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ABSTRACT 

Elephant seals migrate over vast areas of the eastern Nonh Pacific Ocean between rookeries in 
southern California and distant northern foraging areas. Several models of particle movement were 
evaluated and a model for great-circle motion found to give reasonable results for the movement 
of an adult female. This model takes specific account of the fact that the movement is on the 
surface of a sphere and that the animal is apparently heading toward a particular destination. The 
parameters of the motion were estimated. Such a great-circle path of migration may imply that 
these seals have the ability to assess their position with respect to some global or celestial cues, 
allowing them to continually adjust their course and achieve the most direct geodesic route between 
origin and destination of migration. But the navigational mechanism actually used by these seals 
to accomplish such feats is as yet unknown. 

Deux fois par annee. les elephants de mer entreprennent de longues migrations au nord de 
I'ocCan Pacifique. Plusieurs sont poneurs d'instruments qui enregistrent la profondeur et I'intensitt 
lumineuse h intervalles rtguliers. Ces instruments sont ensuite recupirts et permettent de faire 
plusieurs estimations. par exemple les positions i mi-journte. Dans cet expose on s'interessera h 
la modelisation des itineraires de surface des animaux i I'aide d'equations differentielles stochas- 
tiqeus. Les distances sont suffisament importantes pour ftre incluses dans le modele la nature 
sphtrique de la surface terrestre. Une question intiressante est de determiner si les itineraires sont 
des grands cercles de la sphere terrestre. 

1. INTRODUCTION 

Many marine mammals travel great distances each year between breeding and calving 
areas and seasonally productive foraging areas. Northern elephant seals (Mirounga an- 
gustirostris), for example, are exceptional migrators. They spend most of each year at 
sea and range over vast areas of the eastern North Pacific Ocean during double annual 
migrations between California rookeries and distant northern foraging areas (Stewart 
and DeLong 1995, Stewart 1996). Similarly, southern elephant seals (Mirounga lemina) 
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range over vast areas of the Southern Ocean (e.g., McConnell and Fedak 1996, Bester and 
Pansegrouw 1992). Although the navigational mechanisms involved in these remarkable 
migrational feats are as yet unknown, an initial step of describing the migratory trajecto- 
ries with various formal models may help to develop testable hypotheses. One possibility 
is that the seals follow great-circle paths. If so, this would imply that they are able to 
assess their position relative to some astronomical or global magnetic background and 
constantly make course corrections, as do oceangoing ships when navigating, to achieve 
the shortest geodesic distance provided by such a route. Elephant seals dive and forage 
continuously while migrating. Such behaviour could pull them away from the direct route 
from origin to destination, and it could be modelled as stochastic fluctuation. Here the 
fit of the great-circle model of particle movement is evaluatcd for a particular northern 
elephant seal, in part to examine the hypothesis that such animals can migrate along 
great-circle paths. 

The top graph of Figure 1 presents the surface track for one seal during the post- 
breeding-season migration. This figure led to speculation that the seals would sometimes 
follow a great-circle path. A great-circle path is indicated in the bottom graph for 
reference. 

The paper first mentions some of the work of previous authors on the stochastic mod- 
elling of particle tracks. Then some material concerning stochastic differential equations 
is recorded. Section 3 concerns the motion of a particle on the sphere for the case of 
the particle heading towards a particular destination. Section 4 focuses on the problem 
of estimating the parameters of the spherical motion. The next section reviews the data 
and data-collection procedures. Section 6 describes the analysis and presents results, the 
principal one being an examination of the hypothesis that the motion is a great circle. The 
statistical analysis presented involves a rotation of the spherical coordinates so that the 
destination is the North Pole, followed by a search for systematic departure of longitude 
changes from noise of mean 0.  Section 7 provides some introductory remarks on dealing 
with measurement error. Finally there is discussion, an appendix on rotating spherical 
coordinates, and an appendix presenting the data. 

2. MODELS FOR PARTICLE MOVEMENT 

Various authors have employed random-walk models for animal movement. Some par- 
ticular cases follow. Okubo (1980) devotes a chapter to the topic. Kareiva and Shigesada 
(1983) studied butterflies and caterpillars. A general reference is Levin (1986). McCul- 
loch and Cain (1989) studied swallowtails, butterflies and goldenrod. Dunn and Gipson 
(1977) modelled deer movements, assuming that such data were generated by a multi- 
variate Omstein-Uhlenbeck diffusion process (see also Dunn and Brisbin 1985). Moore 
(1985) and Zwiers (1985) modelled iceberg movements as vector ARIMA processes. 
Some authors (e.g., Hadeler et al.  1980, Niwa 1996), sought to describe annual move- 
ments by variants of Newton's equations of motion, with Niwa evaluating fish movements. 
Preisler and Akers (1995) employed an autoregressive scheme to model the heading of 
a bark beetle attracted towards a source. Malik et al. (1994) investigated the motion of 
microtubules. Oceanographers have studied drifting-buoy movements; see Brink et al. 
(1991). Wagner (1986) and Wehrhahn et al. (1982) studied the motion of one fly pur- 
suing another. Bril (1995), in studying hurricane tracks, considered a state-space model 
with a randomly varying drift. 

An original term for "stochastic process" is "trajectory", so it is interesting to be re- 
turning to the roots of the subject. Stochastic differential equations (SDEs) are a powerful 
tool for conceptualizing processes and investigating trajectories. These equations have 
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FIGURE1: 	The top graph is the track of one seal heading from an island off Santa Barbara to a 
region in the Northwest Pacific and return. The bottom graph is a great-circle route, for 
reference. 

some surprising properties. Their solutions, when continuous and Markov, are referred 
to as diffusion processes. 

By way of introduction, consider representing a random walk in the plane by a bivariate 
Brownian. Letting (X,, Y,) represent a particle's location at time t ,  the SDE for the motion 
may be written 

with { U , }  and {V,) independent standard univariate Brownians, i.e., Gaussian processes 



434 BRlLLlNGER AND STEWART Vol. 26, No. 3 

with mean 0 and covariance function min{s, t ) .  Suppose one changes to polar coordinates, 
r, = d m ,$, = atan ( Y , , X , ) ; then the SDEs ( I ) , (2) become 

aL 
dr, = -dt + o d U , ,  

2r, 

via It6's lemma (see Karlin and Taylor 1981, Bhattacharya and Waymire 1990, Oksendal 
1995). The appearance of the drift term 0 2 / 2 r ,  in (3) is perhaps surprising. This term 
dominates the behaviour of r, near the origin, pushing the particle away. In the case of 
$, the change is highly variable when the particle is near the origin. The process { r , )  is 
known as the two-dimensional Bessel process. 

Now consider motion in R? One important process, the Langevin or Ornstein-
Uhlenbeck, is defined by the SDE 

d ~ ,= - P X ,  dt + dB,  ( 5 )  

with X representing location, x representing velocity, - P x  representing dynarnical fric- 
tion, r a 3-by-3 matrix and B, Brownian motion in R3; see Chandrasekhar (1943) for 
example. It may be that the particle is moving in a force field, in which case a term 
K ( X , , t )  dt is added to the right-hand side of ( 5 ) .  

What distinguishes the present work is that the particle is supposed to be heading for 
a specific destination. Kendall (1974) considered the case of a Brownian motion on the 
plane with an "attractive" polar drift. He worked with polar coordinates ( r ,4) centered 
at the target center. The particle, in his case a bird, started at location (D,0) .  In a time 
interval of length dt it moved a distance 6 dt towards the target, then was subject to 
random Gaussian disturbance, of amount a dU, towards the target and amount a dV, at 
right angles to the path. Here U, and V,  are independent Brownians with variance 0 2 .In 
It6 form the motion may be described by 

dr, = - 6 )  dt + a dU,,(g 


These equations reduce to ( 3 ) ,  ( 4 )  when 6 = 0 .  
For basic material on diffusion processes see Karlin and Taylor (1981), Bhattacharya 

and Wayrnire (1990) or Oksendal (1995). Papers and books on inferential aspects of 
diffusion processes include Basawa and Rao (1980), Burgikre (1993), Dohnal (1987), 
Genon-Catalot et al. (1992), Heyde (1994).  

3. DIFFUSION ON A SPHERE 

The description of a particle moving randomly on the surface of a sphere has been 
considered by a number of authors, beginning with Perrin (1928). The infinitesimal 
generator and transition density for spherical Brownian motion were given in Yosida 
(1949). Following directly from the infinitesimal generator are the It6 SDEs 

o2
do,  = -dt + a d U , ,

2 tan 8, 
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FIGURE
2: A simulation of the process (8, 9) for  a seal heading back to the Channel Islands. 

Suppose that a particle on the sphere is migrating directly towards the North Pole at 
speed 6 and subject to Brownian disturbances. (The North Pole is taken for convenience.) 
In analogy with the model of Kendal (1974), the following It6 differential equations are 
set down in Brillinger (1997): 

o2
do, = (----- - 6)2 tan O ,  dt + odu , ,  

o 
d@,= -dV,, (9)

sin 0,  
so long as 0 , f 0 and with @,defined mod 2n. It will be supposed that the particle does 
not start at 0 = 0 or n. The latitude, O f ,  is analogous to r, of (6, 7). If one considers a 
sphere of infinite radius, the planar and spherical formulations coincide. 

Because distances around a constant latitude decrease with increasing latitude, the 
l/sin 8 term appears in (9). Figure 2 presents a simulation of the process (8), (9) meant 
to represent a return trip of a seal to the Channel Islands off southern California. The 
standard error a here has been taken to be 0.005 rad. 

Consider, for example, the expected travel time for the process (8), (9). Suppose the 
particle starts at cos 8 = x and heads to cos 8 = d ,  1 > d > x > -1. In Brillinger (1997) 
it is shown that the expected travel time is given by 

I[-$S_: exP (-$c o Z )~ dz~~ X P($c o s  I.) 1_\2 (10) 

which may be evaluated in spccific cases. 

4. ESTIMATION 

Following Brillinger (1997), the log likelihood ratio of the process, relative to that of 
the case 6 = 0, is 
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In the case that a is known this leads to the maximum-likelihood estimate 

Because the particle reaches the region of its destination eventually, this estimate becomes 
unreasonable in practice if T --t m. 

One can actually obtain an exact estimate of a'; specifically. it is the case that 

Here { t , )  is a partition of the interval that gets finer under the limiting process. The 
stated result is conditional on the given (continuous) realization of 0 , ,0  < s 5 T, and 
it is assumed that there exists E > 0 such that / sin 0, /  2 6 .  The curve 4,refers to 
a continuous curve obtained from the curve 4, either by patching together continuous 
segments or by reflecting 4, whenever it reaches the barriers 4 = 0, n. (It is assumed that 
0 < $o < 2n.) 

In practice the data will be available at discrete time points and the above likelihood 
ratio (11) is not available. However, with a model such as (14)-(15) below, describing 
the position of the particle's successive time steps, one can set down the likelihood 
function and obtain estimates of the parameters. An approximate approach is to do what 
a ship's navigator has done traditionally. Specifically, at the start of a day, based on 
a ship's position, the navigator determines the heading of the great-circle course. That 
heading is followed for the whole day. The next day the navigator determines the ship's 
new position, then the great-circle course based on that position. The new heading is 
followed for that day. Unless the ship is heading due north or south, during its travels 
it will be pulled off the great circle route, but with the course revisions the destination 
is approached. This method leads to approximating the desired conditional density by a 
succession of planar motions with different headings. 

A discrete approximation to the model (S), (9) is provided by 

u2 
- 0, = -- 6 + ~ C I + I ,

2 tan 8, 

t = 0,1,2,  . . ., with the errors independent standard white noise processes and the c,, q,  
independent normal with mean 0 and variance 1. One notes that the conditional expected 
value of given the past is -6 + 02/(2  tan 0,) and that the conditional variances of 
the increments are a2and a2/(sin2 8,) respectively. Estimates of the parameters may be 
derived by the method of moments or by maximizing the likelihood. In this discrete case 
an "exact" estimate of u2 is not available. Then minus twice the log likelihood is 

2T log c? + -1 
x ( s i n 2  t3,)($,+l -@,)'+ 31 

- 0, + b ---
u2 2 tan 0, ' 

which may be minimized to obtain estimates of 6 and o .  Such estimates will be presented 
for the data of Figure 1. 
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5. THE DATA 

The data studied in the present work are from the postbreeding migration of an 
adult elephant-seal female (Mirounga angustirostris). This species breeds on offshore 
islands and at a few mainland sites along the coasts of California and Baja California 
(Stewart and Huber 1993, Stewart et al. 1994, Stewart 1996). Adults are ashore briefly 
in winter to breed, and again in spring (females) or summer (males) to molt, but they 
spend the remainder of the year, 8-10 months, at sea foraging. They make two precise, 
long-distance migrations each year between islands in southern California and offshore 
foraging locations in the mid North Pacific, in the Gulf of Alaska and along the Aleutian 
Islands, covering 18,000 to 20,000 krn (surface movements alone) during the double 
migrations (Stewart and DeLong 1995). The navigational mechanisms employed by these 
superlative migrators are, as yet, unknown. 

The data on diving and movements studied were obtained by a microprocessor-
controlled event recorder which was harmlessly glued to a seal's hair (e.g., Stewart 
and DeLong 1995, Bengtson and Stewart 1992, Stewart et al. 1989). The instrument was 
attached at the end of the breeding season and then recovered when the animal returned 
to land several months later. 

An estimate of daily location was computed from measurements of ambient daylight 
made and stored in the recording instruments. Briefly, estimates of sunrise, sunset, and 
local apparent noon were made from those data, and then latitude and longitude were 
computed [see DeLong et al. (1992) and Stewart and DeLong (1995) for description of 
methods]. The error varies with season and latitude. 

The movement data for the journey of the seal studied in our work are given in 
Appendix B. It is to be noted that days 85 and 11 1 are missing. This was handled in 
this preliminary study by simply using the average of the adjacent values. Brillinger and 
Stewart (1996) cany out some frequency-domain studies of the series of depth values 
recorded during this particular migration, and Brillinger and Stewart (1997) develop 
typical shapes for individual dives and study their temporal occurrence. 

6. RESULTS OF SOME ANALYSES 

To begin, consider the path of the top graph of Figure 1. Figure 3 provides a cor- 
responding smoothed path. This smooth path was determined via the procedure loess 
of Cleveland et al. (1990). One notes the bowing of the route typical of great-circle 
travel. The variability represented in Figure 1 represents both foraging movements and 
measurement error for location. 

For the next analysis it is necessary to take note of the fact that the seal's positions are 
given in latitude and longitude with the destination not the North Pole as was assumed 
the model in (8), (9). Appendix A indicates the formulae for the necessary change of 
coordinates to make the data correspond to the North Pole model. The rotated coordinates 
are denoted by 6, and 8,. 

The model (14), (15) was fitted to the outbound and inbound daily positions, merged 
appropriately, by minimizing the minus twice the log likelihood (16). The estimates 
obtained are 

6 = -0.01 1.3 radday = -72.0 kmlday, 
(16)

6 = 0.00805 radday = 5 1.3 krnlday. 

The estimated standard error of 6 is 0.001 1. 
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FIGIIRI3: Smoothed track of  \eal 91510 

Figure 4 plots the values 

(sin ~I)(&,+l - 61) 


for t = 0, 1 , .  .., separately for the outbound and inbound trips. This plot provides a 
means to examine the hypothesis of a great-circle route. For the great-circle case the 
points plotted should simply fluctuate about 0. A smoothed loess line has been added 
to each figure to provide an estimate of some systematic route. Also graphed are 1 2 -
standard-error levels placed about 0. One does not see evidence against the great-circle 
hypothesis. 

In these computations the procedure adopted is to act as if the uncertainty in the 
destinations is negligible. The seal appears to have the location of its rookery specifically 
in mind when it begins the return movement, so the assumption is certainly reasonable 
then. In the case of the outbound trip the destination was taken as the average of the 
extreme points in the Northwest. 

7. MEASUREMENT NOISE 

A difficulty is the presence of measurement noise. It and the foraging variability are 
confounded in the above analysis. One way to take note of measurement error is to set 
down the additional equations 

with (€I:,4:) now representing the available data and supposing ci.11; noise. If these last 
are assumed independent normals with mean 0 and variances 7'. then, amongst other 
procedures, a Kalman-filter-type analysis may be employed to develop a full likelihood 
and corresponding estimates. The results of this analysis are presented in Brillinger 
(1998). The Kalman filter is employed with wildlife data in Anderson-Sprecher (1994) 
and Anderson-Sprecher and Ledolter ( 1991). 



ELEPHANT-SEAL MOVEMENTS 
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FIGLRE4: 	The scaled longitude differences of (17) with a smoothed line as produced by loess. The 
dashed lines are 1 2  standard error limits about 0. 

8. DISCUSSION 

Future work will incorporate explanatory variables in the model, will employ a 
recursive filter, will better handle the missing values and will analyze other data sets. 

The great-circle path hypothesis was not contradicted by the immigration of one 
northern elephant seal female. The results suggest that a great-circle path model is a 
possible navigational strategy in this species. They also suggest that the seals have a 
destination in mind when departing from an origin (i.e., terrestrial rookery or haulout 
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and pelagic foraging area) and that they are able to continually adjust course en route 
to achieve the most direct route. Further, they imply that natural selection has favoured 
the development of neural and sensory mechanisms that permit great-circle navigation. 
However, the sensory clues actually used are as yet unknown, although several have 
been suggested and studied to various extents in a variety of other animal taxa (e.g.. 
Able 1996, Dingle 1996, Dittman and Quin 1996. Lohmann and Lohmann 1996, Wehner 
er 01. 1996, Weindler er al. 1996, Wiltschko and Wiltschko 1996). 

Navigation by learned reference to geophysical characteristics would seem to play 
only a minor role, as elephant seals are generally far from coastlines and in areas of 
great water depth and little submarine features during most of their migrations. But 
the fit of a great-circle model suggests that some kind of compass may be central to 
the seals' rather precise migration and navigational performances, allowing them to 
continually determine the appropriate direction of each subsequent movement to keep 
en route to the shortest distance between origin and destination. Celestial navigation 
may be involved to some extent, but the brief and sporadic appearance of migrating 
seals at the sea surface, where such clues could be assessed, and their propensity to 
travel mostly at great depths, where such cues are obscured, would argue that it is not a 
primary mechanism. Large-scale magnetic field orientation may be the most plausible of 
potential compasses. But the rather precise navigation of the seals may also imply either 
the existence of a cognitive map to apply the compass to or perhaps simply remarkable 
fidelity to vectors and assessment of distance travelled, independent of any map. At 
present. no such mechanism of magnetic sensory ability or cognitive mapping is known 
for elephant seals. However, knowledge of the ecological and physiological conditions 
under which northern elephant seals find their way while migrating and foraging, which 
have come to be known recently (e.g., Stewart and DeLong 1995, Stewart 1996), coupled 
with the descriptive theoretical model of navigational strategy developed here, can help 
focus questions properly on navigational and orientational mechanisms in this and other 
long-distance. deep-dwelling ocean migrators. 

APPENDIX A. THE CHANGE OF COORDINATES 

A transformation (@,@I--+ ($,8)is constructed. Suppose that the sphere is rotated 
so that the particular point (a,O) becomes the North Pole (0,0), and the great circle 
(@,0) to (a.0) becomes the great circle (0,O) to (0, g). 'fhe required change of variables 
may be derived to be 

cos 0 = cos O cos 0 + sin O sin 0 cos (@-a). 
sin 0 sin (@- a )

tan @ = 
cos @sin  0 c o s ( @ - @ ) - s i n  O c o s 8 '  

Retaining the signs of the numerator and denominator in the last expression will lead to 
an appropriate choice of quadrant for the transformed longitude. 

APPENDIX B. NUMERICAL DATA 

The data are shown in Table 1. 
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Day Latitudc (N) Longitude (W) Day Latitudc (N) Longitude (W)  

54 34.0 120.0 92 46.5 146.3 
55 35.0 121.3 93 47.0 147.1 
56 36.0 122.6 94 46.7 147.2 
57 36.5 123.6 9 5 46.6 146.7 
5 8 36.8 124.6 96 46.8 146.0 
59 36.9 125.4 97 46.2 145.7 
60 37.0 125.9 98 46.5 145.6 
6 1 37.2 126.1 99 46.5 144.0 
62 38.1 126.4 I00 46.2 144.4 
63 40. 1 127.0 101 46.2 143.4 
64 40.3 128.5 102 45.8 142.5 
65 40.6 129.9 103 45.0 142.0 
66 40.5 13 1.3 I04 44.5 141.5 
67 40.9 131.9 105 44.0 141.2 
68 40.5 133.4 106 44.0 140.2 
69 40.8 133.8 107 43.0 139.4 
70 41.3 134.1 I O X  43.0 138.7 
7 1 41.9 134.3 I09 43.5 137.6 
72 42.0 136.0 110 43.4 136.4 
7 3 42.9 136.8 112 42.1 136.4 
74 43.0 136.9 I I3 42.1 134.6 
7 5 42.9 137.6 114 42.3 134.2 
76 43.5 138.5 I I5 42.0 132.8 
77 44.1 139.2 116 41.6 132.2 
7 8 44.3 139.4 117 41.1 132.5 
79 45.0 139.2 118 39.5 131.5 
80 45.0 141.7 119 39.6 130.0 
8 1 45.5 141.6 120 39.0 129.8 
82 46.1 142.8 121 39.6 129.4 
83 46.3 143.1 122 38.5 127.2 
84 46.1 143.6 123 37.1 126.4 
86 46.1 144.4 124 36.5 125.0 
87 46.5 144.8 125 36.0 124.6 
88 46.7 144.9 126 35.0 124.0 
89 46.8 145.5 127 34.6 122.9 
90 46.8 145.5 128 34.0 120.0 
9 1 46.2 145.6 
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