], with G[-] discontinuous. An important example is the hard
limiter

Yiey= 1 i X{)>0
= 1 if X()<0
or the discretizer
Y()=j il jh<X(t)<(j+ 10

given >0, for j=0, +1,.... Such operations must be investigated
separately of any general theory.

The functions a( ) of (2.6.2), b(-) of (2.6.5), and a;(- ) of (2.6.6) have been
assumed nonstochastic. On occasion it is appropriate to consider them to be
stochastic and to consider series Y(t) defined by expressions of the form

Y(t)= [ alt, 4 @)X (4, ) du
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Expressions for the characteristics of the series Y{t) in terms of those of the
series X () now appear to exist only for very specific series and operations.

An operation of alternate character from those considered so far is that
of time substitution, specifically

Y(t) = X(C(1)

where I' is a nondecreasing function with domain [0, co} In the case in
which T is linear, the series Y{t) behaves essentially like the series X{t})
Nonlinear T leads to quite drastically altered characteristics on many occa-
sions, especially when I is a random nonlinear function.

So far the discussion has been concerned with operations on a single
real-valued series. In practice one often has to consider operations on
vector-valued series. As in the case of a single series, linear operations may
be described quite succinctly. For example, suppose the charactenstic func-
tional is given for the r vector-valued series {X,(t), ..., X {t}}, namely

ClO1r- 0} = Eexpli | X,(t)doy(e) + - +i _ X,(0)do,(t)  (26.7)

Then the generalization of the relationship (2.6.4) to a series such as
Y(0) = [ ayle, )X (e de + -+ [ ale, upx,40) de

is immediately apparent. In particular, the characteristic functional of the
superposed series

Y{t)= X, {1} + - + X,(t)

is C[0,.... 0} In the case in which the series are independent and ideatically
distributed it is C[0]. In many circumstances, this latter result may be used
to prove that the superposed series is asymptotically Gaussian as r — oo.
An important class of operations is now introduced. Consider an opera-
tion & carrying real-valued functions X(t), ~ a0 <t < oo, over into real-
valued functions Y(t), —co <t < oo, with the properties of (i) lincarity

allay Xy + o X)) = o #[X, ] + 0 [ X5](0)
and (ii) time invariance
A[SXY(t) = Xt + u)
where S* denotes the shift operator [S*X(f) = X(t + u)}. Then & has the
property of carrying complex exponentials, exp{iAt}, over into complex ex-
ponentials, specifically #/[e](t) = A(A)e(t), —oc <t < oo, for e(t) = expidt}

(e.g. see Brillinger, 1975a, Lemma 2.7.1). An operation with properties (i)
and (ii) is called a (linear) filter. The function A(1), —o0 < A < oo, is called
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the transfer function of the filter, and it is generally complex-valued. Its
amplitude, | A1)}, is called its gain, and its argument, arg A(4), is called its
phase. Many of the operations applied to a time series, by an analyst or
nature, seem to be well approximated by filters.

An important class of filters of ordinary time series takes the form

Y(e)= [ X(t - u) dafu) (2.6.8)
for some definition of the integral. The transfer function of this filter is
A(A) = [ exp{—itu} dau) (2.69)

Il a{u) is differentiable, its derivative is called the impuise response of the
filter, since it is the output series when X (¢) = 8(t) is the input. Important
filters include the bandpass filter at frequency v with bandwidth A and gain 4
where

AA)=A for |Axv|<AR

=0 otherwise {2.6.10)
and the Hilbert transform, with
A(d)= —i, A>0
=0, A=0
=i, A<0
if the series X{t) has a spectral representation
X(0) = | explitd} dZ(2) (26.11)

for some process Z(1), then the output of the filter with transfer function
A(A) has representation

Y() = ‘ explitd}4(1) dZ(A)

The output of the bandpass filter (2.6.10) with smalt A is seen to be approx-
imately A[exp{itv} AZ(v) + exp{—itv} AZ(~v)}.

In the case of a stationary series X (f), it is apparent that the series Y{r)is
also stationary with mean A{0)EX({t) and cumulant spectra

A(dy) - Al A A - - Ao i ilAys oo Akoy) (2.6.12)
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In particular, the power spectrum of the series Y(t)is | A(4)[*f{4). If
(1) = | explitt}4d) dZ(2)
k=1,.... K, then
cum{¥y ) o Vel = oo [ A) o Ak sl JAr(=m = = axey)

X filotys oo o Y doy o doge (2.6.13)

This last result provides an interpretation of the Kth-order cumulant spec-
trum fx. Let A,(-) be the transfer function of a bandpass filter at frequency
A,, with small bandwidth A, k = 1, ..., K, and suppose 4; + - + 4x = 0.
Then the cumulant of (2.6.13) is seen to be proportional to Re{ fx(4,. ...,
Ax_1 )} In words, the real part of the Kth-order cumulant spectrum at
{Ay, ..., Ax—,) may be interpreted as the scaled Kth-order joint cumulant of
the output of a bank of narrow bandpass filters at frequencies 4,, ..., A
where 4, + -+ + dx = 0. In particular, the power spectrum at frequency A
may be interpreted as the scaled variance of the output of a narrow bandpass
filter at frequency A. The imaginary part of fy may be obtained by taking the
transfer function of ¢ne of the filters to be the product of the Hilbert trans-
form and the previous narrow bandpass filter and once again considering
the joint cumulant {2.6.13).

An operation somewhat out of the ordinary may be defined by choosing
Y(t} to be the value that minimizes

RE2Y

. ) [X(v) - Y(t)| dv

for some U. The series Y(t) could be called the running median of the series

X(t)

2.7. Operations on Point Processes

In general, it appears that the class of interesting operations is much
larger in the case of point processes than in the case of time series. Another
distinction is that the typical operation appears to have stochastic character.
The description of a specific operation is sometimes best given in terms of
the step functions N(¢), sometimes best in terms of the sequence 1o, 7y, --. 0f
locations of points, sometimes in terms of the series y,, y;, ... of intervals
between events, and sometimes in terms of y{t, w), the conditional intensity
function. The concern in this section is with operations carrying point
processes over into point processes.



74 David R. Brillinger

. The analog of the lincar operation (2.6.2) seems to be one carrying a
process with points at 1, T, ... over into one with points at t; + u{t;),
i=12...,51j=01, ..., for given functions u,(t). A representation for the
new process is

M _M 8t — 1; — uft)) (27.1)
the mean rate for which is
M_,,. pilt — ut))
and the higher order product densities are given by

PIRRDIN M (PPN (29 AN PR 1))

In the case in which [ = I, this operation is called a displacement. In the case
in which the u;(t) do not depend on ¢, the image series will be stationary
when the domain series is.

This particular operation does not seem to have a great deal of use in
practice; however, its stochastic analog, with the u,(t) random, is very impor-
tant. For example, consider the case in which the point 1; is replaced by the
points 1, + u;, i=1,..., 1, j=0,1,..., with the u; and the /; random. In
the case in which /; = 1, the operation might be thought of as corresponding
to the action of a service system, with no waiting time, in which the t; are the
arrival times of customers, u; the service time of the jth customer, and t; + y;
his departure time. The process of points {t; + u;. i=1,..., [, j=0,1,..}
is called a cluster process. If N’(A} denotes the number of u; in the set A for
i=1,..., I, then N’(-)is seen to be a point process and the cluster process
is seen to have the representation

Y NiA — 1)) (2.7.2)

i

Supposing that the process N( -} has intensity function p,*{t} for each j and
is independent of the process N, the process (2.7.2) is seen to have intensity
function

[ pps*e = ) du

This process is well defined if this integral is finite. In the case in which the
process N/(+) has probability generating functional G*[{] for each j, and
where N{-), N°(-), N'(-).... is a sequence of independent processes, the
process (2.7.2) is seen to have probability generating functional

GlG*[S'¢]] (2.7.3)
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where §' is the shift operator. Expression (2.7.3) shows directly that the
process (2.7.2) is stationary when the process N is.

A useful operation in the study of point processes is that of time substitu-
tion involving the replacement of the process N{t) by the process N(F'(t)), for
I'(t) a nondecreasing function, which may either be fixed or stochastic. If the
process N(¢) jumps at the points t;, then the image process jumps at the
poinis

o, =inflo: T(o) =1} =F"'(t))

In Section 2.2, it was seen that a random time substitution could, in certain
circumstances, transform a given process into a Poisson process of rate L.
The intervals between the points of the two processes are related by

Tjyy — ;= I'o;1)— Toy)

In the case in which the rate of the transformed process is high, this last
relationship may be written approximately

ﬁ‘_ﬂ+~ et .: = Hﬁ@..«.XQ.TT— ...IQ._.V AN.Q.&V

In the case in which (- ) is deterministic, the product densities of the image
process are given by

px(T(ty), ..., Tledlviey) -+ v{tx) 273)

where y(t) is the derivative of I'(t). The probability generating functional of
the image process is given by G[¢ o T'™']. It is clear that, in this case, unless
I'(-) is lincar, a stationary process will not be transformed into a stationary
process.

A very useful means of generating further point processes from given
point processes is to employ a stochastic I'(- ), independent of N{-). This
particular procedure leads to the doubly stochastic Poisson when N is Pois-
son. From expression (2.7.5), the product densities of the transformed
process are seen to be given by

E{pudT(t,), .- T(e(ey) - vl(te)} (2.7.6)

The time substitution of Section 2.2 depended on the process N in a very
direct manner, however, and an expression such as {2.7.6) does not apply. An
important use of time substitutions is in the transformation of a given non-
stationary point process into one that is {approximately) stationary.

Moving on to a different class of transformations, suppose that a process
N(-) has the representation :

¥ 8- 1) 2.17)
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Consider the process with representation
M I{z;) 8{t — 1;) {2.7.8)
!

where I(,} is a random indicator variable taking on the value 0 or 1. The
operation of forming the process (2.7.8) from the process (2.7.7) is calied
thinning, skipping, or random deletion. If E{I(1;}| t;} = n{z;), then the intensity
function of the process (2.7.8) is given by

pi(t)n{t) (2.79)

If, in addition, /(z,), I(t,), ... given N is a sequence of independent random
variables, then the probability generating functional of the process (2.7.8) is
given by

ETT te(@)} = E ] e(mnte)) + 1 = nle;)

=G[én + 1 — n) (2.7.10)

Defining the factorial cumulant generating functional of the process by

HiE) = log 611 + &1 = ¥ 1 [ - [ &(e) - Skt .. ) dey -+ o

k>0

the effect of the operation may be described more directly by

H[¢] - H[xé] (2.7.11)
The cumulant densities are given, in terms of those of the process N, by
n(ty) - nltedgulty, - 1) (2.7.12)

A related operation is that of censoring in which, for example, only every
other point is retained. In terms of the function I(- ), this operation might
correspond to requiring I(1;,,) = 1 — I(z;).

An important transformation of a point process occurs when one is fed
into a physical counter meant to record the times of its events. Many coun-
ters have the unpleasant but not unexpected property of becoming inopera-
tive for a brief period {called the dead time) following each registration of an
event. This property is analogous to the one for recording apparatus for
ordinary time series that do not respond if the series is changing too rapidly.
Two important classes of counters are usually distinguished. Type ! has the
property of no output events occurring during the dead time whatever. Type
11 is such that events occurring during the dead time make the dead time
begin again (the counter is paralyzable). Applying the operation of the type
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il counter is one means used to decluster point process realizations (for a
seismological example, see Udias and Rice, 1975). In analytic terms, a type I
counter may be described by

Prob{dN{t) = 1| N(u), M(u); u <t} = y(t, w) dt,

=0 otherwise

ﬂz‘:ku + A<t
2.7.13)

where M denotes the input series, N the recorded series, A the dead time, and
(1, ) the conditional intensity of M. The operation corresponds 1o modu-
lation by a 0-1 function. Clearly p,(u) =0 for u]| <A here. A type Il
counter may be described by

Prob{dN(t) = 1| N(u), M(u}: u <1} = y(t, w),

= {} otherwise

with g, o, ... denoting the times of input events. It is clear that the rate of
the output of a type [t counter may be determined from

Prob{dN(t) = 1} = Prob{M(t — A, 1] = 0 and dM(t) = 1}

?A&ﬂwwo.ﬂ:lw;“iﬂ .q ...._.31_?? :..:.:Cm:u.:mnm

using the expansion (2.2.7). The higher order product densitics may be
determined in a similar manner.

An interesting aspect of the operations just given is that the sample path
of the transformed process is in each case absolutely continuous with respect
1o the path of the original process.

A further form of transformation occurs when a point process is passed
through a service system, i.c., the points of the original process are envisaged
as the times al which customers arrive at a queucing system with, say, k
servers. If all the servers are busy, a customer must wait for a free server.
When a server becomes available, the customer first in line experiences a
random service time. The image process of the transformation is taken 1o be
the point process corresponding {0 the exit times of the customers. In the
case in which there are an infinite number of servers, the output process is
the cluster process mentioned earlier, with one member per cluster. There is
an extensive literature concerning queueing theory of particular situations,
e.g, Cox and Smith (1961), Benes (1963), and Prahbu (1965).
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If 1; denotes the arrival time of the jth customer, w; his waiting time, and
a; his service time, then the transformed process may be represented by

M%Am.l ﬁ;“aﬁ.ﬁ.lqh‘v
j

Generally the w; have quite complicated stochastic structure and this is what
leads to difficulties in the analysis of queues. If M(r) denotes the arrival
process and N{t) the departure, then the number of customers in the system
al time ¢ is M(t) — N{t). The number being scrved at time t is min{M({r) —
N(t). k}. The times at which the number of customers in the system falls to O
are important in the analysis. They are called points of regeneration, since the
system starts anew at these times (in a certain sense).

Suppose next that a point process M has conditional intensity function
defined by

y{t. ) dt = ProbldM({t) = 1 |M(u), u < ¢}
= {t; 6g, ..., Ompy—1) dt

where o, 6y, ... are the locations of its points. Suppose Bt w)=
Blt; Gg. ..., Omy- 1) is @ nonnegative function of the past of the process. The
operation of forming a point process N with conditional intensity function

Bt, wh(t, w) (2.7.14)

provided E{B(t, w)y(t, w)} < oo, is called modulation, discussed, e.g., by Cox
(1972) and Varaiya (1975). From (2.2.16) the conditional distribution func-
tions of the points 1o, 1., ... of the process N are given by

Prob{t, > t{1; = t;, j < J}
1
Hﬁﬁﬁl_‘ Blus by, j < Iyvlus ey, j < J) du (2.7.15)
0y
Equation (2.7.15) indicates a means by which a modulation process might be
simulated given B{t, w) and y{t, w). The standard Poisson process has
7(t, w) = 1. Expression (2.7.12) shows that a point process with general con-
ditional intensity B(t, w), say, is a modulated version of the standard Poisson
process. Cox (1972) considers the particular case of nonstochastic B(t) in
some detail. The joint probability distribution for the number of points of
the process N in the interval [0, T} and their locations may be determined
from (2.7.15) and (2.2.17). Varaiya (1975) shows that, if the probability mea-
sures corresponding to the processes M and N are mutually absolutely con-
tinuous, then there exists a f(t, w) of this character, in many circumstances.
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He also shows that the likelihood ratio of the process N with respect to the
process M, on the interval [0, T], may be written

siﬁ log Alt, w) dN(t, w) — h [B(t, 0) - 1pp(t, w)dr)  (27.16)

The operations considered so far have been defined on univariate point
processes. In the case of vector-valued processes, N, (t), ..., N,(t), referring
to points of r different types, an important operation is that of pooling or
superposition. Here one forms the process

Ny(t) + -+ N.(t)

. If the probability generating functional of the original process is

Qmﬁ? T ML = E exXp :y mcm m;; &2%3 R o .‘. mOm ﬁ%& &2%3“

(2.1.17)

then that of the superposed process is clearly G[¢, ..., £]. In the case in
which the component series are independent realizations of a process with
probability generating functional G[¢), the superposed process has probabil-
ity generating functional G[¢}". In a variety of circumstances, this last resuit
may be used to demonstrate that the limit, as r — co, of superposed and
re-time-scaled point processes is a Poisson process (e.g. see Vere-Jones,
1968). The conditional intensity is here the sum of the individual intensities.

Finally, it is clear that many of the operations of discrete time series
analysis may be applied to the interval series {y,, y,, ...} in order to obtain a
further interval series and in consequence a new point process.

2.8. The Identification of Time Series Systems

By a time series system is meant the collection of a space of input series, a
space of output series, and an operation carrying an input series over into an
output series. A common form of a time series system is provided by the
specification

Y(t)= | X}t) + &) (2.8.1)

where &[] is a deterministic operator of the kind discussed in Section 2.6,
X denotes an input series, Y the output series, and £ an unobservable stochas-
tic error series. The problem of system identification is that of determining
o, or essential properties of s, from a stretch of input and corresponding
output data {X(t), Y{(t)}, 0 < t < T. Part of the motivation for studying this
problem is the desire to be able to indicate properties of output series
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corresponding to specific input series. A system is called time invariant if the
bivariate series { X (t), Y(r)} is stationary when the series X (¢) is stationary. A
system is called causal when /[ X](t) depends only on X{u), u <t. and the
future error &(v), v > ¢, is independent of the past {X(u), Y(u);, u <t.

In a few circumstances the identification problem has a fairly direct
solution. For example, consider the (regression) system

Y(0)= p+ | X(t - u) datu) + e(0) (282)

where £{t) is a zero mean stationary series independent of the stationary
series X{t). Then (2.8.2) lcads to the relationship

fuld) = A(=A)f20(4) (28.3)

where A(4) = b. exp{ — idu} da(u),f0{4) is the power spectrum of the series X,
and

fis@) = @n)" [ expl—idu} coviX (t +u), Y() du  (284)

is the cross spectrum of the series X with the series Y. Expression (2.8.3)
indicates that the transfer function A{4} of the linear filter of (2.8.2) may be
estimated once estimates of the second-order spectra f(4) and fy,(4) are
available. (The construction of such estimates is described by Brillinger,
1975.) This method of system identification was proposed by Wicner (1949).

The relationship (2.8.3) has a direct extension to a nonlinear system in
one case. Suppose the system is determined by

YOy =+ [ X(— u) dat) + | X(e = w)X(c ~ v) b, 0) + cr)  (285)

where &(t) is a zero mean stationary series independent of the stationary
Gaussian series X {r). The relationship (2.8.3) still holds for this system. In
addition, one has

S214, v} = 2B(~ 4, —v}f20()f20(v) (2.8.6)
where B(4, v) = [{ exp{—i(4u + ve)} db(u, v} and

frild, v) = (2n)"! :. exp{—i(Au + vo)} cum{X{t + u), X(t + v). Y(t); du dv

(2.8.7)-

is a third-order joint cumulant spectrum of the bivariate series { X (t}, Y(r )
The functions A(A), B{4, v) may therefore be estimated once estimates of the
second- and third-order spectra of the series {X(t), Y(t)} are available.
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Consider, next, the system defined by the equations
U(0) = | X(t ~ u) dau)
v(t)= GlU()]
Y(O) = g+ [ Vit = u) dbu) + o(0)

where £(t) is again a zero mean stationary series independent of the station-
ary Gaussian series X (¢), and where G{-]is a function from reals to reals.
The system {2.8.2) corresponds to G[-] and b(-) identities. When QE. is a
quadratic in u, this system is a particular case of (2.8.5). Now, for jointly
normal variates U, V, W, and G[] such that

E|GIUI +|U|+|V]+ W]+ [VWi+ Ul < o,
cov{V, GIUT} = covi¥, U} cov{U, G[U}jfvar U
cum{W, V, G[UJ} = [cov{V, U} coviW, U} cum{U, U, G[UJj)/var? U
Hence for the previous system, assuming the series X{¢) Gaussian
f11(2) = Ly A(=1)B(— A)f20(2)
Jarld v) = Ly A(= A)A(—v)B(~ 4 — v)f20(d)fo2 (V)
where L, = cov{U(0), ¥(0)}/var U(0) and
L, = cum{U{0), U(0), V{0)y/var? U(0).

When either of the filters a(- ), b(+ ) is the identity, the transfer ?:mzo:.o_. the
other may therefore be determined, up to a constant of proportionality, by
f13{= A f20(A)" " In the general case, the previous relations lead to

T:»: ac 2.@::‘?. I‘S:.__u\\:;v

on setting v = — 4 If $(4) = arg A(2), WA, v) = arg{fxxv(4 Vi fxrld + v
then

o) = T h ola) do + .m Wi, A4 — ) %“ \»

provides a recursive procedure for obtaining ¢(4) given ¢(a) 0 sa < i
Korenberg (1973) considered this system and developed related expressions
for the case of X{-) Gaussian white noise and G{u] a polynomial in u.

A classical procedure that has been used to estimate the transfer function
A(4) of the system (2.8.2) is to take for input series X (f) = explidt} {ie.,
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separately input the series cos At and sin At). Then the output series is
Y{t) = p+ A(A) explide}
and A{4), 2 # 0, may be estimated by

| 1Y) — ) expl—idr) de | [T

for example, where m is the mean of the Y terms. This procedure has the
disadvantage of requiring the use of a whole family of input series, expfidt},
covering the A domain.

A variant of this procedure exists for the identification of a system such
as (2.8.5) in which one takes the series exp{ils} + explivt} as input (see
Brillinger, 1970, and the references cited therein).

it is worth noting that the filter with transfer function 4(1) determined
by (2.8.3) has an alternative interpretation. Given input and output series
X(t), Y(t) of a system, consider the problem of determining the best linear
approximant of the system, i.e,, finding the a(u) that minimizes

ElY()—pu— _ X(t — u) dafu) ’ (2.88)

In the case in which {X{r), Y(r)} is a stationary series, it may be seen that one
wants o choose u and A(A) to satisfy (28.3} and EY(t) = u + A(Q}JEX (1}
When dealing with nonlinear filters, it is often useful to consider their
approximate finear effect.

A system is called a linear dynamic system if it has the representation

dS(t) = F(e)S(t) dt + G()X(t) dt + K(t) dW,(t)
dY(t)= H(1)S(t) de + J(t)X (¢) de + L(t) dW, (1) (2.8.9)

0 <t < oo, where F(t), ..., L{t) are fixed (matrix-valued) functions, W,(t),
W,(t) independent noise series, S{t) an unobservable (vector-valued) state
series, X(r) the input serics, and Y(r) the corresponding output series. A
considerable literature exists concerning the theory of such systems (e.g., se¢
the December, 1974, number of the [EEE Transactions on Automatic
Control, Vol. 19}. With the series and functions appearing vector-valued, the
model is exceedingly general. The functions F(¢), ..., L(r) are parameters of
the system. In some cases they are fixed functions of a common set of
paramelters. The problem of identification then is concerned with the estima-
tion of the parameters of some canonical form of the system, given stretches
of input and corresponding output. The description (2.8.9) is often called the
state space or state variable model. The state process S${t) is meant to repre-
sent the totality of information from the past and present input to be trans-
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mitted to the future output. In practice, one seeks Biwamwnnm.wum:onm of wrn
system, wherein the dimension of 5(t) is as small as wﬂmm_c_ﬁ An mvtaw__:.m
aspect of the description (2.8.9) is its clear indication ol the dynamic

development of the system. . . N
Much of the literature of state space models is concerned with obtaining

expressions for the series
S(t) = E{S(t}] X (u), Y(u), u st}

In the case in which (i) W,(r), Wa(r) are independent Wiener processes, m._;
S${(0) is a normal variate independent of the process .M.xx_, W}, (iit) the series
X (1} is fixed, the results of Kailath (1970) and Balakrishnan :cdvmwni .:z:
the likelihood ratio of the series Y(r) relative to the process L{t)W;(t}is given
by

exp %q L{ty 2(H@)S(e) + J()X (1)) drt

~3 [ @S + HOXEP L) dr

Lt
This variate is useful in problems of estimation and detection. >m.w important
role is played in the analysis of the system (2.8.9) by the innovations process
defined as

(2.8.10)

dv(t) = dY(t) — H(t)S(t) dt — J()X (1) dt

The identification of systems like (2.8.9) has generally .umwnnoaoa c.« param-
etrizing them in some canonical manner, and then maximizing the likelihood
or some other criterion function involving the parameters.

The system (2.89) is lincar. In the case in which the F ) .-, P.E.m:w
constant and the noise series W has stationary increments, the system is time
invariant. When the noise processes are absent, the system corresponds to a
linear filter with matrix-valued transfer function J + H(iAl — F)'G. The
various entries of this matrix are rational functions of 1. . .

There is one class of nonlinear systems that may wn. Enm._mo.a quite
readily, when the experimenter has the freedom 1o use any input series. Itis
represented by

o

Y(i)= aMnua — _. aglteys o ug)X(t —uy) - X{t - ug) du, :..mzu + &(t)

(28.11)

with ay(u,. ..., ux) symmetric. Suppose that the experimenter takes as input
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series the (generalized) Gaussian series with mean 0 and cov{X(t + u),
X{t)} = o(u). Then as Wiener (1958) shows

aglay, ... ugy=E[X{t —u,) - X(t — up)Y(t)})/K!

for the u, distinct. A number of the papers in the proceedings edited by
McCann and Marmarelis (1975) are concerned with the details of (approxi-
mately) carrying out this identification procedure in practice.

Consider next a situation involving a trivariate time series {X (),
X;(t), Xs(r)}. Suppose that there is an apparent association between the
serics X, and X, but it is felt that this association may simply be due to
their individual associations with the series X,. A system that allows an
investigation of such a possibility is provided by

X{ty=p, + .ﬁ a,(t — u)X y(u) du + &,(t)

Xat) = pa + [ axlt — u)Xs(u) du + £(0) (2.8.12)
where {&,, &;, X3} is a stationary series with the series X, independent of the
series £, and ¢,. In the case in which the series ¢, and &, were independent of
each other, one could say that the association of the series X, and X, is
simply due to the common influence of the series X 5.

Now, one measure of the degree of association of two stationary time
series is provided by the coherence function defined as

|91202))* /g 20(A)g02(A)] (2.8.13)

where g,, and g,, are the power spectra of the series and g,, their cross
spectrum. The values of the coherence function (2.8.13) may be shown to lie
in the interval [0, 1], with O occurring if the series are independent and {
occurring if the series are connected in a linear time invariant manner (see
Brillinger, 1975a). For the system (2.8.12) it may be shown that the second-
order spectra of the series g,, ¢, are given by

Q...L»v = “hﬁcﬁv - beﬁv.\o.;EE\.PSQV ﬁ.w..zu

j + k=2, in terms of the second-order spectra of the process {X,, X,, X,}.
With the substitution (2.8.14), the expression (2.8.13) is called the partial
coherence at frequency A of the series X, and X, with the linear effects of the
series X removed. This function may be estimated once estimates of the
second-order spectra are available.

2.9, The Hdentification of Point Process Systems

By a point process system is meant a collection of a space of input step
functions M(t), a space of output step functions N{t), and an operation
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carrying input functions over into output functions. A common form of the
point process system is given by

N(I) = MY} + E(I) (29.1)

I in B[O, oo), where o is a point process operation of the kind &mnﬁmm& in
Section 2.7 and E(t) s a further point process. In contrast to the situation mo.”.
ordinary time series systems, the operation o is generally mponssm:n. fand it
is sometimes convenient to consider the process E(t) as part of it} The
problem of point process system identification is that of determining essen-
tial properties of the operator &/ from a stretch of input »ma output g.m»m
{M(t), N(t)}. 0 <1 < T. A system is calied time invariant __..:ﬁ bivariate
process {M{t}, N{t)}, 0 <t < oo, is stationary whenever the input process
M(t), 0 <t < o, is. An operator o is called causal when STM }(t) is the
same for two realizations M () satisfying M (v, w}=M N?,. w)forv>t
The system (2.9.1) is called causal when the operator s is causal and
the future increments E(v) — E(t), v>t, are independent of the past
{M{u), N(u}}, u < 1. A point process system will be said to have a refractory
period if there exists a time interval immediately following an output event,
during which there can be no further output events. .

As an example of a point process system, consider the noisy random
displacement. Suppose that input points occur at ¢, j=10,1,.... Suppose
that a; 1s displaced, randomly, to g;+ u;, j= 0, I, .... Suppose :::. Vs
i =0, 1, ..., denote the points of a further point process E(t) Let the points
of the output process be the union of the o; + u; and the y;. The output
process may be represented by

Yot —a—u)+ 3 o0 —) (292)

In the case in which the process E(¢) is stationary with mean rate p and
where u; is independent of o; with density function afu), j=0,1,..., 1
follows from (2.9.2) that

E{N()|M} = |+ | alt — u) %:a_ dr (29.3)

This expression is seen to be analogous to the regression modet (2.8.2) of
ordinary time series analysis. . ‘ .

In the case in which the process M is stationary with power spectrum
J10({A) and where

o

)= Quy || expl-itu} covidM(e +u), AN [di - (294)
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is the cross spectrum of the process M with the process N, it follows from
{2.9.3) that

S11(A) = A(=2)/20(4) (295)

Hence the system with output (2.9.2) may be identified, in the sense that
A(4), and hence a(u), may be estimated once estimates of /| (4), f10(4) are
available. Incidentally, in terms of the random displacement model,

A(—A) = % explidula(u) du = E explilu}

is the characteristic function of the distribution of translations.
In the case in which there are a number of displacements uy,

k=1,..., K;, applied to each input point, the relationship (2.9.5) continues
to hold with

A(AY=E Y exp{—idu,}

provided this last function does not depend on j.

It should be remarked that the specification (2.9.3) does not characterize
the distribution of the process completely, in the manner that (2.8.2) charac-
terized that of Y. Were it given that

Prob{dN{t) = 1| N(u). u <1, M} = |u+ [ ale — ) aM@u)|dr  (29.6)

for the system, then the distribution of N could be characterized as time
inhomogeneous Poisson given M.

A point process system analogous to those of Hawkes {1972) and sug-
gested by (2.9.6) is the one defined by

Prob{dN(t) = 1| N(u), u < 1, M}

u+ — a(t — u} dM(u) + .*_ b(t — u) dN(u)|dt (2.9.7)

For this system, the cross spectrum between the input and output processes
is given by

Ju(=2) = (1 = B(A))™ ' A(4) f20(4)

where B(A) = [§ exp{—iAu}b(u) du. This expression generalizes (2.9.5). Rice
(1975) discusses some aspects of the problem of identification of the system
(29.7).

The modulation model of Section 2.7 is sometimes useful in describing
certain point process systems. Suppose that E(t) is a point process with
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conditional intensity function y{t, w). Suppose that E (t)isa nﬁnn:.:.:w:ow
step function. Suppose that the output process N(t) is to have conditiona
intensity function given by

Prob{dN(t) = 1| N(u), u <t, M} = Ble, M, o)yt w)dt  (29.8)
The likelihood ratio of the process N relative to the process E is here

exp Fq log (t. M, w) dN(t) — .ﬁ, (B, M, )~ 1h(t, w)dt} (29.9)

in this situation, y{f, ») may be thought of as specilying the output process

‘when there is no input M, and $(t, M, @) as indicating the effect that input

has upon the output. In the case of the model (2.9.6), ¥(t, @) = 1 correspond-
ing to a unit Poisson process, and

B, M, ) = it M) = u + | alt — u) dM() (2.9.10)

In the case of the model (2.9.7), y(t, w) =1 again, and
: 1
B, M, w) = + | aft — u) dM(u) + [ be—udNG)  (@911)

ituation i i i : -} of these last two cases
In a situation in which the functions a{*) E.a b(-)of ¢ > ca
depend on a parameter 0, the likelihood ratio ﬁ.@uﬁ with the substitution
(2.9.11) may be used to estimate @ and hence identify the system, in certain
circumstances. .

Consider next a system with the property that for each pair (o} a% of
input points ¢;, g, an output point appears at 0; + U where u, is a ran o“
variable with density function h(u, 0, — ¢ ;)- Then the output process may
represented by

Y 8t —a;—uz)

i<k
and it is the case that
1 E{dN(@)|M}= ) h{t—0;, 0.~ o))=Y bt —0;t— )
dt j<k i<k
[[ bt —u.t — o) aMG) aM(o)

where b(u, v) = h(u, u — v} The system in this case is seen to be * quadratic.”
Continuing in this manner a system may be constructed such that

! — ) dM(t - ux)
— E{dN(t}| M} = axluy, - -» ux) AM(t ~ )
at _mﬂ A&_ M Mﬂu@:%&u:__.mm AN.@.PNV

]
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to paraliel the ordinary time series system (2.8.11). Suppose that one is able
1o employ unit Poisson noise as input process M. Then from (2.9.12)

E{dM'(t — uy) - dM'(t — ug) dN(t)} = axlu,, ..., ux) du, -~ dug dt K!
(2.9.13)

in the case in which ay is symmetric and where M'(t) = M(t) - p,1. Hence
the system of (2.9.12) may be identified once one can estimate joint product
densities of order K of bivariate point processes. This estimation problem
is considered by Brillinger (1975b).

One general remark that may be made concerning point process systems
of the character just considered is that a useful parameter for use in the
modeling of systems is uy(t) defined by

E{dN(){ M} = pydt) dt
The identification problem then comes down to, in part, the estimation of
un(t) given a stretch of input and output data of the system.
The linear dynamic system (2.8.9) may be paralleled to some extent
through the point process system specified by
dS(t) = F(t)S(t) dt + G(r) dM{r) + K(r) dW{1)
Prob{dN(t) = 1|N(u),u <t, 5, M, W} = [u+ H{t)S(t)] dt = 0
(2.9.14)
where M{(t) is the input process, S{t) a (vector-valued) state process, and

W(t) a noise process. In this system, following expression (2.2.17), the likeli-
hood function is given by

exp

h loglpe + H(t)S(e)] dN(1) — h [1e + H@OS() dt;  (29.15)

assuming the input process fixed. Here the variate $(t) is defined by
S(t) = E{S(t)| N(u), u <t}

and may be determined by Kalman-Bucy type of recursive equations. Some
details concerning this sort of model are given by Snyder (1975). In the
stationary case with F(t), ..., J{t) constant and the process W uncorrelated
with the process M, the second-order spectra of the input and output are
related by

Sur(=A) = HGAI = F) " Gfzo(d) (29.16)

In the case in which the F, ..., J have been parametrized to make the system
identifiable, the relationship (2.9.16) or the criterion (2.9.15} may be used on
occasion to estimate the parameters.
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Consider next the system
N = My() + M) Na()= M)+ Mo(1)  (2917)

where the processes M, and M, depend on a process N, but the bivariate
process {M 5, M,} is independent of the process {M y, M, N;}. In particular,
suppose that

Prob{dM {t) = 1| N3} = |u; + [ aft = u) dN, ()|t (29.18)
for j = 1, 2. One may be interested in the question of whether an association
observed between the processes N, and N, indicates a proper connection, or
whether it is simply due to their common association with the process N;.
The model {2.9.17), (2.9.18) is one means of examining this question. In the
case in which the processes M, and M, are independent, the association
would be apparent, not real. Now the degree of dependence of the processes
M, and M, may be measured by their coherence function

191 1(A) [ /lg20(4)902(A)] (2.9.19)
with g, given in terms of the second-order spectra of the process Ny, N, N,

* anl) = o) = Usox @) foxs (1 foo2(®)

j+ k=2 The function (2.9.19) is here called the partial coherence at
frequency 4 of the processes N, and N, with the linear effects of the process
N, removed. For networks of three nerve cells some estimates of partial
coherences are presented by Brillinger et al. {1976). The parameter proved
useful in investigating the connections between the cells, specifically whether
each pair of cells had a direct link.

Numerous models of point process syslems are provided by the various
models that have been proposed for the operation of a nerve cell, driven by a
spike train to emit a further spike train. The effect of the input train may be
excitatory or inhibitory, corresponding to an increase or decrease of the
instantaneous output rate. As an example, consider the following model of
an excitatory system, of the kind discussed by Moore et al. (1966). Let the
input spike train be denoted by M(t). Let the output spike train be denoted
by N(¢) and suppose its spikes occur at the times 1o, Ty, ... Define the time
series

X{t)=« _ (2.9.20)

Tta -1

for Ty 1 <! S Tn and a > 0. Then tu, is defined to be

expf{—alt — u)} dM(u)

Ty = 0t £ > Ty -1, X(t) 2 6}
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The value  is assumed to be positive and is called the threshold value. X {1} is
called the postsynaptic potential of the cell at time . To be realistic a nerve
cell system model must also have a refractory period. Other models of nerve
cell activity are described by Feinberg (1974).

2.10. Some Particular Time Series

Many specific properties are known concerning certain types of ordinary
time series. The class that has been subjected to the highest level of develop-
ment is undoubtedly that of Gaussian time series. A series X(t) is called
Gaussian when all of its finite-dimensional distributions are multivariate
normal, In the Gaussian case, the transition probability functions (2.1.2} will
also be normal. The characteristic functional is given by

¢l = axﬁ“_. _ E(t)e () de — 3 : E(LE(E 2 )ea(ty, 1y) dty &N“ (2.10.1)

with ¢,(¢) = EX(1) and ¢,{1,, t;) = cov{X{t;). X(t;)}. It follows [rom expres-
sion (2.10.1) that a Gaussian series has moments and cumulants of all orders
and that the cumulant functions of order greater than 2 are identically 0. A
Gaussian series is determined by its first- and second-order moment func-
tions, and given any function ¢,(t) and continuous nonnegative definite
c,{t,, t;). there exists a Gaussian series with these parameters. Linear opera-
tions on Gaussian series produce Gaussian series, and conditional distribu-
tions based on linear combinations of its values remain Gaussian. The
Gaussian series appears as a limit when independent series satisfying finite
second-order moment conditions are added. The importance of the use of
Gaussian series in the identification of nonlinear systems was indicated in
Section 2.7,

One important Gaussian series is the Wiener process W(r) satisfying
W(0) =0, ¢,(t) =0, ¢;(¢,. t;) = minlt,, 1,]. The increments of the Wiencr
process are stationary and independent. The generalized process d Wi(t)dris
called Gaussian white noise. Its covariance function may be represented by
,(ty., t3) = 8{t, — 1) 1t provides a continuous time analog of a sequence of
independent standardized normal variates.

A variety of conditions have been set down to ensure that the sample
paths of a Gaussian series are continuous. A useful sufficient condition that
ensures this {for any series) is

E|X{t;)—~ X))l <bjty — '+ (2.102)

for some a. b, ¢ > 0 and any ¢,, t; (e.g. sec Cramér and Leadbetter, 1967).
This criterion shows that the Wiener process has continuous paths.
Another important class of time series is made up of the diffusion
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processes. These are Markov processes with continuous sample paths. In
pariicular,

ProblX(v) < y| X (), u < t} = Prob{X{v) < y| X ()}
for all v > t. Suppose the transition density function is given by
d

plt, x; v, y) = i Prob{X(v) < y| X(t) = x} (2.10.3)
Then it satisfies
plt. x; v, y)= _ plt, x; u, z)plu, z; v, y) dz
for 1 < u < v and also p(t. x; t, y) = 8(x ~ y). Suppose
EldX(v)| X (t) = x| = plt, x) dv (2.104)
and
E{dX ()P X ()= x} = o*(t, x) dv (2.10.5)

The parameter p(t, x) is called the local mean or drift. The parameter o(1, xv
is called the local variance, and its reciprocal is called the speed. The transi-
tion density function satisfies certain differential equations:
(it x;v, ¥)

dx

ot
called the backward Kolmogorov equation, and

ot xioy) 1 @) e )} _ Alule )t xi v, y))

‘ i|.:.,h_1~1[§.|l h 2 b%m @.f

the forward Kolmogorov equation. This dilfusion process may be approx-
imated by the following discrete model: Suppose X(t}= x. Then
X({t + dt) = x + dx with probability

L (8 x)

. i N
2 20 x

Wt xi09) _y a2 X000
' ax ’

(2.10.6)

and X(t + di) = x — dx with probability 1~ (2.10.6). dx=o{i, x) Jdt

independently of its behavior before ¢ {see Prohorov and Rozanov, 1969,
. 263).

P m.mwzoc_sq diffusion processes include the Wiener process with

uft.x)=0 and aft, x)=1 and the Orastein -Uhlenbeck process with

ul(t, x) = ~ 1 and a?(t, x) = 1. The latter process is the most general Gauss-

ian Markov stationary process.
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The Wiener process may be used to derive a large class of diffusion
processes. Ito (1951) suggests solving the equation

X{t) - X(0) = ﬁ uls, X(5)) ds + ﬁ o5, X(s)) dWGs)  (2107)

where W({t) is the Wiener process. Under appropriate conditions, the equa-
tion has a solution that is a diffusion process. Equation (2.10.7} is called a
stochastic Ito differential equation. A considerable literature exists concern-
ing first passage time distributions for diffusion processes. Differential equa-
tions may be set down for certain characteristic functions and expected
values based on a diffusion process.

Certain transformations carry diffusion processes over into diffusion
processes. Let g, and g, denote the partial derivatives of g(x, r). Suppose
g.(x. t) > 0. Let X(t) be the diffusion process just discussed and Y{t)=
g{X{t), t}. Then Y(t) is a diffusion process with parameters

prlt, x) = plt, x)g{x, 1) + 02 (1, X)gaalx, ) + gl 1)
oylt, x) = a(x, tlg,(x, t}
(see Gihman and Skorohod, 1972). Alternatively, consider a random time
transformation defined by
dift, w) 1
dt V(1 X(t))
and the process Y{t)= X{z(t, w)). Then Y(t) is also a diffusion with the

parameters

uylt, x) = plt, xYV(t, x),  o,le, x) = alt, x){V(t, x)}"'?

The transformations described here may be used to carry a given process
over into one with a simpler description.

Likelihood ratios may be determined for diffusion processes in certain
cases. For example, suppose that o(t, x) = 1; then under conditions includ-
ing X(0) = 0, the likelihood ratio of the process of (2.10.7) relative to the
process W is given by

exo[ it X)X (0~ 4|

Q 0

>0

T

2t X(t) &“ (2.10.8)

(see Gihman and Skorohod, 1972, p. 90). This ratio is used to determine
maximum likelihood estimates of the parameters @,, ..., 6 in the case in
which X
_:AP kv = M Qrav*:, Hw
k=1
with the ¢, known (see Taraskin, 1974).
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A generalization of the Gaussian Markov process is provided by the
N-tuple Markov Gaussian of Hida (1960). It is defined as a Gaussian process
with the property that the variates

E{X(r)| Xl ust), k=1,...,K

to <1, < <ty are linearly independent for K = N, but linearly depen-
dent for K = N + 1. The process may be shown to have a representation

x()=|

0 a=

r N

n J(t)g, () dW(u) (2.10.9)

where W(t) is a Wiener process. In the stationary case the kernel of (2.10.9)
may be shown to be a linear combination of the functions
thu % exp{— (p + ip)(t — u)} (see Hida, 1960). The power spectrum is a ra-
tional function of 4.

As a final general class of time series consider the linear processes defined
by X(t)= | alt, u} dV{(u), where V(1) is a process with independent incre-
ments. Examples of independent increment processes include the Wiener
and Poisson processes. The general increment process is completely charac-
terized by the first-order distribution of V() and the increment distribution
of ¥(t) — V{(u). The process ¥(t) may be shown to have the representation

Vi) = Vit) + ra X[N([0, €] x dx) — ([0, ] x dx))

laz%.a%v n.s._e
bxi> 1 .
where V(t} is a continuous Gaussian process with independent increments
and N{t, x) a Poisson process in the plane with parameter p(t, x) indepen-
dent of the process V. (see Prohorov and Rozanov, 1969). Supposing
E dV,(r) = alt) dt, cov{dVt,), dVAL,)} = Bita) 5ty — 1) dt, i,
u({t, £ + dt] x dx) = m(t, x) dt dx,
the cumulant functions of the process V are given by

E{v(e)} = [al0) + [

I=f>1

xm(t, x) dx | dt

covidV(t,), aV(e)} = (B + [ xPmity, x) dx

xp=1
x %Amm - huw &h_ &HN
cum{dV(t,), .., V(e = [ ¥¥mle,, x) dx (e, - 13) -

x 8(t, — tg)dty - dtg



94 David R. Brillinger

K > 2. The cumulant functions of the linear process may be derived directly
from these expressions. In the case in which the process V(t) has stationary
increments and X({t} = | a(t — u}dV(u), A(1)= | exp{—iiuja{u) du, the
cumulant spectrum of order K of X(t) will be proportional to

A(Ag) - AlAg- A=Ay — - — Agy)

Certain additional aspects concerning linear processes may be found in the
article by Westcott (1970).
2.11. Some Particular Point Processes

Foremost among the point processes is the Poisson process. The Poisson
process with intensity function p(r) is defined by the requirement that for
1,, ..., I disjoint intervals, the variates N(I,), ..., N{I) are independent
Poisson random variables with means P(7,), ..., P(Ix) where

P) = | p(t)dt (2.11.1)

The zero probability function also characterizes the Poisson. 1t is given by
¢(I) = exp{— P(1)} (2.11.2)
for I in B[O, oc). The probability generating functional is given by

61¢1 = exp (660 - 1p0)

1t follows from (2.11.3), or directly from the definition of the process, that the
product densities of the Poisson are given by

plty, .. te) = plty) -+ plex) (2114)

and the cumulant densities by q,(t)= p{t) and gglt,,....tx} =0,
K = 2,3, .... The conditional intensity function is constant in w and given
by

(2.11.3)

y(t, w) = p(t) (2.11.5)

If the points observed in the interval [0, T} are 0 £ 1y < 7, < ---, then the
corresponding likelihood function is

expi| " og ple) dN() - | ") &“ (2.11.6)

Q o

and the likelihood ratio relative to the unit Poisson process is

exp h. log p(t) dN{t) — b (ple) ~ :&v (2.11.7)
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From expression (2.2.9), the joint density of the g successive intervals after 1,
is given by

wU wus_H_s ﬁ% Prsgrrltit+ Y, 4y +
1]

0 +.§+.:+f¥
+ Yoo gs ooy 1) duy oo duy dt (2.11.8)

In the Poisson case this reduces to

plu) dudt
2.119)

a —»_+v._.+:.+v‘

[ pp + 3+ ple + yi 4+ ) expi=|
"0

In the stationary case, p{t) = p, and {2.11.9) becomes
p*expl=ply + -+ py)} (2.11.10}

and the successive intervals are seen to be independent exponentials with
mean 1/p. Expression (2.2.9) may also be used to show that 1, is independent
of {y,, ..., ¥,} and exponential with mean 1/p.

From (2.2.12), the probability generating functional of the Paim process
is given by

Glg |t = exp [ (&) ~ 1lple) de

showing that in the Poisson case the distribution of the Palm process is the
same as that of the original process. Among other things, this implies that
the survivor function is given by

r+u

Prob{N(t, t + u] = 0|N{t} = 1} = eﬁnl_. p(v) mcv

{

and that the hazard function is given by
ProbldN(t + u) = 1| N{t} = 1, N(t, t + u] = 0}/du = p(t + u)

The forward recurrence time distribution is given by

+

Prob{tyy —tSsup=1- sﬁnl.— plv) mc“

1

The unit Poisson process has intensity p{t) identically 1. If Nisa Poisson
process with intensity p(t} and one sets

‘ P = [ o) d
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then N(P~(t}) is a unit Poisson process. Conversely, if M(t) is a unit Pois-
son, then M(P(t)) is Poisson with mean rate p(t).

The general Poisson process is clearly a Markov process with state space
0, 1, 2, ... and transition distributions given by

H

Prob{N(t + dt)=j + 1| N{t}=j}
Prob{N{t + di) = j| N{t) = j}

ple) de
1 — plt) dt

i

J=0,1, ... ltis the simplest discontinuous Markov process.
When the Poisson process is thinned, as indicated in the discussion
following (2.7.8), its probability generating functional becomes

Glén+ 1 —n) = 5: [E() — 1]m(e)ple) &“

That is, it becomes a Poisson process with intensity n(¢)p(r).

When r independent Poissons, with intensities p,(t), ..., p,{t), are
superposed, as indicated by the discussion following {2.7.17), the probability
generating functional of the superposed process is

exp % ey — 1]p ey dt + - + ‘~ [E(t) — 1]p,(2) &n

i.e., the superposed process is Poisson with intensity p,{t) + --- + p,{t).

If 15, 14, ... are the points of a Poisson process with rate p{t) and if
independent random displacements U;, j=0, I, ..., with cumulative
distribution function {c.d.I.) F(u} are applied to these points, then the process
with points t; + U;, j=0, 1, ..., has, from expression (2.7.3), probability
generating functional (p.gf.) given by

G % B+ sﬂia_

exp * — E(u + )y dF(u) — 1] plr) dt

[ tet0) = 1] plo = ) aF)) e

i.e., the displaced process is also Poisson. It has mean rate { p(v — «) dF(u).
This result is due to Mirasol (1963).

Next, consider a stationary Poisson process N with intensity p. Because
of the independence properties of the increments of N one has

cum{dN{t,), ..., dAN(t ) = p 81, — t) - St ~ tx)dty - dig
K =23, ..., and so from {2.5.30), the cumulant spectra of N are given by
Felkis ooy A1) = @21) ¥ 1p @.11.11)

It

exp
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for K = 2, 3, .... Being stationary, the process has a spectral representation
expfitd} — 1

Nit) = % SRSz ()

In view of (2.11.11) and (2.5.33), the process Z(1) has the interesting property
cum{dZ{A,), ..., dZ(A) = 2a) **p 84, + - + &) (21L12)

When a type | counter with dead time A is applied to a stationary
Poisson process, the interpoint distribution simply becomes the original
exponential translated by A. To see this, note from (2.7.11) that the condi-
tional intensity function of the output process is given by

yt,wy=p for Ty, +ASE
=0 otherwise
Therefore, from (2.2.16)

Prob{t, > t|1;=t,j<Ji=1 for t<t;_,+A

.

ﬂali_
giving the result.
Consider now a Poisson process N,(t) with intensity function dp{t). Con-
sider the characteristic functional of the process

Xo{t) = (Nolt) — Op(t))/o

where o2 = Op(t). From (2.11.3) the functional is

E exp ﬂﬁ. ._. X olt)E(t) i = eil. ._. & (t) &v

vazu for tz2t;.,+A

1y-1t4A

x 96“._. (exp {i¢(t)/a} ~ 3%35“

— nxnn l,_. E() dt

as 0 — ov. This is the characteristic functional of the Wiener process. This
result suggests that a Poisson process with high rate may be approximated
by a simple function of a Wiener process.

Suppose now that H[¢] is the factorial cumulant generating functional of
a stationary point process with finite intensity p. Let

N.t) = My(t/n) + - + M,(t/n)
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where the M ; are independent realizations of M. Then the factorial cumulant
generating functional of N,, is

nH[¢(nt)]) = n ‘*. Emt)p dt + o AMV - p % E(e) de
as n — oo. This is the factorial cumulant generating functional of a Poisson
process with intensity p. Hence the limit in distribution of rescaled superpo-
sitions of independent replicas of a point process is Poisson. This form of
argument appears in the article by Vere-Jones (1968). More general results
on the Poisson limit occurring when point processes are superposed appear
in the chapter by Cinlar (1972).

Consider a process M with intensity p and factorial cumulant generating
functional H{{] Consider the effect of applying the thinning operation rep-
resented by (2.7.8) with Ef(t) = x and letting n -» 0. (This would be the case
if the same thinning operation with 1 < 1 were applied repeatedly.) Let N,
denote the thinned process. Consider the rescaled process N, (t/n). From
(2.7.10} its factorial cumulant generating functional (f.c.g.fl} is given by

H[né&{tn)] = log E exp

- logf{l + n&(nt)} dM Ev

~ log E exp

| nt(ne) &Ecv

~log E niai az:\ai Eu) %V (2.11.13)

n-+{

using a Wiener type of formula. When the process M is ergodic

lim aM(l/n) = p

L fad ]
almost surely and (2.11.13) becomes p | &(u) du, the factorial cumulant gen-
erating functional of the Poisson process with intensity p. This result is
suggestive of why the Poisson process is sometimes said to correspond to the
law of rare events. It may also be developed via the zero probability function.
More lormal developments of thinning results may be found in the article
by Kalienberg (1975).

As an alternative procedure leading to a Poisson limit consider the fol-

lowing result of Volkonskii and Rozanov (1959). Let #,, denote the Borel
field generated by events of the form

{N(v)) = Nlu,) s ny. ., N{og) — N(ug) < ny

a < i <t <h, n anonnegative integer, K = 1, 2, .... The process N is
called strong mixing with mixing coefficient a(t) when

(1) = sup{|P(AB) — P(A)P(B)}: Ain F_,_,,Bin #,, .} —0
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as 1 o0, Volkonskii and Rozanov consider a sequence of stationary
processes N7, T=1, 2, ..., with N7 (i) having intensity of the form pey,
g7 —0, as T— oo; (ii) having mixing coefficient «'(z) —» 0 uniformly as
t — o0, and such that a"(t) = a(t); and (iii) E{NT(t/e)INT(t/e7) — 1]} = o)
as t — 0, T — co. They show that under these conditions NT(t/es) tends in
distribution to a Poisson variate with mean pr.

The point process obtained by retaining every kth vo::. of a wﬂmo:mQ
Poisson process is called an Erlang process. Its interpoint &mﬁvczo:m will
be independent gammas, in view of the exponential distributions of the
Poisson. An Erlang process may be viewed as the output of a counter &.ﬁ
remains paralyzed for k — 1 points. It is a renewal process. Useful properties
may be determined as particular cases of the renewal process properties to
be set down shortly.

Consider an ordinary time series with nonnegative mmaw_a .vm:‘m
plt. @), @ in @, 0 <t < oo. Having obtained a particular _.nm_mwmzoz.o_.
this series, generate a Poisson process with intensity p(z, w’). The point
process N obtained in this manner is called a doubly stochastic Poisson. The
product densities of N are given by

pfty, .-, tx) = E {plt,, ') -+ pltx, &)}
= mglty, ..., Ix) (2.11.14)

the moments of the original series. In the case in which p(t, ') = Ra.c\v ...Sa
the latter variate has c.d.f. F(p), the product densities are constant in time
and given by

pilty, ... tx) = | p* dF(p) (2.11.15)

The cumulant densities of the process are given by
gty -, t) = cumip(ty, '), ... plix, @)}
=cxlty .o tx) (2.11.16)

i.c., they are those of the original process. The zero probability function is
Sl =E eiﬂﬁ plt, @) &“ (2.11.17)

The probability generating functional is
6le1 = E exp 0) - 1) w) a= =i -1 @1118)

in terms of the characteristic functional of the original process.
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The conditional intensity function is

e, w) = E {plt, )| N@u), u <t} (2.11.19)

1t is seen to be the minimum mean squared error estimate of the level of the
intensity process at time ¢, given the history of the point process. One may
write

Gylt; ;. j < J) = Problt, > t|1;=t;, j < J}

E {p{te. o) =~ plts—y, ') exp{=Jo plu. ') duj}
Eo{plto, ') -+ plts- 1, o) exp{— 4 plu, ') du}}
Using this representation and (2.2.15)

Eu{plt, ') expifo log plu, ) dNQw) = fo plu ) dul} 5 1, o)
E,{exp{fi log p(u, @) dN{u) - fo plu, »') du}}

The likelihood function may be written in two distincl ways: as

y{t, 0) =
m exp .ﬁ log p(t, ') dN(t) — b.q plt, w') &v (2.11.21)
or, from @.N._d, as

exp b‘ﬂ log y(t, w) dN(t) — ﬁ, y(t, w) &v

o

with y{t, w) given by (2.11.19).
When the doubly stochastic Poisson is thinned, as at (2.7.8), its probabil-
ity generating functional becomes

Gién+1—n]= .m exp{[&(t) — tn(t)p(t, ') dt}

and so the thinned process is doubly stochastic Poisson as well.

If {p,(t, @), ..., p,(t, @)} is an r vector-valued ordinary time series with
nonnegative components, then suppose that independent Poissons are gen-
erated with intensities p;{t, '), ..., p,{t, @), respectively. Suppose that these
Poissons are superposed. Then the probability generating functional of the
superposed process is

E oxp [ )~ 10 o)+ + bt )] d
and the wcvﬁvomoa process is seen to be doubly stochastic Poisson.

Suppose next that 14, t,, ... are the points of a realization of a doubly
stochastic Poisson. Suppose the points are subjected to independent random
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displacements U,, U,, ..., respectively, with c.d.f. F(u). Then from (2.7.3)
and (2.11.18) the probability generating functional of the displaced process is

% (- +u)dF(u)| = E exp ﬁ [¢() - m: plo — u, e_ZEvTe“

and the displaced process is seen to be doubly stochastic Poisson.
Let us return to the discussion of thinning a general point ?.oonmm given
preceding expression {2.11.13). Suppose now that
im eM(1/e} = p(w)
£+
with the limit depending on the particular realization. Then the hmit of the
factorial cumulant generating functional is

plo) [ e )

and the limit is seen to be a doubly stochastic point process in this case.

If the process p(t, ) is stationary, then the form of the probability
generating functional of N shows that N is stationary as well. Its intensity is
m,, the mean level of the process pfr, ). From (2.11.16) its autointensity
function is

log E exp

p2(u) = ¢, (u) (2.11.22)
and hence from (2.5.27), its power spectrum is given by
()= @r)"'my + £7'(2) (2.11.23)

where f3'(A) is the power spectrum of the process pft, w'). Expression
(2.11.23) indicates a defect that doubly stochastic processes have regarding
their use in the general modeling of point processes. Their power spectra are
necessarily bounded below by {2m)™' times their intensity. This is a
reflection of the fact that the doubly stochastic Poisson is more disorderly
than a Poisson process with the same intensity. Expression (2.11.22) indi-
cates that the autointensity function may be any function that can be the
autocovariance function of a time series with nonnegative sample paths. If
the higher order cumulant spectra of the series p(f, ') are denoted by
fi'(Ay, ..., Ak—y), then using (2.11.16) the Kth-order cumulant spectrum of
the process N is given by

:?..:;T;u,w_ ni-S.AM ... ¥ \:v (2.11.24)

FEY] JEvE-1
where the summation extends over all partitions (v,, ..., v,)of theset (1, ...,
K), Ax = —Ay — - — g, and f;’ = my (se¢ Brillinger, 1972, Theorem 3.3).
Expression (2.11.23) is the case K = 2.



102 Darid R. Britlinger

Macchi (1975) discusses the fact that the product densities of a point
process may have the form (2.11.14) without the process p(t, w') being non-
negative. Asymptotic independence and mixing properties of the process
plt, @) generally carry over to a doubly stochastic process N. See Westcott
(1972) for the case of mixing.

A cluster process is a point process of point processes. It has two com-
ponents, a process M’ of cluster centers and a process M"(-|r) of cluster
members (centered at t). Each point of M is assumed to initiate an indepen-
dent process of cluster members. The cluster process itself then consists of
the superposition of all the various cluster members. Suppose that the prob-
ability generating functional of M’ is G'[£] and that of M"(-|t) is G"[¢]1].
Then the probability generating functional of the cluster process N is

Gl =ETTG¢|x) = G1G"EI4] (2.11.25)

This relationship is discussed in the article by Moyal {1962). The densities of
the process N may be determined in terms of those of the processes M', M”
using Faa de Bruno formulas. The cases of K = 1, 2 are

a() = [ 0,0, (e, 1) de (2.11.26)
4ty t2) = % ay'(t)g;"(ty, 12| 0) de
+ [ @ a0t deas 21127)

IfM"(-{1;),j = 0, 1, ..., denote the successive clusters, then the process may
be represented by

NI =Y M*(I|1) = | M"(1]0) aM'()

In many cases the cluster distribution is the same for all clusters with
M"(I)t) = M"(I — t) and

G'[¢|t] = E exp .* log &(u + t) dM"{u)

If the clusters each have a single member with density a(u), then
G'[e]t) = Etlu + 1) = [ &(u + t)a(u) du

If M” is Poisson with intensity p”(u), then

Gl = exp efu + 0) = 115" d
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In ﬂ,:n case in which the process M’ is stationary as well, the process N is
stationary. The relationships (2.11.25}-(2.11.27) then become

G[¢]= GG el + )]

=4, _ 4,"(v) dv = q,'E{M"(~ o, o)}
4:(v) =g, * g:"(v—t, —1t)dt

+ @t — ey~ g (—wdide (21128)

Taking the Fourier transform of (2.11.28), the power spectrum of the process
N may be seen to be given by

2

(2n)"'p, var —nﬁiii &s@?v“ + £5'(4) ‘ E % exp{—idu} dM"(u}

(2.11.29)
where

E % exp{— iAu} dM“{u) = _ expl — iAulq, "(u) du
var h exp{ —iAu} 345“ = % q4y"{u) du

+ :. exp{—idu + ilvlq,"(u, v) du dv
The expression (2.11.29) may be found in the chapter by Daley and Vere-
._o_sw.m (1972). Westcott (1971) shows that a stationary cluster process is
mixing if the cluster center process is mixing.

In the Poisson cluster process, the process M’ of cluster centers is Poisson.

Suppose the intensity of the Poisson is p'{t). Then from (2.11.25) N has
probability generating functional

exp{[ [6°[¢ e} - 11p/(r) de

The cumulant densities may be determined as follows:

(2.11.30)

g 6(¢ + 1= [ (X5 [+ [ @) Ee0) = el o )
and so

Gty ..o tx) = * ax’(tes ... tx|)p'(2) dt {2.11.31)
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Some particular Poisson cluster processes may be distinguished. In the
2@5%.1“8: process, the cluster members are independent random var-
iables with density a,{u) and the probability that the cluster is of size n is
n,(n). I g,{z) = Y}, m,(n)z", then

G} = EE [] &t +u) = E |[ &6 + ua(w) du '

n ou j=1 n

=g, || &l + wa(u) du (2.11.32)
Suppose that the variate n has factorial moments > given by
Q_AN + mv.ﬂ M Mﬂ_:mwvmw
K=o K:
The cumulant densities g,"(-|¢) may then be determined as
G’ + 1]t =g |[ &+ wafu) du + 1
_v ! ow )
= M_m e % E(vda(v — t)dv
and so0
gk (g - tx|t) = wafe, — 1) o altg — t) (2-11.33)

_u...oa (2.11.31), the cumulant densities of the Neyman-Scott process are
given by

q 1Foaft, — 1) afty — Op(t) di (2.11.34)

In the stationary case p'(t) = ', 4 = u®, a(u) = a(u), and, in particular,
one has

q, = pE{n}
ga(w) = p'Einin — 1)} | alu — t)ale) dt

If the characteristic function of the density i i
. y is given b Ay=
§ expliuja(u) du, then v 40

£ = (2r) P Eln} + Qr) pEin(n — 1} ()P

and

Sallys s Aoy )= @r) 51 »M“n &A ¥ \r.v.:

<o 2 Aol 5 4]
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where the summation extends over all partitions (vy, ..., vJoftheset {1, ...,
K)and g = —4; —- , :

The Bartlett-Lewis process is a Poisson cluster process with p'(t) = p/
and the individual cluster processcs renewal processes (i.€., the points are
tocated at 0 = ug, 41, ¥z, ---> with the u;, — 4, J = 0, 1, ..., independent
and identically distributed). The probability that the cluster is of size n is
a(n). The cumulant densities for this process may be determined from ex-
pression (2.11.31) once expressions have been determined for the cumulant
densities of a renewal process. This is done later in this section.

One important problem concerning the analysis of cluster processes is
that of identifying the points of the cluster center process M’ given the points
of the overall process N.

Consider next a Poisson process Ng on the plane (oo, w)?, having
parameter measure R satisfying R(I x (—<c, ), R{{~— o0, ©) x N<ow
for compact [ in B(— o, o). The probability generating functional of Ngis
given by

R

E na_u:..— log A (u, v)Ngldu, dv); = exp ﬂ: [ (u, v) — 1R (du, dv)
(2.11.35)

Consider the point process Ng* on the line determined by superposing the
two marginals of N g, namely

N ()= Nal(= 0, 1] % (=0, 0)) + Na{{= 00, 20) x (=20, 1)

Its probability generating functional is determined from (2.1 1.35) by setting
A (u, v)= E(u)é(v) and may be writlen

Gle] - exp | 10— IR x (= ) + R((=co: o) ]

+ [[ 186 - 1)) - 1IR@w, Ew (211.36)

In the case in which R is absolutely continuous with density r{u, v) and

ry(v) = ‘ r(u, v} du <

ru)= _ r(u, v) dv < 0,

expression (2.11.36) shows that Nz* has intensity function ry(¢) + raft} and
autocovariance density 2r(t;, t,). This construction shows that any non-
negative function q,(t,, 1) which is integrable in either variable, may be the
autocovariance density of a point process. In the stationary case g,{t,, t2) =
q,(t, — 1), and itis seen that any nonnegative integrable function can be the
autocovariance density of a stationary point process. The rate of the process,
as constructed earlier, will be ¢, = § g2(u) du.
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The Gauss-Poisson process (introduced by Newman, 1970, and discussed
by Milne and Westcott, 1972} has probability generating functional

exp | [¢(u) — 1JQu(du) + } || [E(w) — 1[0} — 1]Qu(du, dv)}  (21037)
with @, (du, dv) = Q,(dv, du}. It is seen that the Gauss-Poisson process may
be represenied as N + N§,;, where N is a Poisson process independent of N
with intensity measure Q,{dt} — Q,{dt x (o0, 00)). 1t is clear that this
procedure may be extended to construct point processes with given (inte-
grable in K — I arguments)nonnegative cumulant density of order K. From
expression (2.5.16) the index of dispersion of the process here will be

_ &«a Jo g2ty ~ t;) dt, dt,)
=1+ ﬁwhfﬁu - uwvn:;&_mw“

and so I{oo)=2. Also, f3(0)=gq,/n and | f,(A)— q,/2n! < | £,(0) -
41/2n|, indicating that this process too is overdispersed compared to a
Poisson with the same intensity.

Hawkes {1972) introduced the class of self-exciting point processes. These

are defined on the interval (— o0, o) and have conditional intensity of the
form

o

ﬁr&fux+_

bl ¢

=+ Y alt 1)

LIS

a(t — u) dN(u)
(2.11.38)

where p, a(u) = 0, and |§ a(u) du < 1. {The first condition herc cnsures that
the conditional intensity is nonnegative; the second ensures that the process
has finite intensity.) The parameters of such a process satisfy the following
relationships:
Pe=H+m _ afu) du
Y0

920) = | allalu — v) do

S = p, 2] 1 - A(H)[’]

u > 0, where A(4) = [ exp{—idu}a(u) du. The process is stationary, and has
the following interpretation as a cluster process: (i) Immigrants arrive in
accordance with a Poisson process of intensity g (ii) The immigrant who
arrived at time 7; generates descendants in accordance with a Poisson
process of rate a{t — 1;). (iii) The descendants in turn generate descendants,
and so on. (This representation is discussed by Hawkes and Oakes, 1974.)

The process may be modulated by f(t, @) = # to produce a further self-
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exciting process, provided § [§' a(u) du < 1. By arranging for A{i)to be a
rational function of 4, the power spectrum may be a rational function and
the process will be analogous to the stationary N-tuple Markov Gaussian
series.

An explicit expression is not known for the probability generating func-
tional of a self-exciting process; however, it may be represented as

G[¢] = exp

~nf = HEC + ) du
where H[Z] satisfies the integral equation
H[¢) = £(0) exp | — | (1 = HIE(- + u)alu) du

H{¢] is here the probability generating functional of the cluster generated by
an immigrant arriving at time 0 (see Hawkes and Oakes, 1974).

Using expressions {2.2.17) and (2.11.38) the likelihood function may be
written down directly in terms of g, a(-). and N(t), 0 <t < T. Also, from
expression (2.2.16) one has, for example,

Problt, > t|1;, j < J}

anﬁ“%tﬁ Iﬁ.__lvl ._._ _..

= “masivey - g}

al{u — v) du dN(v)

Rice (1975) has considered the problem of determining A(4) and a(u) from p,
and f,(4). The particular case of u{n) = o exp{— fu} is investigated in some
detail by Oakes {1975). -
Suppose that the members of the sequence t,. y,, y,, ... are statistically
independent variates. Then the corresponding point process is called a re-
newal process. The Poisson and Erlang processes are examples of renewal
processes. Generally the variates y,, y;, ... are assumed to be identically
distributed. Suppose their c.d.f. is 4(y), their density a{y), and their hazard
function h(y) = (d/dy) log[1 ~ A(y)} Suppose Aq(y). ao(y). holy) are the
corresponding parameters for t,. Then the conditional intensity function is

here given by
(1, w) = hy(t) for N{)=0
=h(t — tyy-,) for N{t)=1 (2.11.39)

By first principles, the intensity function of the process is given by
Pil) = aole) + | alt — ulao() du

+ _‘_ al{t — walu — v)ag{v) du dv + - (2.11.40)
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m:vv&» that the Laplace transform of p,(t) is denoted, for Re s > 0, by
Pi(t) = |& exp{—st}p,(t) dt, with a similar definition for ay(s), a(s). Taking
the Laplace transform of each side of Eq. {2.11.40), we obtain

o(s) + do(s)als) + aols)als)* + -
ao(sy[1 — als)]

If the process is to be stationary, then p,(t) = p, and Eq. (2.11.41) reads
pufs = dolsW{L — als)]

it

pi(s)

H

(2.11.41)

and therefore the initial distribution should have Laplace transform ay(s) =
[l — a(s))/s. It may be verified that this is the Laplace transform of
ao(y) = p\{1 — A(y)}, and it may be further verified that for the density to
integrate to 1, it is necessary that p, = 1/E{y,}. The inverse character of the
relationship between the expected interval length and the intensity should
have been anticipated. In Section 2.5 it was seen that the relationship applied
to general stationary point processes. The general theory of Palm distribu-
tions may be applied to show that the point process is strictly stationary
with the choice ay(y) = [1 — A(Y)VE{y;}.
The product density of order 2 of the process is given by

Pa(ty, t2) = Prob{dN(t,) = 1{N{t,} = Up(t, ydt,

Now for t, > t;
Prob{dN(t) = 1| N{0} = 1}/dt,

= alt) + [ ale — ulau) du + [ ate - wpatu — v)ao) du do + -
= b(t)
The Laplace transform of b(t} is here given by

Bis)= | exp{—stjb(e) de = afs) + als)? + -

0

= a(s)[1 — a(s)) (2.11.42)

for Re s > 0. In particular cases this relationship may be inverted to obtain
b(t), and then one has the product density of order 2 as

pa(ty, t2) = pylt Yot — ¢4)
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for t, > ;. In the stationary case p,(u} = p; b{}u|). This relationship may be
used to determine the power spectrum. Except at 4 =0

foh) = @) 'py + @n) " [ expl—idulpy(u) du

=(2n)"'py + (2n)"! —8 exp{ — idu}p,(u) du

‘0

+ (2n)! —s explidu}p,(u) du

= 2n)" p, + (2n)"'p,bGiA) + (n) 'pB(—id)  (2.11.43)

(by continuity, the same formula applies at A= 0). This, together with
(2.11.42), gives the required expression. A similar expression may be set
down for the general cumulant spectrum. First set

glAp - ) =Py M Blidp olidpy + idpy) - BlApy + - + idpy—y)

where the summation is over all permutations P of the set (1, ..., k). Then

b?:...:-;nsav;:_,M_ Q.AM Lo ¥ »_v (2.11.44)

iewny jevy
where the summation is over all partitions (v,, ..., v ) of{1,..., K} and it is
understood that A, = ~4, — --- — ¢ ,. The corresponding product den-
sity is given by
pilty, - tx) = pyblta — ;) - bltx — tx-s)
m.O—. n— < mN R
The likelihood function of a given set of data on {0, T] may be written

(2.11.45)

* holu) du — ﬁ_ h(u) du — -

0

ho(toY(y,} -+ hiy,) 96“1.—

0
T~y

hte) du (2.11.46)

- _.: h(u) du — .—

0 0

with J = N(T) — 1. Cox (1972) develops some properties of the modulated
renewal process having conditional intensity function

exp{Byzi(t) + - + Bz {thr(t, w)

where 7(f, @) is the conditional intensity function of a renewal process,
B.. ..., B, are unknown parameters, and z,{t), ..., z,{t) are known functions.
For example, Cox suggests consideration of the likelihood conditional on

the order statistics of ¥y, ..., ¥ng-1-
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A variety of generalizations of the renewal process are possible. Expres-
sion (2.11.39) could be generalized to the case of nonidentical interpoint
distributions by writing

it w) = hit — Ty 10 NEY)

where h(u, j), j =0, 1, 2, ..., are successive hazard functions. The renewal
process may be generalized to the random walk point process by allowing the
random variables 1y, ¥. ¥2, .- to take on negative values and then reorder-
ing the points obtained. Daley and Qakes (1974) develop a variety of proper-
ties of this process. Another form of extension allows a number of successive
intervals 10 be dependent. Wold {1948) introduced the class of Markor-
dependent interval processes. Vere-Jones (1975a) developed certain results for
these processes.

P. A. W. Lewis and co-workers (sec Jacobs and Lewis, 1976) have in-
troduced classes of point processes in which the individual intervals have
exponential distributions (as in the Poisson case), but the intervals are
dependent. Their EARMA (1, 1) mode! takes the following form: {i) {¢,} isa
sequence of independent exponential variates; (i) {U/ ], {V}} are independent
sequences of independent variales taking the values {0, 1} with
Prob{U; =0} = §, Prob{¥; = 0} = p; (iii) A;=pA;.  + Ve, j=12,...,
and A, = & (iv) the interval sequence of the process is given by

yp=fe; + U;A;

j=1,2,...; (v) 1o = 0. This process is stationary. In the case p =0, an
“ exponential moving average model ™ is obtained with power spectrum the
ratio of fourth-order polynomials in 4. .

Consider next a stationary Markov process X(t), 0 <t < oo, with state
space {0, 1, 2, ...} and transition intensities given by

Prob{X (1 + dt) = jiX(1) =k} = qu Qs; dt,  j#k

”—Eﬁk&nq .%.H%ﬁ

with @, = 0,Y; 0,; = 1. Rudemo (1973) considers the point process whose
points correspond to the transition times of the process X. This process may
be represented as follows: let U(j), j=0, I, ..., be a Markov chain with
transition matrix Q = [Q,;]. Suppose the process began at its stationary
distribution. Let {e(j)}, j = 0, 1, ..., be a sequence of independent exponen-
tials with mean I, and independent of the sequence {U(;)}. Then the points of
the process may be represented as 7o = 0,

Tiep = T; + mc.w\acg
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When the point process itself is Markov, it is referred to as a pure birth
process. Its conditional intensity function is now given by

(I, w) = B, N(t)) (2.11.47)

and initial conditions, such as N{0) = 1, are assumed. When p(t, N) = B{(}N,
Blt) is referred to as the birthrate at time 1. Expression (2.11.47) shows that
the process corresponds to modulating a unit Poisson process by the func-
tion f(t, N(t)). The likelihood function may be written

exp|— h B(t, N(1)) dt + _,, log A(t, N(t)) %3“

In the case in which B{t, N) = BN, N{0) = L, the stochastic process is really
N({t) — 1 and the likelihood given data on [0, T] is
T

Iu_

4]

exp

N(t) &“ x M1 x 2 x 3 x - x (N(T)= 1) (21148)

Details of this birth process have been developed by Keiding (1974).

A stationary Markov point process is provided by a doubly stochastic
Poisson with time-independent intensity process p(w’). From expression
(2.11.20), the conditional intensity is given by

E{p(e)""" ' exp{—tp(o')}
E{p(e' )" exp{—tp(w)}
showing that the process is in fact Markov. The intensity of the process is

u = Ep{w’), the autocovariance density o = var p(w’), and the power spec-
trum is

W, w) =

z%
37+ 22 0%)
The delta function at the origin is indicative of the nonmixing character of
the process. The product densities of this process are all constant.

A direct counterpart of the pure birth process is provided by the pure
death process, wherein the points of the process correspond to times of death.
One way of setting up such a process is to consider elements such that

Problfailure in (1, t + dt)} = oxvﬁt.—. h{u) %TS

The conditional intensity function of the process N corresponding to the life
of a single element is

yi{t, @)= h(t)1 — N7}
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If N(t)=}; N{t) corresponds to the times of failure of a population of J
independent elements, then its conditional intensity function is

RO - N(t™)]

A great deal of literature exists concerning birth and death processes (e.g.,
Bharucha-Reid, 1960). These may be considered bivariate point processes
{N,(t), N{t)} with the process N, referring to the times of births and the
process N, referring to the times of deaths. The number living at time ¢ is
then L{t) = N,(t) — N,(r) (assuming that there have been no immigrants), If
births and deaths cannot occur simultaneously, then the processes N, and
N3 may be determined directly from the process L. An equivalent notation
could apply to a queueing system with N, referring to the arrival times of
customers, N, to departure times, and L to the number of customers in the
system.

An extensive literature also exists concerning branching processes. Here
N(r} may refer to the number of individuals alive at time t. The process
evolves through the property that each individual has a probability of pro-
ducing further individuals for the population. The individuals may be
classified as to age or generation. A general reference to the theory of branch-
ing processes is provided by Athreya and Ney (1972).

It is perhaps sensible to conclude this section with a warning to the effect
that a number of the processes discussed can lead to identical functional
forms for certain of the parameters considered. Daley and Oakes (1974)
mention that a particular power spectrum that is a ratio of quadratics in A
can arise as (i) a self-exciting process with exponential kernel, (ii}a Neyman-
Scott process with exponential displacements and a Poisson number of
cluster members, (iii) a random walk point process with the generating
distribution having exponential tails. In a similar vein, a flat spectrum occurs
for either a stationary Poisson process or a doubly stochastic Poisson with
white noise random intensity p(t, «’).

3. INFERENCE

3.1. Linear Statistics for Ordinary Time Series

Suppose that the data {X(t),0 <t < T} are available for analysis. In
many circumstances it is of interest to compute a linear statistic of the form
T

_ P0)X (1) dr (3.1.1)

0
for a given function ¢. For example, suppose that the series X is given by
X(t) = 0le) + &(t) (31.2)
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— o0 < t < oo, ¢ known, 0 unknown, and ¢ a zero mean series. Then the
least squares estimate of 0 is

f= :M )X (1) &v A _M |¢(e) ] i (3.13)

a statistic based on (3.1.1). A theorem is presently given indicating the large
sample behavior of such statistics. First, an assumption is formulated con-
cerning the coefficient functions ¢.

Assumption 3.1. Given the (possibly complex-valued) functions ¢;"(t),
O0<t<oo,j=1,...,J,suppose that as T — o0

(i) coq ¢;7(e + W) &“\,T, balu)

for 0 < u < oo with b;{u) finite and continuous at 0;

(i) {sup |&")|}/T—~0

0s5:sT
forjk=1,....J.

The conditions of this assumption are similar to those of .OE:mnnnm
(1954) and Hannan (1970, p. 215). Examples of functions satisfying the con-
ditions are given shortly. Under the assumption, there exist functions of

bounded variation G;(4), — o < 4 < o0, such that

o0

balu)= | expliud) dG,(d)

Yo

forO<u<ooandj, k=1, ...,J. The dG (1) may be viewed as the limit of
T T
dGi{A)= (2aT)"! _. exp{—idt}e; (1) &_ T exp{ide}d, T(t) dr | dA
"0 ‘0
in the sense of weak convergence. Now one can state the following theorem:

Theorem. Let X(t), — oo < t < oo, be a series of the form X (t) = u(t) + m.S.
with u(t) nonstochastic and &(t) a zero mean stationary mmanw satisfying
condition (2.4.18) and having power spectrum f,(4). Suppose ¢;",j = 1, ...,
J, are functions satisfying Assumption 3.1. Let

U= _ﬁ, ,7(1)X (1) di
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Then, as T — oo, the variate {U,7, ..., U™} is asymptotically normal with
T

EUT = ¢, (0ute)de

cov{U,T, U™} ~ 2nT % " ) dG (= 2) (3.1.4)

forjk=1,..J

This theorem is proved quite simply by evaluating joint cumulants and
showing that, when standardized, those of order greater than 2 tend to O as
T — «o. The case of discrete time and of mixing conditions other than
(2.4.18) has been considered by Hannan (1973a).

Example 1. Suppose J = 1, ¢”(t) = 1. Then b{u) = 1, dG{4) = §(4) dA, and
T

[ x@ae

[}

is seen to be asymptotically normal with mean [§ u{t) dt and variance
2n TS (0).

Example 2. Suppose J = 1, ¢"(t) = exp{ — iAo t}. Then b(u) = exp{—ily u},
dG{3) = 8{4 + 4,) dA, and
T
[ exp{—idot}X(e) dr

"o

is asymptotically (complex) normal with variance 2aTf, {4,).
Example 3. Suppose J =1, ¢"(t)=(/Ty. Then blu)=1/2n+1)

dG(A) = b(0) 5(2) dA, and
“_ ! rX () &“\1_

is asymptotically normal with variance 2n7Tf,(0)/(2n + 1}.

Example 4. Suppose J =1, ¢"(t)=p"7, with 0 <p < 1. Then b(u)=
(1 — p2)[2 In 1/p}, dG(A) = b(0) 5(1) dA, and
T
* pUTX{e) dt

"0

is asymptotically normai with variance 2nTf_(0)5(0).
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Example 5. Suppose the series is given by (3.1.2) with ¢ satislying Assump-
tion 3.1. Then & of (3.1.3) is asympiotically normal with mean & and variance

]

2nT 4| ?333_ \zen

Example 6. Suppose the series X is given by (3.1.2) with ¢ satislying
Assumption 3.1. Consider choosing 0 to minimize

E{[ ] wls - 0[X6) - 08X — 0] ds d

withw(t) = [ explitd}W (1) di, W(4)being symmetric, nonnegative, bounded,
and integrable. The extreme value of ¢ is given by

qﬂqﬂza.;aamx:r:n;\

00

T . T

% [ s@lvm@es&i (3.1.5)

‘0

From the theorem, this statistic is asymptotically normal with mean ¢ and
variance

20T [ L) WO %S_ \ _ W@ a6 ’

By Schwarz’s inequality

[ LD WP d6) [ 10" d6(3) = || WiR) d6(3)

and so the best choice of W(d) is f,{4)"'.
Results similar to those of Examples 5 and 6 may be developed for the
case in which

X(t)=0,¢,(t) + - + Opdp(t) + &)
Related references include Kholevo (1969) and Rozanov (1969). Central
limit theorems may also be developed directly for the case of a series X such
that o/[X] is a series satisfying (2.4.18) for some lincar filter .o/,
3.2. Linear Statistics for Point Processes

In the case of a point process N, given the events of a realization on
(0, T}, one may compute linear statistics

ﬁﬁsnzau&s:::+&;s;, (321)
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for given functions ¢. For example, suppose that N is a process with rate
function of the form p,(t) = 0¢(1), ¢ known and 0 unknown. Then

R T T
1= | sy avol [ 100)F a
0 0
is a linear statistic providing an unbiased estimate of 6. In particular, the
choices ¢t} = cos Ar and ¢{t) = sin At lead to the computation of the finite
Fourier transform

[ ! exp{~iAt} dN(t) (3.22)

Alternatively, taking ¢{t) 10 be approximately the Dirac delta 6{t — ¢,) leads
to a statistic whose expected value is approximately p,{t,), the rate of the
process at time 5. In the case of a Poisson process with rate function p{t),
from expression (2.11.6) the log likelihood function is

[ togp0dn@ - | plo)a

and again a linear statistic appears in an important fashion. Grandel (1972)
and Clevenson and Zidek {1975) consider the use of linear statistics in the
estimation of the rate function in the case of doubly stochastic and time
inhomogeneous Poisson processes, respectively.

Turning to the consideration of large sample mnovamznm of linear sta-
tistics based on point processes, suppose that for the process N of interest

cum{@dN{t,), ..., dN{tx)} = Cxldty, ..., dty)

K =1, 2, ..., with the C¢ of bounded variation in finite intervals, in the
manner of Brillinger (1972). Suppose

T
U ={ ¢ )dNG). =1 ....J

"0
Then one has the following theorem:

Theorem. Suppose that the
T, .T

_ﬂ.._oi%%%%:.i
j=1,..., J, are each of order of magnitude o;* as T - co. Suppose in
addition that

T

_.o .:.ﬁo &,.A:v. H:Lﬁ.k&:. , dig) = ofo¥)
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forjy,....jx=1,...,J and K = 3,4, .... Then the variate {U,7, ..., U, }is
asymptotically normal.

The proof of this theorem is immediate, as the standardized joint cumu-
lants of order greater than 2 tend to 0 under the indicated assumptions.

In the case in which the v_donmw N is stationary, satisfying the mixing
condition (2.5.29), and the ¢, satisfy >mm:=€wo= 3.1, the conditions of the
theorem are satisfied. The variate ."C W% ..., U,T) is asymptotically normal
with the covariance of U;" and U, " given 3_ 2T § f2(A) dG 4(— ). In partic-
ular, the finite Fourier :mbm?:ﬁ (3.2.2) is asymptotically (complex) normal
with variance 2nTf,(4).

The discussion of this section has concentrated on the counts of the
process. Clearly linear statistics may be formed in the intervals. The interval
sequence is an ordinary discrete time series and results of the character of
those of Section 3.1 may be set down directly.

3.3. Quadratic Statistics for Ordinary Time Series

A variety of the quantities computed in the analysis of ordinary time
series are quadratic in the observations. Suppose that the data {X(r),
0 < t < T} are available. Some ¢xamples are as follows:

T |uf

[X(t +w)— ;"X (e) — ¢,"] dt

with ¢,T= T~ [T X(t) dt, computed as an estimate of the autocovariance
function ¢, (u);

0 =T

0

(ii) the periodogram
LT = (2nT)? .—q exp{ —iAt} X (t) dt i

(i) The empirical spectral measure
2ns
2 ()= ,..,oﬁm_qm» AT

(iv) b,.,S;I y %Tawwv 1,7 Awwv (3.3.1)

uﬁo

with W7 concentrated near 0 and integrating to 1, or

ACEE> :Auﬁv (332)
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with s, ..., s, distinct positive integers near TA/2x, as estimates of the power
spectrum f5(4)

o g

with e(t) the residual series X(¢) ~ (), § given by (3.1.5), as an estimate of
the numerator of the variance {3.1.6) and finally

o) 3 foes () o (3F)

s¥0
o |- o)

computed for various functions f and g in the Gaussian estimation of time
series parameters (see Dzhaparidze and Yaglom, 1973).

These exampies lead to the consideration of quadratic expressions of the

form
n 2ns 2ns
—\.ﬂ," = Tz Tr{="
A PN (7) (7)
= [ s - ()X (2) ds a (3.33)
where
2n 2mst 2ns
T - .
0= 3 oo 7747 (F)
j=1,..., J. In connection with these variates, one has the following
theorem:

ﬂ:_wo_..mz_. Suppose that the series X satisfies condition (2.4.18). Suppose
A (x)of 3.33)=4 %Apv with A; continuous, bounded, and absolutely inte-
grable. Then the variate {V,”, ..., V,7} is asymptotically normal with

EV;T ~ % A (e} fole) da (3.34)

cov{¥,T, KT} ~ w.w .— Af)A () f2(a)? da + N%« *. A o)Ay () fr (@) da

2 .
+.Em : Af(@)ABYale, —a, — B) du df (3.3.5)

as T'-» co. Suppose A;(«) = By 'W(B7 '[a ~ A;]) in the manner of (3.3.1),
with W continuous, bounded, absolutely integrable, and integrating to 1.
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Then the variate {V,7, ..., ¥,7} is asymptotically normal with

EV" ~ f3(4)) :
cov{V[T KT~ 2n [ W) da (Br T) 'l 0 4= £4,#0
~0 it A4 A

Suppose J = 1 and A7 is such as to give the statistic (3.3.2). Then the variate
(3.3.2) is asymptotically fo{A)3./(2L).

The large sample distributions of the statistics at the beginning of this
section may be obtained by choice of appropriate A i

Hannan (1973b) develops certain large sample results for quadratic sta-
tistics in discrete time series.

3.4. Quadratic Statistics for Point Processes

Important second-order parameters for stationary point processes in-
clude the product density p,(u) defined by

pa(u) dt du = Prob{dN(t + u) = 1 and dN(t) = 1} (3.4.1)

u # 0; the covariance density q,(u) of

q,(u) dt du = cov{dN(t + u), dN(t)} (34.2)
u # 0, so that g,(u) = p,(u) — p,®; the power spectrum
fi) = @n)"" |py + | exp{— idulqs(u) du (343)

— a0 < A < oo; the spectral measure

A
F,(1)= h () dc (34.4)
the variance time curte
V(1) = var Nt}

= tp, +2 % (t — u)gz(u) du (34.5)
: 2
= A@mwwmv fHla)de (3.4.6)

and finally
var .— (1) &(Ac“

]

po | 607 dt + ([ $ls)o@arls — 1) ds de

= q | (o) [ (@) da (34.7)
where ®(x) = | expliat}(t) dt.
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Given the stretch of data {N{i), 0 <t < T}, with events at points
1o < 1y <+ < Tyn- 1, estimates of each of these parameters may be con-
structed. To begin, suppose that fi;is a nonnegative scale factor tending to 0
as T -+ oo, As an estimate of p,{u) now consider

p,T(u) = card{(j, k) such that u — fy < 1, — 1, <u + Br}/(2B:T)  (3438)

and

T w(lu — 7; + 1.J/Br)
u} =
P2 ) = 2T i) di)
with w{t) nonnegative, as estimates of p,{u). Suppose the process N satisfies
condition (2.5.29). Then when By = L/T, L fixed, the estimate (3.4.8) is dis-
tributed asymptotically as #/2L where # is Poisson with mean 2Lp,(u). On

the other hand, when f8; — 0, but 8, T — o0, the estimate (3.4.9) is asymptot-
ically normal with variance

p2(u) _. w(t)® dt Amﬂﬂ _‘ w(t) dt

These results may be found in the chapter by Brillinger (1975b). The covari-
ance density may be estimated by

q"(u) = po"(u) - (N(T)T)

mvolving either of the statistics (3.4.8) or (3.4.9).
The periodogram of the data under discussion is the quadratic statistic
given by

(34.9)

T 2
1,70y = @aT)™" || exp{—idt} dN(1)

Q
Estimates of the power spectrum may be based on it through the formula
(3.3.1) or {3.3.2). As was the case with ordinary time series, the first estimate
will be asymptotically normal, the second distributed asymptotically as a
multiple of a chi-squared.

A further situation in which a quadratic statistic based on point process

data occurs is with the approximate log likelihood function

NM, log /2 Amm...v + 1,7 ANE\: Awav

derived by thinking of the periodogram ordinates as independent exponen-
tial variates {e.g., Hawkes and Adamopoulos, 1973).

The expressions {3.4.4), (3.4.6), (3.4.7), and (3.4.10) cach suggest consider-
ation of quadratic statistics of the form

SRR

(3.4.10)
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j=1..... J. Provided the A,{x) are continuous, bounded, and absolutely
w::wm_,mc_n. the variate {V,7, ..., V,} is asymptotically normal with first- and
second-order moments m?n: 3 {(3.3.4) and (3.3.5).

The construction of estimates of certain higher order * polynomial ™ par-
ameters of time series and point processes by polynomial functions of the
observations is discussed by Brillinger {1972, 1975b, c}.

3.5. General Parameter Estimation for Ordinary Time Series

In a variety of circumstances, the probability distribution of an ordinary
time series X depends on a finite-dimensional parameter 0. For example, the
series might be defined by

X{1) = ogeft) + a e V(t) + - + a,eP(1) (3.5.1)

or

Bo X(6) + By X1} + - + B, X9(0) = elt) (352)

where ¢ is a white noise series of variance o2, and one might be interested in
estimating the parameter 0 = (o, ..., ®,, o2} in case (3.5.1)and 8 = (o, ..,
., %) in case (3.5.2). In other situations the series might have the form
corresponding to linear regressionon 0 <t < T
X(0)=0,,7(0) + - + 0,057 (1) + £lt) (3.53)
with ¢ a stationary error series, or the form corresponding to nonknear
regression

X(t)=yT(t; 0) + ft) (3.5.4)

where the functional form of ¢7 is known, but not the actual value of 0.

A number of general estimation procedures take the following form: a
loss function Q7(0; X) is given, and an estimate # taken as the value of 8
giving the minimum of Q7(0; X). mamaﬁ_mm of such procedures include
linear least squares where 0= (0y, ..., 0p) of (3.5.3) is estimated by
minimizing

T
Q'O X)=T7 [ |X() - 0,670 =+~ b O dt - (55)

in the case of (3.5.3); nonlinear least squares where

Q'(0; X)=T! ._.° |X () - ¢7(; 0) de (3.5.6)
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in the case of (3.5.4); Gaussian estimation where, as in the case of (3.5.1) and
(3.5.2), the functional form f,{4; 0) of the power spectrum is known and

Qaéuww_ ogfy (7 0) o [

Na \: Na. v!_ m@w: (3.5.7)

for some given function g(4); maximum likelihood where Q7(0); X }is taken as
the negative of the likelihood ratio relative to some fixed measure, of the
given data. A

lemma indicating conditions under which a # constructed in this
manner is consistent, is presented by Brillinger (1975b). Among the condi-
tions are the existence of Q(0) with Q(?) > Q{0,) for 8 # 0, the true pa-
rameter value, and Q'(V: X} = Q(0) + o,(1), 0"(0s; X)= Q(l) + 0,{1)
Under further regularity conditions

aQ(ihy; X)
a0,
is asymptotically Np(0, X;),
3*0T0,; X)
g A*
tends to ¥ in probability and § is asymptotically Np(0,, ¥~ 'L ¥~ !).
In the case of {3.5.3) and (3.5.5) and where the ¢, satisfy Assumption 3.1,

one has
Q(0) = (0= O6){b (OO — 0o)* + [ fua) da

¥ = 2[b,(0)]
Er= T 187 |[ fule) dGu(~2)

In the case of (3.5.7),
- log fo(a; 1)

| 1 :

0O =gy 00 e ) g
2 log f3(a; 04) @ log fa(ox; )
e R

_ . .:o\n: m:o\ut
Er=T ¥+ 7" on [f mmm. 4 U) ¢ mmmu o)
PAQ ot~ 1 Oy)
\LQ :o:ua thy)

dot &w_
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As an cxample of (3.5.4) and {3.5.6), consider the model of a series as a sum
of decaying cosines:

-

X(t)= w.ml & eXp ié.;“omei + &) + &lt)

for 0 < ¢ < T. The matrices ¥, £, may be evaluated and the estimates found
to be asymptotically normal with

vara ~ T~ '4af () (oW (d) !

var ¢ ~ T 'anf (yMo(¢M(¢) ‘o~
var § ~ T 4nf () o(pM () 'a”
Var § ~ T 'anf(y)($M($) ‘o~

where 1,(§) = [o u’ exp{—2¢u} du and J($) = Ly{$)l,(9) ~ 1,(¢)-
As an example of the use of the method of maximum likelihood, consider
the diffusion process determined by

dX(t) = e, X (1)) dt +dW(t)

where W is the Wiener process, u{t, x) =Y 0, ¢,(t, x) with ¢,(¢, x) known,
o = 1, and X(0)= 0. From (2.10.8), the logarithm of its likelihood ratio
relative to W is given by

M 0, _ dult, X(£)) dX(t) - } M 0,0, _ é,(t, X(O)eult, X (1)) dt
f k=0
The maximum bikehhood estimate of § = (0),, ..., 0) is the solution of the
system of equations .

,.,\.W_ 0, _o ot X(O)bult, X (1)) dt = _c &,(t, X)X (1) — dolt, X(1)) di]

j=1...., K. Under regularity conditions, including

. T
ﬁma T-1 ._Q Gt X(O)bilt. X (1)) dt = 1,(0)
Taraskin (1974) shows that § = (0,, ..., §,) is asymptotically normal with
mean { and covariance matrix T~ '[{,(0)] ™! as T — o0.
In the case in which ¢,(t, x) = ¢,(x), the process X may be stationary.
Suppose that it has stationary distribution Gy{x); then Taraskin (1974)
shows that

1400) = | $,(x)u(x) dGofx)

i k=1, ..., K. The stationary case is also considered by Brown and Hewitt
(1975) and Kulinich (1975). When a diffusion process has known loca! var-
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iance a?(t, x), it may be transformed so that o(t, x} = 1 as earlier. Brown and
Hewitt (1975) remark that in the case in which a(t, x) = a(x), the latter value
may be determined almost surely, as

2

im ¥ [X(27") - X(( - D2 = | 0*(X(w)) du
nvan jwl it
almost surely.
As a further use of the method of maximum likelihood consider the
linear dynamic system {2.8.9) wherein F, ..., L depend on an unknown
parameter 0, but not on ¢, i.e., consider the system

dS(t) = FeS(t) dt + GaX(t) dt + K, dW,{1)
dY{t)= HyS{t} dt + J, X(t) dt + Lg dW{t)} (3.5.8)

where W,(t), W,(t) are independent Wiener processes. Suppose that the
dependence of Fy, ..., Ly on @ is such that the system (3.5.8) is identifiable.
{Conditions under which this occurs may be found, e.g, in Balakrishnan,
1973; Glover and Williams, 1974.) Suppose that the data {X(t), Y(1)
0 < t < T} are available and that it is desired to estimate 8. If Ly = L, then
the likelihood ratio of the process Y relative to the process LW, would be
given by

T

exp{L? b (HeSolt) + Jo X (1)) dY(t) - L2 .— (HoSu(t) + Jo X (1)) &\u“

(3.5.9)

where

Seft) = Fy _o So(u) du + Gy | " X()du + L | " Py(u)H® dvelu)

volt) = Y(t) ~ H, h Solu) du — Jo | " X(u) du

and
iiiii = FoPy(t) + Polt)Fe* + KyKo* — L 2Po{t)Hg* Ho Po(t)

with P4(0) = 0. As an estimate of 0, consider the value § that maximizes
expression (3.5.9) for some L. Balakrishnan (1973) shows that under regular-
ity conditions  — # in probability provided L, = L. Bagchi (1975) shows
that this convergence continues to occur for other values of L, eg.,, L = L.
Gupta and Mehra (1974) consider computational aspects of the problem.
Linear regression analysis of time series is discussed, for example, by
Grenander (1954) and Hannan (1970). Nonlinear regression is discussed by
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Hannan (1971) and Robinson (1972). The particular case of W7 a sum of
sinusoids is investigated by Hannan (1973a). Gaussian estimation is con-
sidered by Munk and MacDonald {1960), Whittle (1962), Walker (1964),
and Dzhaparidze and Yaglom (1973). Extension of the Gaussian procedure
to the estimation of parameters of linear systems is carried out by Akisik
(1975). Davies (1973) describes the construction of asymptotically optimal
tests and estimators in the case of Gaussian time series. The use of the
likelihood function in the estimation for Markov processes is indicated, for
example, by Biilingsley (1961) and Roussas (1972).

3.6. General Parameter Estimation for Point Processes

Consider now a point process N whose probability distribution depends
on a P-dimensional parameter 0. Suppose that the data {N{t),0 <t < T} of
points located at 1y < T, < - < Typ- 8r€ available for analysis. Let the
conditional intensity function of the process be given by y(t; #). Following
expression (2.2.17), the log likelihood function of the data may be written

M- 1

1%4 y(t; 0y dt + .ﬂ log y(t; 8) dN{t) = .%,... y(t; 8) de + .Mc log y(1;; &)

Define
T

00 M) = T | 906 0yt~ 7 | log 6 0) dNE)
0

0
in the manner of the preceding section. The maximum likelihood estimate 0
is obtained by minimizing Q7(9; N). Under regularity conditions & is the
solution of the system of equations Q7/o0 = 0, i.e.,

_;. ol ), z:w“._ log y(z;: 8) _ (3.6.1)

o 30 s B
As in the preceding section, # will be consistent and asymptotically normal
under regularity conditions. Here

EQT(0: N)=T"" ﬁ Ely(t; ) dt — T ﬂ E{y(t; 8,) log y(t; 0)} dt

’ (3.62)

for 0 = 0,, the entropy of McFadden (1965). In the stationary mixing case,
expression (3.6.2) will tend to E{y(t; 0) — v(t: 0,) log y(t; 8)}. Let 8, denote
the true value of the parameter. As in the preceding section, with
3Q"(6o; N)
06,
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asymptotically N m,.B. Lr) and
@NQH.AQOW Zu -m‘
AL N
a0y D0y

in probability, # will be asymptotically Np(0, W7 'E; W'} Here
T oy(t; 0) dy(e; 0)*

w1 | . m- 1 LA R ¥
-ﬁ.w.u.h ﬂ.. 1 _O m ..c:. Qw mQ A.WQ

and

T _y y(e; 0) Pyle; OFF

See Vere-Jones (1975b). . o
As a particular case of these results, consider the time inhomogeneous
Poisson process with rate function p'(t; #) on 0 < ¢ < T. Suppose

H- .

lim T [ [p"(e; 0) = p7(e: 0o} log p"(1; 0)] dit = Q(6)

T [+
where Q(0) > Q(6,) for 0 # 0,. Suppose also

T d log p(t; 0,) @ log p™(t; 0,)*
: -1 Tfe.
m T[T 0) e

Then the large sample distribution may be approximated by N (6, T~''¥).
The particular case of

dt = ¥

7 0= exp Y 0,640

seems important in practice, with the ¢, known functions (see Lewis, 1970;
Cox, 1972; Keiding, 1974}. .

Keiding (1974) considers the case of the pure vﬁr. process where
y(t; 8) = 6N(1) and N(0) = 1. The maximum likelihood estimate is here
T

|

-~ - . . o mv;
and {[[§ N(c) di}/6}"*(0 ~ 0) is asymptotically N{0, |
mmmmﬁ (1975, p. 251) considers the case of a Poisson process & rate ]
incident on a type | counter with dead time A. The conditional intensity
function is here

0=(N(T)-1

N{t) &“

y{t; 6)= 0

=0 otherwise

for TN -t + A =1

Comparative Aspects of Ordinary Time Series and of Point Processes 127

from (2.7.13). Snyder shows that the maximum likelihood estimate of @ is

) a;+> 4_
o p|-NO-2 T o

p T rA
il — pA) !
where p = N(T)/T.

Vere-Jones (1975b) discusses a variety of aspects of maximum likelihood
estimation for point processes. Aalen (1975) considers the case of y(t; 8) =
0(t)p(t, w) with ¢ given and possibly depending on the past of N. Aalen

investigates the maximum likelihood estimation of # in the case of constant
0{t), and considers the estimation of

i

if TN(Ti-1 ..TDMHJ

o) = h Oup{)de by B()= .m.ch d(u)™'J{u) dN(u)

where J(t}) = lim, ; o {{p(t — h) > O, I here being the indicator function. He
obtains a central limit theorem by assuming he is dealing with a sequence of
such processes.

An analog of the Gaussian estimation procedure of the preceding section
may be set down in this case of point process data. Suppose the process has
mean rate p(f) and power spectrum f(4; ). Set gld; 0)= f(4; 6)/p(6),
P = N(t)/T. As an estimate of 0, take the value 8 minimizing

b
own-3 § )15 o)

In Brillinger (1975a), conditions are set down under which these estimates
are consistent and asymptotically Ny(fy, ¥~ 'L, ¥ ') where

_ {2 log gla; 0) & log g{a; 6)
¥= ‘ a0, a6, vte
N } 0 log g(x; 0) @ log g(B; 6)
E=T W4T 12
T : a0, 0,

Jalo, —a, —B; 0)
* gl 0wt 0) ¥,

Akisik (1975} extends this procedure to certain “linear” point process
systems.
Davies (1977) investigates the problem of developing optimum tests of

the hypothesis that a given point process is Poisson. Snyder (1975) discusses
tests of hypotheses relevant to certain point processes.
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