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Employing stochastic differential equations to
model wildlife motion

David R. Brillinger, Haiganoush K. Preider,
Alan A. Ager, John G. Kie and Brent S. Stewart

Abstract. Theconcerniswiththepropertiesof stochastic differential equations(SDES)
describing the motion of particlesin 3 dimensional space, on the sphere or in the plane.
Thereis consideration of the case where the drift function comes from a potential func-
tion. Thereis study of SDES whose parameters are periodic in time. These are useful
for incorporating circadian rhythm in the behavior. The cases of aseal in afrozen lake
inAlaska, an elephant seal migrating agreat distancein the Pacific Ocean and of agroup
of “free-ranging” elk in areserve in Oregon are referred to. For the elk nonparametric
estimates of the drift and variance terms of an SDE model are discussed and evaluated
and the fit of the model assessed. One issue is how to include explanatories, beyond
location and time, inthe model. A number of questions motivated by the wildlife motion
concerning diffusion processes of the type considered are posed at the end of the paper.

Keywords: Circadian rhythm, Diffusion model, Elk, Elephant seal, Nonparametric re-
gression, Potential function, Ringed-seal, Stochastic differential equation, Vector field.
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1 Introduction

The concern isthe use of vector-valued stochastic differential equations (SDES)
to describe the motion of wildlife, with the particular cases of seals and elk
focused on. To illustrate the character of the data Figure 1 presents the 3D
trgjectory of aringed-seal in afrozen lake in Alaska, while Figure 2 shows the
path of an elephant seal migrating out into and then back from the North Pacific
Ocean, and lastly Figure 3 shows an elk moving around in areserve in Oregon.
The trgjectories of the animals are sampled about every 30 seconds, every 24
hours and every 2 hours respectively.
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Figure 1: The trgjectory of aringed-seal diving into a frozen lake dot as seen
from 4 viewpoints. The seal was released at the surface point indicated by the
dot.

In the case of the seal in Alaskathe |ake was frozen and the concern was how
did the seal find its way to air holes. The dot in the figure indicates the ice hole
into which the animal wasreleased. The seal is seen to swim to the bottom fairly
directly, to swim around there for awhile and then to gradually come back to the
original hole. In the case of the elephant seals one wonders how they navigate?
Where do they go? Is their speed approximately constant? Figure 2 indicates
that sometimesthey follow closeto great circleroutes. Inthe case of the elk, the
reserve managers were concerned with guestions like: How to allocate forage?
Is change taking place? What are the effects of traffic? What is the sequence of
habitat use? One can conjecture what things are important to the animals: The
location of cover? The type of forage? The presence of roads? . ..

An important aspect of the use of the SDEs to model such paths is that the
drift and variance terms are meant to include phenomena such as: attraction,
repulsion, barriers, time of day, ... There are interesting statistical questions:
How to include explanatory variables? How to assess the fit of the model? How
to predict future motion? ... A number of interesting questions specifically
addressed to probabilists are listed in the last section of the paper.

Bull Braz Math Soc, Vol. 33, N. 3, 2002



STOCHASTIC DIFFERENTIAL EQUATIONS TO MODEL WILDLIFE MOTION 387

45 —

[atitude

40 —

35 —

[ T T T 1
-160 -150 -140 -130 -120

longitude

Figure 2. Points along the trgjectory of an elephant seal. The curved lineisa
great circle route presented for comparison. The seal starts its journey from an
island of Santa Barbara, California

The paper beginswith adescription of deterministic and stochastic methodsfor
describing the paths followed by particles under the influence of afield. Section
3 provides two specific models. Section 4 presents some details of the statistical
methods employed. In Section 5 the experiment in which the elk data were
collected is described in some detail. Section 6 presents the results obtained.
Section 7 is Discussion and Summary. The final section poses some specific
guestions for diffusion process speciaists.

References presenting models for animal movement include: Dunn and Gip-
son [12], Dunn and Brishin [11], Preisler and Akers [23], White and Garrott
[33], Brillinger and Stewart [ 7], Turchin [32]. The references White and Garrott
[33], Turchin [32]) set down Fokker-Planck deterministic differential equations
(DDEs) for density functions describing the expected pattern of space use. Like-
lihoods may be set down using conditional densities and may be used to make
inferences. Thisdeterministic approachisto be contrasted withthat inthe present
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Figure 3: Pointsalong the trgjectory of one of the elk moving within the Starkey
Experimental Forest.
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and other papers where stochastic equations are set down describing the indi-
vidual paths. Fokker-Planck equations of desired order may be derived from the
SDE models. The SDE approach is appropriate for leading directly to residuals,
simulation and likelihood.

2 Approachesto the description of moving particles

The analytic formulation of the motion of particles is a traditional problem of
physics and applied mathematics. Classical approaches have been devel oped
offering properties of solutions of the equations of motion and interpretations of
the parametersinvolved. This subject matter is useful for motivating the results
of the present work. First consider the deterministic approach.

2.1 Deterministic case

Motion in Newtonian dynamics may be described by a potential function,
H(r,t), see Nelson [21]. Herer = (x, y)" islocation and r istime. The
equations of motion take the form

dr(t) = v(t)dt (2.1)
av(t) = —pv(t)dt —BVH(r(1),1)dt

withr (¢) the particle’slocation at timet, v(¢) the particle’'svelocity and -V H
the external force field acting on the particle, 8 being the coefficient of friction.
Here V = (8/dx,d/dy)" is the gradient operator. The function H is seen to
control the particle’s direction and velocity. For example H(r) = |r — aJ?
corresponds to motion with a point of attraction at a and H(r) = 1/|r — aJ?
corresponds to motion with a point of repulsion at a.
In the casethat the relaxation time 8~ issmall (frictionishigh), the equations
are approximately
dr(t)y = —=VH(r(t),t)dt (2.2

and the velocity, v(7), is no longer involved directly, see Nelson [21].

There has been considerable mathematical development of this material e.g.,
Goldstein [14]. An interesting question given aforce field, F, is whether there
exists a rea function H, such that F = VH? When it does exist, the field is
called conservative, see Stewart (1991) [31]. This question is addressed for the
Starkey elk in Brillinger et al. [6].

Bull Braz Math Soc, Vol. 33, N. 3, 2002
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2.2 Stochastic Case

A pertinent probabilistic concept for dynamic motion of aparticle isastochastic
differential equation (SDE), e.g., see Nelson [21], Karlin and Taylor [17], Bhat-
tacharya and Waymire [3]. Such equations often lead to Markov processes and
take the following form

dr(t) = p(r(t), tHydt + X(r(t), t)dB(t) (2.3)

Herer, u, B arevectorswhile X isamatrix. Thedrift u may beinterpreted asa
velacity field and an example of an estimate will be provided later in the paper.
¥ isthe variance or diffusion parameter while B is a random function such as
aBrownian or Levy process. The parameters and the Brownian process control
the direction and speed of motion.

The parameters have interpretations provided by

E{dr()|H,} = u(r (1), 1) dt

and
var{dr (t)|H;} = Z(r(z),t) dt

withdr issmall and H, representing thetime history of the process, {r (u), u < t}.
The driving process B leads to variability around deterministic motion. This
process might correspond to explanatories omitted from the equations. The
vector u(r (1), t) is seen to represent the instantaneous vel ocity of the particle at
time ¢ and position r. Since the process is Markov, these conditional moments
depend only on the preceding position, r (¢).

A variety of properties are known concerning solutions of SDEs, for example
when H doesnot dependont and ZX° = oZl, thereisoften aninvariant density

7(r) = c exp{—2H(r)/oZ} (2.4)

representing the longrun density of locations that the process visits, see Bhat-
tacharyaand Waymire[3]. Thusinsuchastationary case, by analyzing the paths,
population densities may be estimated.

The situation of a particle being affected by the force field of a potentia
function may be visualized by picturing a ball rolling around in the interior
of a perspective plot of the potential function. In the stochastic case there is
a convenient approximation for viewing the situation. First consider a one-
dimensional processdx = u(x, t)dt +o(x, t)d B(t). Supposethat at timer the
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particle is at location x(r) = x. Then for the particle’s location at time ¢t + dt
take

. 1 ,t
x(t+dt)=x+to(x,0)Vdt withprob ==+ . Vat
2 20(x,1)
see Kloeden and Platen [19]; Prohorov and Rozanov [26]. Asdt — 0 the paths
of this process approach those of the SDE with parameters 1, o. Inthe bivariate
case one generates two such processes. Examples are given in Brillinger et a.
[6].

A random potential/environment may be a useful model. 1t might be used to
describe sealschasing fish, elk attracted or repelled by other elk. Therandomness
is introduced by the motion of these other particles. For the potential function
one might write

J
Hr t)y=alt, )Y |r=X;0f
1

withthe X (¢) locations of moving attractors/repellors. Thiscould be the source
of thedB(r) termin (2.3).

The components H,, H, of the gradient VH correspond to the components
of u of (2.3). One advantage of the potential function approach is that indepen-
dent potential functions from a variety of sourcesadd asin

> H(r. )
l

There may be points, lines or regions of attraction or repulsion and barriers
to beincluded. The barriers can represent actual physical objects (e.g., fences).
The process B includes impulses due to the presence of objects such as trees,
mounds, dipsand natural variability correspondingtoindividual animal behavior.
The fitted SDESs may be used to produce estimates of other parameters, (e.g.
expected speed and distancesto road), to predict spatial and temporal patterns of
animal distribution and habitat preferences, to simulate trajectories and to study
the directionality of the movement for example.

3 Some specific models
3.1 Ornstein—Uhlenbeck

A particular case of an SDE that has been employed in describing animal mo-
tion is the mean-reverting Ornstein—Uhlenbeck (O-U) process; see Dunn and
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Gipson [12]; Dunn and Brisbin [11]. Here
p(r,t)y=~A@-T)
and
Tr,t)=X%

while the mean isa. The O-U process becomes the random walk when A = 0,
i.e., when the drift term, w(r, t), isO.
If A issymmetric and positive definite, the corresponding potential function
is
Hr,t)y=(@-r)A(a—r)/2
and the particle is wandering but being pulled towards the location a. The
invariant distribution is multivariate normal, N (a, W), with

v = / e MEYRT e A duy:
0
seep. 597 in Bhattacharyaand Waymire[3]. If £X7 = oZl, then U = oZA~1/2.

3.2 Diffusion on a sphere

In the case of the elephant seals one can consider the case of a diffusion process
with drift on the sphere, see Brillinger [4]. With ¢ (¢) denoting latitude and
0(t) denoting colatitude the equations of the process are

2

(o2
do, = odU —8)dt
t =0 '+(2tan9t )
o
do, = A%
o sng, '

Here § isthe drift parameter and (U, V;) denotes a bivariate Brownian motion.

4 The statistical methods used

One can consider both parametric and nonparametric methods of inference.
Dunn and Gipson [12] use approximate maximum likelihood proceduresto esti-
matethe parametersa, ¥ of the multivariate O—U processfrom sampled trgjecto-
rieswith constant sampling intervals. Dunn and Brisbane[11] give extensions of
the maximum likelihood estimate to the case where observations are unequally
spaced over time.
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Turning to a more genera situation, the Radon-Nikodyn derivative of the
process (2.3) with respect to the measure of r (¢) = o (r, 1)dB(¢) is

T T
exp:—/ o, ), t)-o(r, 1) tdr +/ |0(r,t)1u(r,t)|2dr/2}
0 0

[22], and estimates of afinite dimensional parameter may be computed by max-
imization. In the sampled time case the SDE (2.3) may be approximated as
follows

(rtipr) —r @)/t — 1) = u(r @), ) + 20 @), tZ;//tiza — 1 (4.1)

[=1,2,...withf; < 1, < t3 < --- samplingtimesand withtheZ, independent
bivariate standard normals. Thisfollows from (2.3) directly. The validity of the
approximation is investigated in Kloeden and Platen [19].

In terms of the individual components (X, Y) of r one has from (4.1)

AX (X,Y,t) + noise

At - IU/)C k) ’

AY .

A7 = uy(X, Y, ) + noise 4.2)

If the drift function components, ., i, are smooth, one seesthat one hasanon-
parametric regression estimation problem. Principal statistical toolsemployedin
the work are smoothing methods and residual plots. The smoothing or nonpara-
metric regression procedure employed to estimate 1, 1, is the function loess()
of Cleveland et a. [9] within gam() of Hastie [15]. It involves the local fitting
of quadraticsin the explanatories.

In the example of the elk, time of day provesimportant and conditional density
estimates are evaluated for selected times of day. Estimates will be provided of
conditional longrun popul ation densitiesand of functionsdepending smoothly on
timeand location and explanatories. Thereareavariety of such estimatesinclud-
ing: kernel-based, spline-based, local polynomial, Hastie and Tibshirani [16].

References to inferential methods for diffusion processes, both parametric
and nonparametric, include Banon and Nguyen [1], Bertrand [2], Burgiére [8],
Dohnal [10], Genot-Catalot et al. [13], Sorensen [29], Prakasa Rao [22].

A question is how to include explanatory variables corresponding to phenom-
enasuch as. fences, roads, streams, forage, cover, terrain, time of day, times of
sunrise and sunset, periods of hunting. Attraction/repulson phenomena might
be described by a potential term H(r,t) = ad(r)? where d(r) is the shortest
distanceto afeature.
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5 TheEIlk experiment

Themain study area at Starkey Experimental Forest and Rangeis 7,762 halarge
and located in the Blue Mountains of northeastern Oregon, Rowland et al. [27].
The forest was enclosed with a 2.4-m tall, net-wire fence in 1988 and radio-
telemetry studies were begun. Each spring a number of elk, deer, and cattle are
fitted with collars containing Loran-C receivers. The collars are instructed to
intercept Loran-C broadcasts at regular intervals and then to relay those signals
to acentral receiver. Locations are then estimated from the time delays.

The study areais also managed for avariety of public uses such as recreation,
hunting, forest management, cattle grazing, and other activities. The shape of
the areais shown in Figure 3. The white areas in the figures correspond to two
small elk-proof exclosures within the study area.

The data are spatial-temporal. The locations of M = 53 elk, (labelled by
m =1,...,M, and recorded at times, ¢,k = 1, ..., K,, for the m-th an-
imal) are given as well as various explanatory variables describing vegetation
and topography. Other habitat features (e.g., distance to road, distance to water)
suspected to influence elk movement, are also available. Thelocations are writ-
ten as a column vector r,,.x = (X,u (tuk), Yo (tnr))™, corresponding to the UTM
(Universal Transverse Mercator) coordinates of the k-th time measurement of
the m-th elk.

The data used in the work of this paper were collected between April 7 and
November 15, 1994 and involve 53 femaleelk. Observationswere omitted for 30
days during the autumn of 1994 when hunting was conducted within the project
area. Preliminary analyses of these data often showed erratic movements that
were not typical of therest of the year. Also omitted were movements where the
timeinterval exceeded 1.5 hoursor waslessthan 0.1 hours. Velocities cal culated
from short time intervals are strongly influenced by telemetry error while long
time intervals generate uncertainty regarding the true trgjectories of elk.

Figure 3 showed the successive estimated locations for one of the elk. The
trgjectories plotted are a sequence of straight-line segments and therefore are
jagged. This discreteness results from the fact that location estimates are only
available once every 0.1-4 hours. Figure 5, to follow, will show the estimated
distribution of all 53 animals at four different times of the day.
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Figure 4. Estimated speed for al 53 elk as afunction of time of day.

6 Resultsof analyses
6.1 Somedescriptive statistics

It isnatural to imagine a dependence of an elk’s movements on time of day and
on location. Temporal dependence can be anticipated from the circadian rhythm
(with a period of 24 hours) in animal behavior. Consider Figure 4, a parallel
boxplot of elk speeds by hour of the day. The ek are seen to be more mabile
around 0400 hrs and 1800 hrs and are less active at night and midday. These
observations agree with previous studies of elk that have shown strong activity
cyclesthat are characterized by dawn and dusk transitions between foraging and
resting habitat. Speed was estimated by the distance between two successive
locations divided by the difference of the observation times.

Turning to the spatial aspect, Figure 5 gives a density estimate of location
obtained by using akernel estimate. The estimate is computed for two hour long
time periods centered at the times 0600, 1200, 1800, 2400, i.e. equi-sampling
the day. The darker pixels correspond to greater density. There are hot spots of
high density and cold spots of avoidance. As computed, these densities provide
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Figure 5. Density estimate based on the data of all 53 elk at 4 times of day.
Darker values correspond to higher density values. The contours are equispaced
from 0 and the four displays are on the same scale. The highest corresponds to

5 elk /km?.
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the long run distribution of elk locations for the indicated time intervals. From
Figure 4 the most active periods appear centered at times 0400 and 1800, while
theleast activearearound 1100 and 2300. Thesetimescorrespond approximately
to the equispaced ones used in Figure 5.

From acomparison of thefour separateimages, thetime effect does not appear
to be simply proportional rather thereisan interaction of timeand location. This
possibility may be investigated more formally. A simple dot plot, see Brillinger
et a. [6], of the locations the animals visit suggests that the sample of elk were
well-distributed about Starkey during the study interval.

6.2 Modeling u

Following the model (4.2) the problem of learning about the vector field u may
be seen as one of nonparametric regression analysis. Estimates of the functions
ey (), py () of (4.2) werecal cul ated viathe function gam() of Hastie[15] making
use of the function lo() of Cleveland et a. [9]. Following (3.1) the weights
tmk+1 — tm.x Were used for the m-th elk.

Thepreliminary investigations of the previous section suggested that elk move-
ments were affected by both time of day and location. One wonders if these
effectsare additive. To study this possibility themodel w(r, r) = g({¢)), g being
supposed smooth, wasfirst fit where (¢) denotes the time of day at timez. Then
the additive moddl, u(r, t) = g({(r)) + h(r) wasfit. Finaly the general model,
wu(r,t) = i(r, (t)), i being supposed smooth, was employed. This succession
of models was employed in order to look for simplifications in the structure.
The spans used in lo(-) were .4, .16, 064 following Hastie (1992)'s page 276
suggestion for obtaining approximately the same marginal span and to make
the analyses nested. (The specific values were picked to be on the small side,
yet to give stable estimates.) The resulting F-values were all 0 to the accuracy
of Splus, and assumed that the F-distribution was appropriate. The degrees of
freedom (DF) were those produced by gam(). The formula for the DFs and
the accompanying F-values are motivated in Hastie (1992) by an assumption of
independent gaussian errors and fixed regressors. When an analysis of variance
was carried out the resulting F-values were all 0 to the accuracy of the Splus
computations. The relation thus appears nonadditive. This complicates the dis-
play of the estimates. Figure 6 presents the estimated . (r, (¢)) for times of day
(t) = 0600, 1200, 1800, 2400 using the final i.e. nonadditive model in time
of day and location. The figures are vector-field plots with the lengths of the
arrows proportional to the estimated /1,2 + 1,2 at theindicated locations. The
angles of the vectors give the estimated direction of motion away from these
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Figure 6: The estimated gradient vector field for times of day 0600, 1200, 1800,
2400 hours.
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Figure7: Locationswhere absolute value of thet-statistic exceedsthe 95% level,
based on jackknife computations.
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locations. The elk appear to be more active at 0600 and 1800 hours, but staying
inalocal areaat 1200 and 2400 hours. Thisis consistent with the information of
Figure 4. Further one sees regions of the vector fields converging towards areas
of attraction, which may be compared with the hotspots of Figure 5.

Further discussion of sampling uncertainty is needed in order to formalize the
inferences. Concerning the vector field plots the jackknife, Mosteller and Tukey
[20], wasemployed. Initsimplementation 50 of the 53 elk trajectorieswere used,
5 trgjectories were dropped each timein the evaluations of 10 pseudo estimates.
Figure 7 graphs the locations where the absol ute val ues of t-statistics exceed the
95 percent point of the Student-t distribution with 9 degrees of freedom. The elk
remain most mobile around 0600 and 1800 and there remain the suggestions of
points of convergence.

These plots provide insights into diel patterns of elk movements. The results
presented in these four panels are consistent with the previous result that the
time of day effect is not simply additive. Figure 6 remains important because
the lengths of the arrows provide estimates of the animals’ speeds as a function
of location.

In summary, this section has presented a method for estimating the vector field
w(x, vy, t) when it is smooth in location and time of day. The dependence on
time of day and location does not appear additive.

6.3 Modeling

Residuals are an important tool for seeking omitted variables, for inferring non-

linearitiesin entered variables and for learning about the basic variability in the

model. Inthe model (2.3) variability isrepresented by theterm X (r, t)dB(t). In

this section residuals of the general fit to time of day and location are employed.
The estimated variance-covariance matrix of the x- and y-residualsis

.05272 .00028
.00028 .06301

It is near diagonal, consistent with the assumption of the independence of the
x- and y-components of the Brownian noise of (2.3).

When an analysis of variance is carried out on the log residuals-squared the
P-values are all negligeable consistent with the variance needing to be modelled
as depending nonlinearly on both time of day and location.
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6.4 Assessment of fit

It is necessary to assess the goodness of fit of the mode fit before drawing
substantial conclusions. For examplethe P-valuesintheANOVA tablesare based
on gaussian, white-noise assumptions. One difficulty in studying the goodness
of fit isthat the data involved are unequally-spaced in time. The periodogramis
auseful statistic to employ in such asituation, see Brillinger [5].

Let

(X(tm,k+l) - X(tm,k) - /:\L(rm,ka (tm,k>)(tm,k+l - tm,k))
8(rm,k’ <tm,k>)

ém(tm,k) ==

denote the standardized x-residuals in the case of the m-th elk Consider the
empirical Fourier transform

A" ) =) (i 1) EXP{—i My i)
k

evalutated by summing over the available time points, ¢, «, for the m-th animal.
The x-periodogram is defined by

|d (1)]?

This statistic was computed for each of the M = 53 elk and the results aver-
aged. Assuming the series have common power spectrum its distribution is ap-
proximately amultiple of chi-squared on 2« M degrees of freedom see Brillinger
[6]. In the case that the spectrum is constant, the periodograms values will fluc-
tuate approximately about a constant level. Figure 8 provides the average of
the 53 periodogams and approximate 95% marginal confidence limits about the
mean periodogram value. The top panel refersto the x-values while the middle
panel referstothe y-values. Thehigh valuesat the low frequencies provide some
evidence that the residuals are not white noise. A time series model allowing
weak correlation between values nearby in time might be necessary. The high
values at afrequency of 1 cycle/day suggest that the time of day component has
not been completely removed. Thismay be because its shapeis changing during
the season.

The bottom panel provides the estimated coherence between the x- and y-
components and an approximate upper 95% null point. It is consistent with the
components being independent asin (4.1).

Figure 9 addresses the issue of the independence of the trgectories of the
elk when time of day and location effects have been "removed” by computing
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Figure 8: The x— and y—periodograms of the standardized residuals and the
estimated coherence. The horizontal linein the coherence plot is the upper 95%
null point.
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F ratio for X-values

cycles/day

F ratio for X-values time of day in model

cycles/day

Figure 9: The X-component F-ratios for looking for a common effect amongst
the elk. The horizontal lines in the plots are the upper 95% null point of the
F-statigtic.
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the standardized residuals. An elementary model introducing equicoherence
amongst the elk residuals contains a component common to all the elk and
independent superposed noise. This leads to the following analysis of variance
approach. Consider frequencies; near afrequency A of interest. For the Fourier
transform of the m-th elk write

me()"l) =u+o+ N,

with © a mean level, the «; random effects, and the n’s errors. For a given A
thisis a classic one-way layout and the presence or absence of the «’s may be
studied by an F-statistic. Theresultsare given in Figure 9, which are plots of the
F-statisticsasfunctionsof frequency. Resultsare presented for the x-component.
Thetop panel graphsthe F-statistic having removed only the effects of location,
i.e., time of day effect is not removed. One sees peaks at the frequency of
one cycle/day and its second harmonic. The lower panel shows the statistic
having fit both location and time of day. In each case the horizontal dashed
line is the upper 95% level of the null F distribution. The empirical values are
seen to be fluctuating about this level, however the peaks are much reduced.
Thereis evidence for some dependence at the low frequencies. Despite that, the
results of thejackknife computationsare still pertinent. Modelling the remaining
dependence is a problem for future attention.

One might examine the possibility that the drift function corresponds to a
potential function. Thiswas done in Brillinger et a. [6], separately for the day
and night data. The hypothesis could not be rejected.

7 Discussion and summary

This paper has investigated the use of stochastic differential equationsto model
wildlifemotion. Modelsof movement are useful toolsto study the ecology of an-
imal behavior and test ideas concerning foraging strategies, habitat preferences,
and the dynamics of population densities. Specific questions for large animals
likeelk include: What are the effects of phenomena such asroads, cover, forage,
time of day, season, and human disturbance? How should one allocate forage
amongst wild and domestic species? What is the effect of vehicular traffic? Is
change taking place? What is the sequence of habitat use? Understanding the
physical and biological mechanisms that regulate animal movements is clearly
acomplex problem. Formal models seem both useful and necessary.
Theanalytic techniques of potential function, stochastic differential equations,
and nonparametric estimation were employed in this paper in the model devel-
opment. The assumption of a potential function led to the setting down of a
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stochastic differential equation for a diffusion process. This SDE assumption
further motivated the estimates computed. 1t may be remarked that diffusion
processes are Markov, whereas more realistic equations would involve timelags
and the process therefore not be Markov. The statistics presented in Figures 8
and 9 provide possible evidence of this occurrence.

8 Some probability problems

1. That the ringed-sedl is constrained in alake and that there is a fence around
the elk reserveis basic. One would like to fit probability models that recognize
this.

Question 1. Given the diffusion process (2.3), how does one tell from the form
of u and X that thereis a closed boundary that keeps the process inside once it
starts there?

2. For some purposes, e.g. understanding variability, one would like to simulate
realizations of the process. The boundary behavior would need to be defined.
Question 2. How does one simulate trgjectories of adiffusion process restricted
to stay in aregion?

3. Sometimes an elk isseen to wander along thefence, i.e. not be reflected back.
Question 3. How does one include in the model the possibility that the process
may follow the boundary for a period?

4. The previous questions had in mind a process in space. Consider the case of
aprocesson theline.

Question 4. For areal-valued process how does one tell that its sample paths
are non-negative?
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