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Abstract. The concern is with the properties of stochastic differential equations (SDEs)
describing the motion of particles in 3 dimensional space, on the sphere or in the plane.
There is consideration of the case where the drift function comes from a potential func-
tion. There is study of SDEs whose parameters are periodic in time. These are useful
for incorporating circadian rhythm in the behavior. The cases of a seal in a frozen lake
in Alaska, an elephant seal migrating a great distance in the Pacific Ocean and of a group
of “free-ranging” elk in a reserve in Oregon are referred to. For the elk nonparametric
estimates of the drift and variance terms of an SDE model are discussed and evaluated
and the fit of the model assessed. One issue is how to include explanatories, beyond
location and time, in the model. A number of questions motivated by the wildlife motion
concerning diffusion processes of the type considered are posed at the end of the paper.

Keywords: Circadian rhythm, Diffusion model, Elk, Elephant seal, Nonparametric re-
gression, Potential function, Ringed-seal, Stochastic differential equation, Vector field.

Mathematical subject classification: 60J60, 62G08, 62M10, 70F99.

1 Introduction

The concern is the use of vector-valued stochastic differential equations (SDEs)
to describe the motion of wildlife, with the particular cases of seals and elk
focused on. To illustrate the character of the data Figure 1 presents the 3D
trajectory of a ringed-seal in a frozen lake in Alaska, while Figure 2 shows the
path of an elephant seal migrating out into and then back from the North Pacific
Ocean, and lastly Figure 3 shows an elk moving around in a reserve in Oregon.
The trajectories of the animals are sampled about every 30 seconds, every 24
hours and every 2 hours respectively.
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Figure 1: The trajectory of a ringed-seal diving into a frozen lake dot as seen
from 4 viewpoints. The seal was released at the surface point indicated by the
dot.

In the case of the seal in Alaska the lake was frozen and the concern was how
did the seal find its way to air holes. The dot in the figure indicates the ice hole
into which the animal was released. The seal is seen to swim to the bottom fairly
directly, to swim around there for a while and then to gradually come back to the
original hole. In the case of the elephant seals one wonders how they navigate?
Where do they go? Is their speed approximately constant? Figure 2 indicates
that sometimes they follow close to great circle routes. In the case of the elk, the
reserve managers were concerned with questions like: How to allocate forage?
Is change taking place? What are the effects of traffic? What is the sequence of
habitat use? One can conjecture what things are important to the animals: The
location of cover? The type of forage? The presence of roads? . . .

An important aspect of the use of the SDEs to model such paths is that the
drift and variance terms are meant to include phenomena such as: attraction,
repulsion, barriers, time of day, . . . There are interesting statistical questions:
How to include explanatory variables? How to assess the fit of the model? How
to predict future motion? . . . A number of interesting questions specifically
addressed to probabilists are listed in the last section of the paper.
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Figure 2: Points along the trajectory of an elephant seal. The curved line is a
great circle route presented for comparison. The seal starts its journey from an
island of Santa Barbara, California.

The paper begins with a description of deterministic and stochastic methods for
describing the paths followed by particles under the influence of a field. Section
3 provides two specific models. Section 4 presents some details of the statistical
methods employed. In Section 5 the experiment in which the elk data were
collected is described in some detail. Section 6 presents the results obtained.
Section 7 is Discussion and Summary. The final section poses some specific
questions for diffusion process specialists.

References presenting models for animal movement include: Dunn and Gip-
son [12], Dunn and Brisbin [11], Preisler and Akers [23], White and Garrott
[33], Brillinger and Stewart [7], Turchin [32]. The references White and Garrott
[33], Turchin [32]) set down Fokker-Planck deterministic differential equations
(DDEs) for density functions describing the expected pattern of space use. Like-
lihoods may be set down using conditional densities and may be used to make
inferences. This deterministic approach is to be contrasted with that in the present
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388 D. R. BRILLINGER, H. K. PREISLER, A. A. AGER, J. G. KIE AND B. S. STEWART

Km

K
m

0 2 4 6 8

0

2

4

6

8

10

12

14

Figure 3: Points along the trajectory of one of the elk moving within the Starkey
Experimental Forest.
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and other papers where stochastic equations are set down describing the indi-
vidual paths. Fokker-Planck equations of desired order may be derived from the
SDE models. The SDE approach is appropriate for leading directly to residuals,
simulation and likelihood.

2 Approaches to the description of moving particles

The analytic formulation of the motion of particles is a traditional problem of
physics and applied mathematics. Classical approaches have been developed
offering properties of solutions of the equations of motion and interpretations of
the parameters involved. This subject matter is useful for motivating the results
of the present work. First consider the deterministic approach.

2.1 Deterministic case

Motion in Newtonian dynamics may be described by a potential function,
H(r, t), see Nelson [21]. Here r = (x, y)τ is location and t is time. The
equations of motion take the form

dr(t) = v(t) dt (2.1)

dv(t) = −βv(t) dt − β∇H(r(t), t) dt

with r(t) the particle’s location at time t, v(t) the particle’s velocity and −β∇H

the external force field acting on the particle, β being the coefficient of friction.
Here ∇ = (∂/∂x, ∂/∂y)τ is the gradient operator. The function H is seen to
control the particle’s direction and velocity. For example H(r) = |r − a|2
corresponds to motion with a point of attraction at a and H(r) = 1/|r − a|2
corresponds to motion with a point of repulsion at a.

In the case that the relaxation time β−1 is small (friction is high), the equations
are approximately

dr(t) = −∇H(r(t), t) dt (2.2)

and the velocity, v(t), is no longer involved directly, see Nelson [21].
There has been considerable mathematical development of this material e.g.,

Goldstein [14]. An interesting question given a force field, F, is whether there
exists a real function H , such that F = ∇H? When it does exist, the field is
called conservative, see Stewart (1991) [31]. This question is addressed for the
Starkey elk in Brillinger et al. [6].

Bull Braz Math Soc, Vol. 33, N. 3, 2002
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2.2 Stochastic Case

A pertinent probabilistic concept for dynamic motion of a particle is a stochastic
differential equation (SDE), e.g., see Nelson [21], Karlin and Taylor [17], Bhat-
tacharya and Waymire [3]. Such equations often lead to Markov processes and
take the following form

dr(t) = µµ(r(t), t)dt + ��(r(t), t)dB(t) (2.3)

Here r, µµ, B are vectors while �� is a matrix. The drift µµ may be interpreted as a
velocity field and an example of an estimate will be provided later in the paper.
�� is the variance or diffusion parameter while B is a random function such as
a Brownian or Levy process. The parameters and the Brownian process control
the direction and speed of motion.

The parameters have interpretations provided by

E{dr(t)|Ht} = µµ(r(t), t) dt

and
var{dr(t)|Ht} = ��(r(t), t) dt

with dt is small and Ht representing the time history of the process, {r(u), u ≤ t}.
The driving process B leads to variability around deterministic motion. This
process might correspond to explanatories omitted from the equations. The
vector µµ(r(t), t) is seen to represent the instantaneous velocity of the particle at
time t and position r. Since the process is Markov, these conditional moments
depend only on the preceding position, r(t).

A variety of properties are known concerning solutions of SDEs, for example
when H does not depend on t and ����τ = σ 2

0 I, there is often an invariant density

π(r) = c exp{−2H(r)/σ 2
0 } (2.4)

representing the longrun density of locations that the process visits; see Bhat-
tacharya and Waymire [3]. Thus in such a stationary case, by analyzing the paths,
population densities may be estimated.

The situation of a particle being affected by the force field of a potential
function may be visualized by picturing a ball rolling around in the interior
of a perspective plot of the potential function. In the stochastic case there is
a convenient approximation for viewing the situation. First consider a one-
dimensional process dx = µ(x, t) dt +σ(x, t)dB(t). Suppose that at time t the

Bull Braz Math Soc, Vol. 33, N. 3, 2002
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particle is at location x(t) = x. Then for the particle’s location at time t + dt

take

x(t + dt) = x ± σ(x, t)
√

dt with prob
1

2
± µ(x, t)

2σ(x, t)

√
dt

see Kloeden and Platen [19]; Prohorov and Rozanov [26]. As dt → 0 the paths
of this process approach those of the SDE with parameters µ, σ . In the bivariate
case one generates two such processes. Examples are given in Brillinger et al.
[6].

A random potential/environment may be a useful model. It might be used to
describe seals chasing fish, elk attracted or repelled by other elk. The randomness
is introduced by the motion of these other particles. For the potential function
one might write

H(r, t) = α(r, t)
J∑
1

|r − Xj (t)|2

with the Xj (t) locations of moving attractors/repellors. This could be the source
of the dB(t) term in (2.3).

The components Hx, Hy of the gradient ∇H correspond to the components
of µµ of (2.3). One advantage of the potential function approach is that indepen-
dent potential functions from a variety of sources add as in

∑
l

Hl(r, t)

There may be points, lines or regions of attraction or repulsion and barriers
to be included. The barriers can represent actual physical objects (e.g., fences).
The process B includes impulses due to the presence of objects such as trees,
mounds, dips and natural variability corresponding to individual animal behavior.
The fitted SDEs may be used to produce estimates of other parameters, (e.g.
expected speed and distances to road), to predict spatial and temporal patterns of
animal distribution and habitat preferences, to simulate trajectories and to study
the directionality of the movement for example.

3 Some specific models

3.1 Ornstein–Uhlenbeck

A particular case of an SDE that has been employed in describing animal mo-
tion is the mean-reverting Ornstein–Uhlenbeck (O–U) process; see Dunn and

Bull Braz Math Soc, Vol. 33, N. 3, 2002
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Gipson [12]; Dunn and Brisbin [11]. Here

µµ(r, t) = A(a − r)

and
��(r, t) = ��

while the mean is a. The O–U process becomes the random walk when A = 0,
i.e., when the drift term, µµ(r, t), is 0.

If A is symmetric and positive definite, the corresponding potential function
is

H(r, t) = (a − r)τ A(a − r)/2

and the particle is wandering but being pulled towards the location a. The
invariant distribution is multivariate normal, N(a, �), with

� =
∫ ∞

0
e−Au����τe−Audu;

see p. 597 in Bhattacharya and Waymire [3]. If ����τ = σ 2
0 I, then � = σ 2

0 A−1/2.

3.2 Diffusion on a sphere

In the case of the elephant seals one can consider the case of a diffusion process
with drift on the sphere, see Brillinger [4]. With φ(t) denoting latitude and
θ(t) denoting colatitude the equations of the process are

dθt = σdUt + (
σ 2

2 tan θt

− δ) dt

dφt = σ

sin θt

dVt

Here δ is the drift parameter and (Ut , Vt ) denotes a bivariate Brownian motion.

4 The statistical methods used

One can consider both parametric and nonparametric methods of inference.
Dunn and Gipson [12] use approximate maximum likelihood procedures to esti-
mate the parameters a, � of the multivariate O–U process from sampled trajecto-
ries with constant sampling intervals. Dunn and Brisbane [11] give extensions of
the maximum likelihood estimate to the case where observations are unequally
spaced over time.

Bull Braz Math Soc, Vol. 33, N. 3, 2002
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Turning to a more general situation, the Radon-Nikodyn derivative of the
process (2.3) with respect to the measure of r(t) = σ(r, t)dB(t) is

exp

{
−

∫ T

0
σ(r, t)−1µ(r, t) · σ(r, t)−1dr +

∫ T

0
|σ(r, t)−1µ(r, t)|2dr/2

}

[22], and estimates of a finite dimensional parameter may be computed by max-
imization. In the sampled time case the SDE (2.3) may be approximated as
follows

(r(tl+1) − r(tl))/(tl+1 − tl) ≈ µµ(r(tl), tl) + ��(r(tl), tl)Zl/
√

tl+1 − tl (4.1)

l = 1, 2, . . . with t1 < t2 < t3 < · · · sampling times and with the Zl independent
bivariate standard normals. This follows from (2.3) directly. The validity of the
approximation is investigated in Kloeden and Platen [19].

In terms of the individual components (X, Y ) of r one has from (4.1)

�X

�t
= µx(X, Y, t) + noise

�Y

�t
= µy(X, Y, t) + noise (4.2)

If the drift function components, µx, µy , are smooth, one sees that one has a non-
parametric regression estimation problem. Principal statistical tools employed in
the work are smoothing methods and residual plots. The smoothing or nonpara-
metric regression procedure employed to estimate µx, µy is the function loess()
of Cleveland et al. [9] within gam() of Hastie [15]. It involves the local fitting
of quadratics in the explanatories.

In the example of the elk, time of day proves important and conditional density
estimates are evaluated for selected times of day. Estimates will be provided of
conditional longrun population densities and of functions depending smoothly on
time and location and explanatories. There are a variety of such estimates includ-
ing: kernel-based, spline-based, local polynomial, Hastie and Tibshirani [16].

References to inferential methods for diffusion processes, both parametric
and nonparametric, include Banon and Nguyen [1], Bertrand [2], Burgière [8],
Dohnal [10], Genot-Catalot et al. [13], Sorensen [29], Prakasa Rao [22].

A question is how to include explanatory variables corresponding to phenom-
ena such as: fences, roads, streams, forage, cover, terrain, time of day, times of
sunrise and sunset, periods of hunting. Attraction/repulson phenomena might
be described by a potential term H(r, t) = αd(r)β where d(r) is the shortest
distance to a feature.

Bull Braz Math Soc, Vol. 33, N. 3, 2002
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5 The Elk experiment

The main study area at Starkey Experimental Forest and Range is 7,762 ha large
and located in the Blue Mountains of northeastern Oregon, Rowland et al. [27].
The forest was enclosed with a 2.4-m tall, net-wire fence in 1988 and radio-
telemetry studies were begun. Each spring a number of elk, deer, and cattle are
fitted with collars containing Loran-C receivers. The collars are instructed to
intercept Loran-C broadcasts at regular intervals and then to relay those signals
to a central receiver. Locations are then estimated from the time delays.

The study area is also managed for a variety of public uses such as recreation,
hunting, forest management, cattle grazing, and other activities. The shape of
the area is shown in Figure 3. The white areas in the figures correspond to two
small elk-proof exclosures within the study area.

The data are spatial-temporal. The locations of M = 53 elk, (labelled by
m = 1, . . . , M , and recorded at times, tmk, k = 1, . . . , Km for the m-th an-
imal) are given as well as various explanatory variables describing vegetation
and topography. Other habitat features (e.g., distance to road, distance to water)
suspected to influence elk movement, are also available. The locations are writ-
ten as a column vector rmk = (Xm(tmk), Ym(tmk))

τ , corresponding to the UTM
(Universal Transverse Mercator) coordinates of the k-th time measurement of
the m-th elk.

The data used in the work of this paper were collected between April 7 and
November 15, 1994 and involve 53 female elk. Observations were omitted for 30
days during the autumn of 1994 when hunting was conducted within the project
area. Preliminary analyses of these data often showed erratic movements that
were not typical of the rest of the year. Also omitted were movements where the
time interval exceeded 1.5 hours or was less than 0.1 hours. Velocities calculated
from short time intervals are strongly influenced by telemetry error while long
time intervals generate uncertainty regarding the true trajectories of elk.

Figure 3 showed the successive estimated locations for one of the elk. The
trajectories plotted are a sequence of straight-line segments and therefore are
jagged. This discreteness results from the fact that location estimates are only
available once every 0.1-4 hours. Figure 5, to follow, will show the estimated
distribution of all 53 animals at four different times of the day.

Bull Braz Math Soc, Vol. 33, N. 3, 2002
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Figure 4: Estimated speed for all 53 elk as a function of time of day.

6 Results of analyses

6.1 Some descriptive statistics

It is natural to imagine a dependence of an elk’s movements on time of day and
on location. Temporal dependence can be anticipated from the circadian rhythm
(with a period of 24 hours) in animal behavior. Consider Figure 4, a parallel
boxplot of elk speeds by hour of the day. The elk are seen to be more mobile
around 0400 hrs and 1800 hrs and are less active at night and midday. These
observations agree with previous studies of elk that have shown strong activity
cycles that are characterized by dawn and dusk transitions between foraging and
resting habitat. Speed was estimated by the distance between two successive
locations divided by the difference of the observation times.

Turning to the spatial aspect, Figure 5 gives a density estimate of location
obtained by using a kernel estimate. The estimate is computed for two hour long
time periods centered at the times 0600, 1200, 1800, 2400, i.e. equi-sampling
the day. The darker pixels correspond to greater density. There are hot spots of
high density and cold spots of avoidance. As computed, these densities provide

Bull Braz Math Soc, Vol. 33, N. 3, 2002
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Figure 5: Density estimate based on the data of all 53 elk at 4 times of day.
Darker values correspond to higher density values. The contours are equispaced
from 0 and the four displays are on the same scale. The highest corresponds to
5 elk/km2.
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the long run distribution of elk locations for the indicated time intervals. From
Figure 4 the most active periods appear centered at times 0400 and 1800, while
the least active are around 1100 and 2300. These times correspond approximately
to the equispaced ones used in Figure 5.

From a comparison of the four separate images, the time effect does not appear
to be simply proportional rather there is an interaction of time and location. This
possibility may be investigated more formally. A simple dot plot, see Brillinger
et al. [6], of the locations the animals visit suggests that the sample of elk were
well-distributed about Starkey during the study interval.

6.2 Modelling µµ

Following the model (4.2) the problem of learning about the vector field µµ may
be seen as one of nonparametric regression analysis. Estimates of the functions
µx(·), µy(·) of (4.2) were calculated via the function gam() of Hastie [15] making
use of the function lo() of Cleveland et al. [9]. Following (3.1) the weights
tm,k+1 − tm,k were used for the m-th elk.

The preliminary investigations of the previous section suggested that elk move-
ments were affected by both time of day and location. One wonders if these
effects are additive. To study this possibility the model µµ(r, t) = g(〈t〉), g being
supposed smooth, was first fit where 〈t〉 denotes the time of day at time t . Then
the additive model, µµ(r, t) = g(〈t〉) + h(r) was fit. Finally the general model,
µµ(r, t) = i(r, 〈t〉), i being supposed smooth, was employed. This succession
of models was employed in order to look for simplifications in the structure.
The spans used in lo(·) were .4, .16, 064 following Hastie (1992)’s page 276
suggestion for obtaining approximately the same marginal span and to make
the analyses nested. (The specific values were picked to be on the small side,
yet to give stable estimates.) The resulting F-values were all 0 to the accuracy
of Splus, and assumed that the F-distribution was appropriate. The degrees of
freedom (DF) were those produced by gam(). The formula for the DFs and
the accompanying F-values are motivated in Hastie (1992) by an assumption of
independent gaussian errors and fixed regressors. When an analysis of variance
was carried out the resulting F-values were all 0 to the accuracy of the Splus
computations. The relation thus appears nonadditive. This complicates the dis-
play of the estimates. Figure 6 presents the estimated µµ(r, 〈t〉) for times of day
〈t〉 = 0600, 1200, 1800, 2400 using the final i.e. nonadditive model in time
of day and location. The figures are vector-field plots with the lengths of the
arrows proportional to the estimated

√
µx

2 + µy
2 at the indicated locations. The

angles of the vectors give the estimated direction of motion away from these

Bull Braz Math Soc, Vol. 33, N. 3, 2002
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Figure 6: The estimated gradient vector field for times of day 0600, 1200, 1800,
2400 hours.
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Figure 7: Locations where absolute value of the t-statistic exceeds the 95% level,
based on jackknife computations.
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locations. The elk appear to be more active at 0600 and 1800 hours, but staying
in a local area at 1200 and 2400 hours. This is consistent with the information of
Figure 4. Further one sees regions of the vector fields converging towards areas
of attraction, which may be compared with the hotspots of Figure 5.

Further discussion of sampling uncertainty is needed in order to formalize the
inferences. Concerning the vector field plots the jackknife, Mosteller and Tukey
[20], was employed. In its implementation 50 of the 53 elk trajectories were used,
5 trajectories were dropped each time in the evaluations of 10 pseudo estimates.
Figure 7 graphs the locations where the absolute values of t-statistics exceed the
95 percent point of the Student-t distribution with 9 degrees of freedom. The elk
remain most mobile around 0600 and 1800 and there remain the suggestions of
points of convergence.

These plots provide insights into diel patterns of elk movements. The results
presented in these four panels are consistent with the previous result that the
time of day effect is not simply additive. Figure 6 remains important because
the lengths of the arrows provide estimates of the animals’ speeds as a function
of location.

In summary, this section has presented a method for estimating the vector field
µµ(x, y, t) when it is smooth in location and time of day. The dependence on
time of day and location does not appear additive.

6.3 Modelling ��

Residuals are an important tool for seeking omitted variables, for inferring non-
linearities in entered variables and for learning about the basic variability in the
model. In the model (2.3) variability is represented by the term ��(r, t)dB(t). In
this section residuals of the general fit to time of day and location are employed.

The estimated variance-covariance matrix of the x- and y-residuals is
[

.05272 .00028

.00028 .06301

]

It is near diagonal, consistent with the assumption of the independence of the
x- and y-components of the Brownian noise of (2.3).

When an analysis of variance is carried out on the log residuals-squared the
P-values are all negligeable consistent with the variance needing to be modelled
as depending nonlinearly on both time of day and location.

Bull Braz Math Soc, Vol. 33, N. 3, 2002
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6.4 Assessment of fit

It is necessary to assess the goodness of fit of the model fit before drawing
substantial conclusions. For example the P-values in theANOVA tables are based
on gaussian, white-noise assumptions. One difficulty in studying the goodness
of fit is that the data involved are unequally-spaced in time. The periodogram is
a useful statistic to employ in such a situation, see Brillinger [5].

Let

ε̂m(tm,k) = (X(tm,k+1) − X(tm,k) − µ̂(rm,k, 〈tm,k〉)(tm,k+1 − tm,k))√
σ̂ (rm,k, 〈tm,k〉)

denote the standardized x-residuals in the case of the m-th elk Consider the
empirical Fourier transform

dm
T (λ) =

∑
k

ε̂m(tm,k) exp{−iλtm,k}

evalutated by summing over the available time points, tm,k, for the m-th animal.
The x-periodogram is defined by

|dm
T (λ)|2

This statistic was computed for each of the M = 53 elk and the results aver-
aged. Assuming the series have common power spectrum its distribution is ap-
proximately a multiple of chi-squared on 2∗M degrees of freedom see Brillinger
[6]. In the case that the spectrum is constant, the periodograms values will fluc-
tuate approximately about a constant level. Figure 8 provides the average of
the 53 periodogams and approximate 95% marginal confidence limits about the
mean periodogram value. The top panel refers to the x-values while the middle
panel refers to the y-values. The high values at the low frequencies provide some
evidence that the residuals are not white noise. A time series model allowing
weak correlation between values nearby in time might be necessary. The high
values at a frequency of 1 cycle/day suggest that the time of day component has
not been completely removed. This may be because its shape is changing during
the season.

The bottom panel provides the estimated coherence between the x- and y-
components and an approximate upper 95% null point. It is consistent with the
components being independent as in (4.1).

Figure 9 addresses the issue of the independence of the trajectories of the
elk when time of day and location effects have been "removed" by computing
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Figure 8: The x− and y−periodograms of the standardized residuals and the
estimated coherence. The horizontal line in the coherence plot is the upper 95%
null point.
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F ratio for X-values
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Figure 9: The X-component F-ratios for looking for a common effect amongst
the elk. The horizontal lines in the plots are the upper 95% null point of the
F-statistic.
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the standardized residuals. An elementary model introducing equicoherence
amongst the elk residuals contains a component common to all the elk and
independent superposed noise. This leads to the following analysis of variance
approach. Consider frequencies λl near a frequency λ of interest. For the Fourier
transform of the m-th elk write

dm
T (λl) = µ + αl + ηlm

with µ a mean level, the αl random effects, and the η’s errors. For a given λ

this is a classic one-way layout and the presence or absence of the α’s may be
studied by an F-statistic. The results are given in Figure 9, which are plots of the
F-statistics as functions of frequency. Results are presented for the x-component.
The top panel graphs the F-statistic having removed only the effects of location,
i.e., time of day effect is not removed. One sees peaks at the frequency of
one cycle/day and its second harmonic. The lower panel shows the statistic
having fit both location and time of day. In each case the horizontal dashed
line is the upper 95% level of the null F distribution. The empirical values are
seen to be fluctuating about this level, however the peaks are much reduced.
There is evidence for some dependence at the low frequencies. Despite that, the
results of the jackknife computations are still pertinent. Modelling the remaining
dependence is a problem for future attention.

One might examine the possibility that the drift function corresponds to a
potential function. This was done in Brillinger et al. [6], separately for the day
and night data. The hypothesis could not be rejected.

7 Discussion and summary

This paper has investigated the use of stochastic differential equations to model
wildlife motion. Models of movement are useful tools to study the ecology of an-
imal behavior and test ideas concerning foraging strategies, habitat preferences,
and the dynamics of population densities. Specific questions for large animals
like elk include: What are the effects of phenomena such as roads, cover, forage,
time of day, season, and human disturbance? How should one allocate forage
amongst wild and domestic species? What is the effect of vehicular traffic? Is
change taking place? What is the sequence of habitat use? Understanding the
physical and biological mechanisms that regulate animal movements is clearly
a complex problem. Formal models seem both useful and necessary.

The analytic techniques of potential function, stochastic differential equations,
and nonparametric estimation were employed in this paper in the model devel-
opment. The assumption of a potential function led to the setting down of a
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stochastic differential equation for a diffusion process. This SDE assumption
further motivated the estimates computed. It may be remarked that diffusion
processes are Markov, whereas more realistic equations would involve time lags
and the process therefore not be Markov. The statistics presented in Figures 8
and 9 provide possible evidence of this occurrence.

8 Some probability problems

1. That the ringed-seal is constrained in a lake and that there is a fence around
the elk reserve is basic. One would like to fit probability models that recognize
this.

Question 1. Given the diffusion process (2.3), how does one tell from the form
of µµ and �� that there is a closed boundary that keeps the process inside once it
starts there?

2. For some purposes, e.g. understanding variability, one would like to simulate
realizations of the process. The boundary behavior would need to be defined.

Question 2. How does one simulate trajectories of a diffusion process restricted
to stay in a region?

3. Sometimes an elk is seen to wander along the fence, i.e. not be reflected back.

Question 3. How does one include in the model the possibility that the process
may follow the boundary for a period?

4. The previous questions had in mind a process in space. Consider the case of
a process on the line.

Question 4. For a real-valued process how does one tell that its sample paths
are non-negative?
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