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Abstract 
This paper studies the influence exerted by the presynaptic 

spike train on the postsynaptic one. It applies to synaptic explora- 
tion a novel method for characterization of point-process systems 
(Brillinger, 1974, 1975a), and draws from it physiologically meaning- 
ful conclusions. The departure point was a large data set of action 
potential trains from an Aplysia network whose neurons are con- 
nected by monosynaptic inhibitory or excitatory PSP's, and either 
discharged spontaneously or were driven by intracellular pulses. 
First, a sequence of "kernels" is estimated, each with a physiological 
connotation relevant to synaptic transmission. The kernel inde- 
pendent of time - of zero-order - measures the postsynaptic rate 
with no presynaptic discharge. That of a single time argument - of 
first-order - relates to the rate effect of the average PSP. Those 
of two, three, or more time arguments - of second, third or higher- 
order - relate to interactions between two, three, or more post- 
synaptic potentials (e.g. to facilitation) and/or spikes (e.g. to re- 
fractoriness). Then successive models are constructed recursively 
and based on the kernel of zero-order, on the kernels of zero and 
first order, on those of zero, first and second order, and so forth, 
until a desired approximation is achieved. The plausibilities of each 
kernel estimate and of each model are evaluated separately by way 
of spectra and coherences. The "linear" model based upon the 
zero and first-order kernel was tested (after that based exclusively 
on the zero-order one was proven inadequate). When presynaptic 
discharges are very irregular and at intermediate or low rates, it 
provides satisfactory description and prediction, and the first-order 
kernel is an uncontaminated display of the rate effects of the average 
presynaptic spike: this constitutes the "linear" domain. When pre- 
synaptic discharges are bursty, regular or very fast, the linear model 
is unsatisfyctory: this is referred to as "non-linear" domain. Reasons 
for non-linearity lie in PSP facilitation and anti-facilitation, con- 
version of membrane current into firing rate, after-spike excitability 
oscillations, and special pacemaker interactions. The model can be 
extended to three-neuron networks where partial coherences ex- 
tract interactions between followers, even while submitted to a 
common driver. The basic and ubiquitous issues of spike train 
description and stability were discussed. The counting and the 
interval statistics of spike trains provide equivalent descriptions 
and their current opposition is conceptually meaningless. Concomi- 
tant short-term fluctuations in spike generation intensity at pre- 
and postsynaptic levels have functional significance beyond changes 
in the overall average rate or interval: they are made precise by 
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parameters whose definition, estimation and physiological inter- 
pretation are presented here. Some stability of the experimental 
preparation is presupposed by investigators, but variations (e.g. 
from cycles or deterioration) always exist. Hence, decisions as to 
the preparation's evolution and as to tolerable changes must be 
made, and based upon pre-existing knowledge, educated guesses 
and practical considerations. This study provided basic knowledge 
of the individual synapse considered the elementary building block 
of the nervous system when viewed as a network of interacting 
nerve cells. It also contributed generally applicable mathematical 
techniques which were illustrated by application to relatively well 
studied and simple networks. 

Introduction 

T h e  p re sen t  c o m m u n i c a t i o n  desc r ibes  h o w  ac t ion  

p o t e n t i a l  (AP) d a t a  can  be used  as indices  of  synap t i c  

func t ion ,  a l l o w i n g  the  i n v e s t i g a t o r  to desc r ibe  t rans-  

synap t i c  r e l a t i ons  and  to m o d e l  or  " iden t i fy"  synap t i c  

o p e r a t i o n  t h r o u g h  an  e x p a n s i o n  tha t  re la tes  p h y s i o l o g -  
ica l ly  m e a n i n g f u l  var iables .  

S y s t e m  iden t i f i ca t ion  rests u p o n  a vast  q u a n t i t a t i v e  

m e t h o d o l o g y  (e.g. A s t r o m  a n d  Eykhoff ,  1971 ; N i e m a n  

et al., 1971), bu t  m o s t  of  it refers to l inear  o p e r a t i o n s  

where  the  i npu t  and  o u t p u t  func t ions  are  c o n t i n u o u s  

o r  de f ined  at  d iscre te  e q u i s p a c e d  points .  L i v i n g  

systems,  h o w e v e r ,  of ten  are  n o n - l i n e a r  and  express  

t hemse lve s  by  po in t - l i ke  p rocesses  ( M a r m a r e l i s  a n d  

a n d  N a k a ,  1973a, b ;  S e g u n d o ,  1971). T h e  m e t h o d s  

used  here  for synap t i c  ident i f ica t ion ,  based  in par t  

u p o n  p r o c e d u r e s  d e v e l o p e d  by Br i l l inger  (1974, 1975a), 

a re  de s igned  specif ica l ly  for  p o i n t  p rocess  sys tems  

and  m a k e  no  a s s u m p t i o n  as to w h e t h e r  o r  no t  they  

are  l inear .  R e l a t e d  a p p r o a c h e s  are  desc r ibed  by Pe rke l  

et al. (1970), T e r z u o l o  (1970), M a r m a r e l i s  and  N a k a  

(1973a), K n o x  a n d  P o p p e l e  (1975, and  K r a u s z  (1975). 

T h e  synapse  is " iden t i f i ed"  w h e n  ce r t a in  r e l evan t  
func t ions  a re  de r i ved  f r o m  c o r r e s p o n d i n g  pre-  and  

p o s t s y n a p t i c  t rains.  T h e  accep t ab i l i t y  of  each  m o d e l  

is m e a s u r e d  by c o h e r e n c e  funct ions .  T h e  first ap-  

p r o x i m a t i o n  c l a ims  tha t  the  ra te  o r  p r o b a b i l i t y  of  
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the postsynaptic spike relates only to a function that 
reflects the postsynaptic rate change after each pre- 
synaptic arrival, and to the rate were there no input. 
Better approximations are achieved when complexities 
due to PSP interactions, to postsynaptic after-firing 
excitability shifts, etc. are oonsidered too. The model 
admits extension to multicell networks with, say, one 
driver cell and two followers, where partial coherences 
measure the degree of association of the followers 
with the driver's effects removed. 

A special section defines and explains the param- 
eters used in these studies with AP trains, indicating 
their estimation procedures and physiological inter- 
pretations. Also, it discusses briefly the basic issues of 
spike train description and experimental stability. A 
preliminary report has appeared recently (Segundo 
et al., 1975). 

Experimental Methodology 

The preparation (abdominal ganglion of Aplysia 
californica), experimental procedure, and electrophysi- 
ological recording and stimulation techniques were 
identical to those in a previous communication 
(Bryant et al., 1973). The present report re-examines 
much of the data used therein. In summary, the 
isolated abdominal ganglia of small specimens were 
perfused in a buffered Aplysia saline at a servo- 
controlled temperature between 14 and 21 ~ C. Intra- 
cellular recordings and passage of current were ob- 
tained with potassium citrate-filled electrodes, a bridge 
circuit and conventional amplification, display and 
analog tape storage devices. In a typical case, the 
presynaptic cell L 10 was impaled with one or two 
"followers" (e.g. L 3, L 2). In "spontaneous" experi- 
ments, activity was recorded with no deliberate 
stimulation (or, at most, with a slight DC accelerating 
or slowing bias). In "driven" experiments, the pre- 
synaptic cell was stimulated intracellularly with 
50 msec duration rectangular pulses, each eliciting one 
AP. Each interspike interval was drawn independently 
from a prespecified density: different presynaptic 
discharge "forms" reflected different densities which 
were approximately exponential, narrow Gaussian or 
uniform and are referred to as "Poisson", "pace- 
maker", or "uniform", respectively. All densities had 
mean intervals between 0.1 and 2 sec (implying rates 
between 0.5 and 10 per sec), and were truncated at a 
lower bound of 50msec (because of refractoriness). 
The L 10 junctions with EPSP's (e.g. at R15 or R16) 
either are hard to find or are labile: hence, the re- 
latively stable EPSP elicited by a single shock to right 
viscero-pleural connective (RVP) in R 15 was analyzed 
too. 

A total of 47 cases were studied. Each case implied 
observation of two, or sometimes three corresponding 
and stationary AP trains, one presynaptic and one or 
two postsynaptic. The presynaptic discharge form 
was "Poisson" in 19 cases, "uniform" in 13, "pace- 
maker" in 8 and "bursty" in 7. To illustrate this 
communication we have deliberately chosen cases 
that were representative, i.e. that reflected the majority 
in their class, and were not necessarily the most 
striking (e.g. had the highest coherences, see below). 
Whenever possible, we deliberately chose data used 
for the figures of Bryant et al. (1973), considering this 
an economic way of comparing different methods. 

Statistical Methodology 

Model Description; Basic Issues; Parameter Definition, 
Estimation and Physiological Interpretation 

The purpose of this communication is to provide a 
quantitative method for an exhaustive and physiologi- 
cally meaningful characterization of the synapse as 
a system. Hence, the core of this section is the modelling 
and "identification" approach with the definition, 
estimation procedures and physiological implication 
of certain statistics, including methods not available 
elsewhere in complete form and laid down here in 
enough detail to be of use to physiologists. 

Two general issues are pertinent, spike train de- 
scription and stability. They are, in fact, very basic to 
a large number of publications, imposing decisions 
which, deliberate or unknowingly, are implied always 
though rarely made explicit. Their relevancy and 
generality are so great that it was felt that they should 
not remain undiscussed. The first refers to the re- 
presentation of AP trains. The empirical observation 
of the importance of the times of occurrence of AP's, 
commonly all-or-nothing, brief with respect to 
the interval between them, justifies for certain purposes 
the assimilation of a train to a point process along a 
line. Such a process is described fully by an ordered 
sequence of the times ... < a_ 2 < (7-1 < o'0 < (71 < (72 < 
... of occurrence of each point (Cox and Lewis, 1966). 
Inherent and central in the intuitive notion of any 
such process is whether the points along the line are 
abundant and closely packed, or sparse and widely 
separated, i.e. the "intensity" of their generation. Also 
intuitive is the recognition that the intensity is linked 
directly with the likelihood of encountering a point. 
A first representation of a point process is through the 
"counting process" N(t), i.e. the number of points 
between time 0 and time t. As t increases, this variate 
jumps by one at each point. The overall intensity is 
reflected by the mean rate of the process, estimated by 



215 

N ( T ) / T  for large T. A second representation of the 
point process, intuitively less natural, is provided by 
the "ordered sequence of intervals" . . . ,  iol = ~1 - 00, 
i a 2 = ~rz 5-.cr~ . . . .  between successive points. The overall 
intensity is reflected reciprocally by the average inter- 
val estimated by T(n)/n, where n is the number of 
intervals observed and T(n) = Oo + io, 1 + ... + i ,_ 1,, is 
the time from the origin to the last point, The mean 
rate itself may be estimated by niT(n).  Both of these 
exhaustive representations are essentially equivalent 
(Cox and Lewis, 1966); however in practice, when 
simple properties are studied, both can be informative 
and the approaches complementary. Two conclusions 
can be drawn. First, that the opposition of counting 
versus interval statistics, as implied in for example 
Terzuolo and Bayly (1968), is not meaningful con- 
ceptually since it contraposes equivalent descriptions. 
Indeed, any question and answer can be expressed 
interchangeably in count or interval language. Second, 
that in a practical situation either counting or interval 
statistics may provide the more appropriate quanti- 
fication and parsimonious description for the central 
notion of firing intensity. 

Neurophysiologists often have been satisfied with 
observing whether there were a lot or only a few 
spikes over a relatively prolonged period, using the 
overall mean rate as a measure; important concepts 
have been clarified through this approach. An ex- 
periment usually provides a number of trains, collected 
so as to appreciate whether changes in the discharge 
and in some sensory or motor variable can be matched 
appropriately. There usually are, however, within these 
relatively prolonged periods, shorter term variations 
in AP intensity. It is here that the really meaningful 
physiological question arises, asking whether the over- 
all mean rate suffices to infer or predict the corre- 
sponding cause or consequence (e.g. sensory stimulus 
or movement), or the shorter term rate or interval 
fluctuations, i.e. the spike timing and pattern, are 
meaningful and informative too (e.g. Segundo and 
Perkel, 1969). The latter are revealed by a running 
display of rates over shorter periods, or of successive 
intervals, and can be summarized by, say, an auto- 
intensity function or an interval standard deviation. 
Experimental evidence supports the intuitive belief in 
the second alternative (e.g. Segundo et al., 1963; 
Segundo, 1970). Thus, a second important question 
arises: namely, that of how fluctuations are trans- 
ferred in terms of amplitudes and time courses. Efforts 
to analyze these questions in the sensory sphere are 
abundant, since the early work of Pringle and Wilson 
(1952). The same questions can be asked apropos  of 
synaptic transfer, and paragraphs below make precise 

the notion of short term discharge intensity variations, 
concomitant in pre- and postsynaptic neurons, de- 
scribing a method for identification of point process 
systems. 

The second issue, stabili ty,  refers to the extent to 
which preparations depart as time goes on from the 
characteristics exhibited initially. The investigator 
assumes, on the one hand, that the system realized 
by the preparation has invariant features that allow 
for general conclusions; the statistician formalizes 
this in a requirement of stationarity (Cox and Lewis, 
1966). There are, however, inevitable instabilities in 
living matter; for example, aging and the deterioration 
of the experimental preparation. All systems Vary 
during the observation time by trends and/or fluctua- 
tions and each instance raises such questions as 
whether an observed change is small enough that the 
preparation can still be considered stable, whether a 
progressive change is part of a trend or of a cycle that 
eventually would have reverted to the initial condi- 
tions, and so forth. The unavoidable judgement con- 
cerning acceptable stability thus requires an a priori 
practical decision as to the magnitude and quality of 
tolerable changes (La Salle and Lefschetz, 1961; 
O'Leary et al., 1975; Weiss and Infante, 1967) and as 
to the expected form of the preparation's evolution. 
These decisions with their important connotations 
are reached for each case on the basis of pre-existing 
knowledge, educated guesses and practical considera- 
tions. 

The model  arises from methods recently formalized 
and made practical (Brillinger, 1975a) for identification 
of point process systems, that is of systems whose 
input and output are point processes (the synapse and 
spike trains, respectively, in this case). The synapse is 
said to be "identified" when an acceptable model is 
found. One model involves an expansion based upon 
functions referred to as "kernels", and is a point pro- 
cess analog of the Volterra-Wiener expansion of 
ordinary time series (Marmarelis and Naka, 1973a, b). 
The kernels are i. expressed as functions of time 
arguments, ii. meant to be invariants of the system 
that retain the same essential characteristics even when 
the presynaptic discharge varies (other commonly 
used functions do not have this property, e.g. Bryant 
et al., 1973; Knox, 1974; Moore et aI., 1970), and iii. 
estimated from corresponding pre- and postsynaptic 
spike trains. 

The first step of the identification is to estimate 
certain conditional rate functions, each of which is a 
physiological connotation relevant to synaptic trans- 
mission. The one of zero-order g, i.e. a constant, 
simply measures the mean rate. The one of first-order, 
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a function of a single time argument, relates to the 
average effect of a presynaptic spike and the PSP it 
elicits. The one of second-order, a function of two 
time arguments, relates to the interactions between 
pairs of spikes or PSP's. Those of higher orders, 
functions of several time arguments, relate to inter- 
actions between more than two events. The second step 
is to construct recursively the successive models, i.e. 
that based on the zero-order kernel, that based on the 
zero- and first-order, that based on the zero-, first- and 
second-order, and so on until it makes sense to add no 
more. The acceptance of a kernel estimate as plausible 
does not necessarily mean that the series up to the 
corresponding term is a good predictor. The coherence 
provides a measure of predictability. 

The kernel of first-order a(u) relates to the effect 
of a single presynaptic spike or PSP. It is defined as 
the best linear predictor of the average change of the 
instantaneous rate at time u in a spike train B, when a 
single spike occurs at time 0 in a spike train A. It is 
useful, therefore, in predicting whether there will be a 
B spike u time units away from an A spike, and will 
be positive, negative or zero, if B accelerates, slows or 
does not change, respectively, a(u) satisfies 

mAB(U) -- mB= a(u) + ~ a(u-- v)[mAA(V) -- mA]dV (1) 

where - o o  < u <  oo.  mAB(U ) is the AB cross-intensity 
function (CIF), a first-order conditional rate function 
that measures, for one cell B and close to any particular 
time t (i.e. between t and t+h, with h positive and 
tending to zero), the average instantaneous rate or 
the likelihood of generating an AP, conditional on an 
A spike u time units away (e.g. Bryant et al., 1973; 
Knox, 1974; Moore et al., 1970). Its profile reflects the 
timing and the rate effects of A spikes, among other 
issues (as the correlation of A with a third cell C 
which also acts upon B). It is defined by 

mAB(u ) = lim prob {B spike in (t, t + h) I A 
h$0 

spike at t - u } / h ,  (2) 

mAA(U) is the auto-intensity function of A, i.e. the CIF 
of the A train with itself. The constants m A and m8 
are the overall mean rates. 

The integral Eq. (1) can be derived and justified in 
two distinct manners, both relevant to synaptic char- 
acterization. Suppose that o-j(j=0, +_ 1, •  . . . .  ) denote 
the times of the presynaptic spikes and zk(k = O, +_ 1, 
+--2, ...) those of the postsynaptic spikes. In the first 
derivation, we set about modelling the change in the 
likelihood of a postsynaptic AP very close to t by 

the expression 

prob {B spike in (t, t + h)[ A spikes at ~j} 

~ [ /1+  ~ a ( t - @ ] h .  (3) 
j =  --oo 

The constant g represents B's rate with A inactive. 
The rationale for (3) follows: if there were no A spikes, 
the probability of a B spike close to t would be gh, 
being B's rate with A silent; if the A train consisted 
of a single spike at time a, it would be [#+a( t -~)]h  
for some function a( .); if it consisted of two spikes at 
times al, a2, and they did not interact (see below), the 
probability would be [/~ + a(t - al) + a ( t -  o-2)]h. 

Extending this reasoning to a train having many 
non-interacting spikes, the probability would be 

Ilt+=~_ooa(t-~r,)lh (4) 

as h$0. The summation is extended from minus to 
plus infinity for reasons given below. Averaging ex- 
pression (3) over all possible A trains leads directly to 
the first-order relationship 

m B = # + m A ya(v)dv. (5) 

Multiplying Eq. (3) through by the differential in- 
crement dNa(t -u)  of the counting process, averaging 
and using the identity (5) leads to the integral Eq. (1). 
A second derivation of (1) comes about from seeking 
to predict the instantaneous rate of the B train from 
the times of A spikes by an expression of the form (4), 
i.e. without interactions. If NB(t, t+h) denotes the 
number of B spikes in (t, t + h), we ask for the # and 
a(u) that lead to the smallest separation (measured by 
the average of the squared differences) between the 
instantaneous rate, NB(t, t+h)/h, and a postulated 
function of the form i~+Za( t -@:  i.e. that lead to 
the minimum of 

lim E [ N B(t, t + h)/h-  # -  Za ( t -  a j)12 . (6) 
h$0 

Evaluating expression (6) and using the calculus of 
variations leads again to the integral Eq. (1). 
The first-order kernel a(u) is, in all cases, the best 
linear predicter in the sense of expression (3), and one 
might anticipate that it would be zero for negative 
times when A acts trans-synaptically on B. It is 
necessary to understand, however, that the procedure 
under discussion is designed to fit associations and, 
therefore, no particular kernel will necessarily suffice 
to describe certain effects. Hence, though this may 
indeed happen, in other cases unexpected features may 
appear; for example, when studying pacemaker cells 
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there may be "predictive" features which seem to 
ignore causality like non-zero a(u) values to the left 
of the origin. This, and the fact that the direction of 
causation is sometimes unknown, is the reason why 
the summation in Eq. (4) is from - o o  to or. 

Both derivations of a(u) used the assumption that 
the effects of separate A spikes are additive and not 
interactive in their influences upon B rates. This 
clearly holds when, for example, the presynaptic 
discharge is slow and successive spikes are so far 
apart that the effects of each have died down by the 
time the next arrives. Under these conditions, model 
(3) is plausible and the first-order kernel can be re- 
ferred to as "average impulse response function" of 
the system. On the other hand (see Results), a(u) is 
subject to limitations that arise from not allowing for 
common and often powerfully interactive issues (Se- 
gundo et al., 1963) like the after-effects of earlier 
presynaptic arrivals, e.g. after-firing fluctuations of 
exitability. Hence, it may be necessary to extend the 
model to include higher-order terms. A conditional 
rate function of second-order allows in part for these 
issues: 

t T I A A B ( ' U  , I))  ~ -  lim prob {B spike in (t, t + h) I A 
h J, 0 

spikes at t - u  and t - v } / h .  (7) 

This function represents the postsynaptic rate close to 
time t, conditional on the presynaptic cell having 
fired u and v seconds earlier, l i t  may be estimated by 
expressions analogous to (13) below, and the large 
sample properties remain including the advantages 
of taking square roots, Brillinger, 1975b.] When, as in 
Eq. (7), two presynaptic spikes are taken into account, 
the probability of a postsynaptic spike close to t, given 
a presynaptic train of spikes at time cry, can be modelled 
by 

[#+Sjaa(t--aj)+Fka2(t--aj,  t--~rk)]h. (8) 

a2(u, v) is the second-order kernel whose arguments 
are the times to distinct presynaptic spikes. It relates 
to the rate effects of two presynaptic spikes combined 
at any given relative timing, incorporating into the 
identification the influence that one presynaptic spike 
(say, at t - u )  exerts upon the rate effects of another 
(at t -v ) .  It thus is sensitive to PSP facilitation and 
anti facilitation. 

A new term is added to (8) for each new presynaptic 
spike (or PSP) one wishes to account for. Thus, higher 
order kernels incorporate the consequences of PSP 
facilitation or anti-facilitation that occur after two, 
three, ... events with any conceivable given timing. 
The expression is expanded until a suitable description 

of the synapse's behavior over a reasonable domain 
of inputs has been achieved. "Suitability" is evaluated 
by means of the coherence, a general measure of 
association applicable to models of any order (see 
below). The general model based upon presynaptic 
spikes (or PSP's) is of the form 

z 

ak(t-aj  . . . . . .  t -aj , , )+ ...Ih + 2 (9) 
J l  ~=j2 47 �9 . �9 j k  3 

distinct 

where the generic kernel a k incorporates the inter- 
action at time t of the effects of k distinct presynaptic 
events at times as1,.., as, ~. When k=  1, (9) reduces to 
(4), which is referred to as the "linear" model. 

Another set of conditional rate functions and 
kernels takes into account postsynaptic firings with 
their resulting excitability shifts (e.g. refractoriness). 
Yet another takes into account combinations of pre- 
and postsynaptic firings. For example, a useful "mixed" 
function of two time arguments is provided by: 

mABB(U , V) = lim prob {B spike in (t, t + h) [ A 
h ; O  

spike at t -  u, B at t -  v}/h. 10) 

This function represents the postsynaptic rate close 
to t, conditional on the presynaptic cell and the post- 
synaptic cell having fired u and v seconds earlier, 
respectively. It and the corresponding kernel are 
useful for identification when there exists an influence 
of a postsynaptic spike (at t - v )  upon the rate effects 
of a presynaptic one (at t - u ) ;  or, equivalently, an 
effect of a single A firing (at t - u )  upon B's rate at two 
instants ( t -v ,  t). Thus, they are sensitive to the joint 
after-effects of postsynaptic potentials and spikes. 

The zero- and the first-order kernel of (1) are 
examined in this paper. A forthcoming publication 
shall explore higher orders (Brillinger, Bryant and 
Segundo, in preparation). Models of all orders require 
essentially the same methodology; computational 
problems may arise mainly because of the large 
number of operations and storage requirements needed 
in their evaluation. 

A requirement important for ease of interpreta- 
tion is that each successive term in an expression for 
the probability not be affected greatly by factors 
accounted for by earlier terms. Other procedures 
(e.g. Bryant et al., 1973; Knox and Poppele, in pre- 
paration; Perkel, 1970; Perkel et al., in the press) 
allow at best a partial separation of issues. Models 
(3), (8) and (9) for the probability of a postsynaptic 
spike conditional on the presynaptic train are direct 
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expansions which, in essence, imply that the influences 
of the various issues are combined by an additive 
process. It is conceivable, however, that a more 
reasonable description could be obtained by other 
expansions implying combination by, for example, a 
multiplicative process (so that the logarithm of the 
probability and not the probability itself is given by 
a sum). This is an empirical question, and research is 
in progress to see which expansion is most suitable 
(Brillinger, Bryant and Segundo, in preparation). 

There are other related efforts in the literature 
approaching the same questions. For example, Perkel 
(1970) proposed that, since pre- and postsynaptic 
correlations depend on the presynaptic rhythmicity 
and on the primary effects, the cross-covariance could 
be the convolution of the presynaptic auto-covariance 
and of a time function e(u) called the "synaptic re- 
sponse". The latter in turn depends on a term a(u) 
that reflects primary PSP effects, and on the resetting 
of the postsynaptic rhythmicity. The author points 
out correctly that the functions e and a may depend 
on the form of the input train, and that this dependence 
is an empirical question. The same basic issues (i.e. 
presynaptic rhythmicity, primary effects) are incor- 
porated, though in a somewhat different manner, 
into the formulation in expression (10). Between-PSP 
interferences and after-spike excitability are not ac- 
counted for in these models, at least not explicity 
and separately. Other efforts take a somewhat different 
tack, but still are related. The instantaneous rate, if 
scaled appropriately, is a measure of firing probability; 
hence, the present analysis of how the postsynaptic 
rate is influenced by presynaptic spikes and post- 
synaptic firings at one, two, ... delays relates con- 
ceptually to the earlier analysis of how the probability 
of a postsynaptic spike is influenced by one, two, ... 
... presynaptic spikes and recent postsynaptic firings 
(Segundo et al., 1966). The conclusion at that time was 
that at a junction between two neurons, say one with 
excitatory postsynaptic potentials, the probability of 
a postsynaptic AP at a particular instant relates to the 
timing of a limited number of presynaptic spikes 
(PSP's) which occur within a recent time period. At 
such a junction, the probability of a postsynaptic 
spike is maximized when the presynaptic rate sur- 
passes a certain minimum and is sustained, or even if 
this condition is not quite met, when a favorable 
pattern is formulated. This general rule is modified by 
special modes of PSP summation (facilitation or 
anti-facilitation) and of postsynaptic threshold re- 
covery. 

The proposed modelling procedure requires de- 
finition, estimation and physiological interpretation of 

certain parameters. Suppose that A is a stationary 
spike train. Let Na(t ) denote the number of A spikes 
between time 0 and time t. The mean intensity of the 1 

A train is defined by 

ma= lim prob {A spike in (t, t+ h)}/h. (11) 
h , ~ 0  

If the train is observed for the time interval 0 < t < T, 
then m A may be estimated by 

rh A = NA(T)/T.  (12) 

The cross-intensity function, mAB(U), between two 
simultaneously occurring spike trains A and B was 
defined above by expression (2). Because of stationarity 
this function does not depend on t. It gives the short- 
term intensity of the B train u time units after an A 
spike, If the trains are independent, then mAB(U)= me 
for all u. IfB spikes are independent of"later" A spikes, 
then mAB(U)=mB for all u<0.  Deviat ion of mAB(U) 
from me is suggestive of dependency of the B train on 
what happened in the A train u time units earlier. 
Specifically it relates both to the primary rate effects 
of the average A spike and to the form of the A train. 
All spike train CIF's will be flat and essentially equal 
to roB, at large ]u[ values because inevitably any real- 
life correlating influence will be ephemeral. The auto- 
intensity function (AIF), mAA(U), is defined for u :~ 0 by 
expression (2) with the B spike train identical to the 
A spike train. 

Suppose o-1, 0-2 . . . .  and za, z 2, ... denote the times of 
the A spikes and of the B spikes, respectively, that 
occur in the time interval 0 < t < T. Let b denote a bin 
width and " ~ "  stand for "the number of": then 
mAe(U) may be estimated by the cross-correlation 
histogram (CCH) 

rhAe(U) 

# U--~<Zk--Crj<U+~;Zk'I=0-j , j ,k=I,2, . . .  

bNA(T) 
(13) 

The tally in each bin is divided by the product bNA(T). 
The result is expressed in numbers of B spikes per 
unit time and per A spike, so it can be compared from 
one case to another. For large T, the distribution of 
rhAB(U ) may be shown to be approximately that of 
(b TmA) - 1 p, where P denotes a Poisson variate with mean 
b TmAmAe(U). Its mean will be approximately mAB(U) 
and variance approximately (bTmA)-ImAB(U). These 
results suggest the graphing of the estimate 1]/~AAB(U ) 
of ]/mAB(U). Its variance is approximately stable for 
all u at (4bTmA) -1. Doing this constitutes a general 
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statistical advantage since it quantifies rigorously the 
uncertainty in the rejection of the null hypothesis of 
independence. Earlier workers (e.g. Bryant et al., 1973) 
had to rely upon empirical procedures. In the case of 
independent trains, Griffith and Horn (1963) approxi- 
mated the distribution by a multiple of a binomial or 
a normal. We feel that the Poisson will provide a 
better approximation provided b is not too large, nor 
is the span of dependence of the process large. Through- 
out the paper we have set approximate 95 % confidence 
limits corresponding to plus and minus 2 standard 
deviations. The auto-intensity function mAA(U) may be 
estimated by the cross-correlation histogram between 
the train A and itself. This estimate, called the auto- 
correlation histogram (ACH), is denoted by rfiAx(u ), 
and is given by expression (13) with v k - a  J. When 
ACH's correspond to a train of AP's, they tend to 
exhibit low values for short times, reflecting the fact 
that refractoriness prevents very close firings. The 
large sample variance of ~]/~AA(U) will be approxi- 
mately (4b T m a ) - 1  as it was for ~ ) .  

We now pass to relevant identification details. 
Were one able to drive the presynaptic cell A with 
Poisson noise, mAA(V ) would equal m A for all v, and 
so the solution of Eq. (1) would be 

a(u) = mas(U)-- ms (14) 

i.e. the corresponding CIF up to an additive constant, 
and it could be estimated by the corresponding CCH. 
Unfortunately, and mainly because cells cannot fire 
at short intervals, the A train cannot be Poisson in 
all important respects. The presynaptic form referred 
to as "Poisson" in Bryant et al. (1973) and in this paper, 
is similar to the output of a non-paralyzable Geiger 
counter with a jittery dead-time submitted to a long- 
lived radioactive source. It is a renewal process whose 
intervals correspond to the sum of a short dead-time, 
with small variability, and an exponential variate, 
whose mean is much larger than the dead-times. The 
AIF of this form is flat, nearly equal to the mean rate of 
all lags u, except for having near 0 values around the 
origin followed by a small peak (see Figs. 1, 3, 9 in 
Bryant et aI., 1973). 

We turn to the problem of constructing a solution 
a(u) of Eq. (1). Let 

f AB(),) = (27c)-1 ~ mA[mAS ( __ U) -- mB] exp { - i2u}du 
- cO ( 1 5 )  

denote the cross-spectrum of the A and B trains. This 
parameter is proportional to the covariance of the 
component of frequency 2 of the A train with the 
corresponding component of the B train, hence it 

may be interpreted as reflecting how a certain fre- 
quency component in the A train is associated with 
one in the B train. Similarly let 

fxA(2) = (2n)- Xm A (16) 

+ (2~z)- a ~ mAEmAA(U ) _ mA ] exp { - i2u}du 

denote the power spectrum of the A train. This is 
proportional to the variance of the component of 
frequency 2 of the A train, hence it may be interpreted 
as reflecting the power in each frequency component 
of that train. For pure Poisson noise, it is identically 
constant and equal to (2rc)-lma . For the "Poisson" 
form employed in the experiments of this paper, it 
dips from this value in the neighborhood of 2=0. In 
the case of a pacemaker train of period v, the power 
spectrum fAa(2) is composed of a series of spikes at 
equal multiples of 27~/z. In real life, because correlating 
influences always are ephemeral, fAA(2) will be near 
(2~) lm A for large 121. Finally define 

A(2)= ~ a(u) exp { - i 2 u } d u  
- - r  

to be the Fourier transform of the solution a(u). The 
gain at frequency 2 is the absolute value of the Fourier 
transform of a(u), i.e. [A(2)I. Taking the Fourier trans- 
form of equation (1) and using definitions (15), (16) 
now leads to the simple relationship 

f AB()O = A()~)f AA()L). (17) 

It  fo l lows  that, if fAa(,~)=l =0 for --  oo < ~ <  oo, the  
solution of Eq. (1) may be written 

a(u)=(2~) 1 ~ fAA(CO-lfAS(a) exp {iua}da. (18) 
- - o O  

Equations (17) and (18) may be used to construct and 
estimate of a(u) based on estimates of fAA(~,) and 
fAs(2). The steps above are also described in Brillinger 
(1974). 

Turning to the construction of an estimate of 
a(u), let rh A, rhs, YhAA(H), mAB(H) all be formed in the 
manner of expressions (11), (12). Let u~=jb for j=0 ,  
+ 1, + 2 . . . .  and let kT(U ) be a window function (that 
is, a stretch of multipliers introduced into an empirical 
Fourier transform in order to improve its convergence 
properties (Brillinger, 1975c). The needed spectra may 
now be estimated by 

f Aa(2) = (2~)- 1r ha + (2~) - l brhA~ [rhaA(Uj) -- thAI 
J 

�9 exp { -  i)~uj}kT(Uj) (19) 

/AS(2) = (2~)- 1 brha2 [rhas(- u~) - rhs3 
J 

�9 exp { -  i2uj}kr(ui) (20) 
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respectively. It is usual to plot lOglofAA(2), whose 
variance is given approximately by (0.4343)2T -a 
�9 ykr(u)2du for 2#0.  In figures presented later, we 
indicate approximate 95 % confidence li/nits by graph- 
ing amounts of _+2 standard errors. Other proce- 
dures for estimating the spectra of point processes 
are described in Brillinger (1975b). 

The Fourier transform, AfrO, may now be esti- 
mated by 

A(2) = fAA(2)IfAB()o). (21) 

The variance of log~0 A(2) is approximately 
(0.4343) 2 T -  lykr(u)2du[lRAB(2 )- 2 __ 1] for 2 # 0, where 

[RAB()O] 2 = If  AB(2)[ 2/I faA()~)fBB(,)~)l (22) 

is the coherence at frequency 2, a measure of the 
degree of association of the trains (see below). It is 
never less than zero or greater than one, and defined 
to be zero if fAA(2) or fB~(2) equal 0. The expression 
for the variance of log10 A(2) shows that the estimate 
is better, the nearer the coherence is to one. Stein and 
associates (e.g. Stein et al., 1972) have applied the 
coherence usefully to neurophysiological data in hy- 
brid situations where a point process and an ordinary 
time series are matched. 

Let 2j =jc for j = 0, _ 1, _+ 2 . . . .  and some c > 0. Let 
Kr(2) be a second window function. The function a(u) 
may now be estimated by 

fi(u) = (2~z)- %~A(2j) exp {iu2s}Kr(2j). (23) 
J 

The variance of this estimate is approximately 

c(2~)- 1T 1 ~ kr(u)Zdu 

j" [1 -IRAB(OOI2]fBB(o:)fAA(O0 - 1 K T ( c O 2 d c ~ .  (24) 

This estimate will also be better the nearer the coher- 
ence is to one. 

The coherence defined by expression (22) is an 
extremely useful measure of the degree of relationship 
of the A and B trains. Direct manipulations show that 
the minimum of the mean squared error of prediction 
(6) may be written 

(sinho:/212 
lira S \sin ~/2J fBB(e)[1--]RAB(0012]d0~ 
h ; 0  

showing one sense in which this is true. A coherence 
of one would imply perfect linear prediction of the B 
train by the A train. A coherence of zero results if the 
two trains are statistically independent or if fAA(2) or 
fBB(2)----0 at the frequency under consideration. It can 

also result if the two trains are related in certain non- 
linear manners. The coherence may be estimated by 

] i~AB(.~)].2 ~--- [lAB(2){2~] fAA(R)f~B(2)I. (25) 

The 95 % point of the distribution of this estimate, in 
the case that IRAB(2)[2=0, is given approximately by 
1-(0.05) 1/" where n=T/SkT(u)2du, (5). This level is 
indicated in figures provided later. 

We next consider the case of three simultaneously 
occurring stationary spike trains A, B, C. Suppose 
that there exists some association between A and B, 
between B and C, and between A and C as revealed 
by the measures discussed above. It may be physiologi- 
cally interesting to enquire whether B and C, say, 
are truly connected with each other or whether their 
apparent association is simply due to the common 
influence of A. One tool for investigating such a 
question is partial coherence analysis. Consider a 
situation where the counting processes in any partic- 
ular interval are related by 

NB = NB' + NB" (26) 

Nc = Nc, + Nc,, 

where the trains B' and C' depend on the A train, but 
the pair (B', C") is independent of A, B', C'. In partic- 
ular suppose that 

Prob {B' spike in (t, t + h)lA spikes at a j} ~ ~ b ( t - a ) h  
J 

Prob {C' spike in (t, t+ h)lA spikes at r j} ~ ~ c ( t -  a j)h 
J 

(27) 

as h +0, for some functions b(u), c(u). For this model 
the coherence between the B" and C" processes is 
given by IRBc.A(2)I e where 

f AAf BC-- f BAf AB RBC.A(2) = (28) 
( f  AAf BB -- f BAf AB)(f AAf CC-- f CAf AC) 

in terms of the basic spectra. (In this last expression, 
dependence of the right hand side on 2 has been 
suppressed for notational convencience.) The para- 
meter IRBc.A(2)] 2 is called the partial coherence of the 
processes B and C given A. It will be zero in the case 
that the processes B" and C" are statistically inde- 
pendent, that is, the total tying together of the pro- 
cesses B and C is through B' and C' depending on 
the A processes. The partial coherence may be esti- 
mated by substituting estimates of the power and 
cross-spectra into expression (28). The above sort of 
partial analysis is standard for ordinary time series 
and may be found in Brillinger (1975c) for example. 



Results 

This section is organized around the purposes of 
the communication as listed in the introduction. The 
various functions considered (i.e. the CIF, spectra, 
coherences, kernels) obviously cannot be displayed 
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Fig. 1. Linear domain in the transformation from pre- to post- 
synaptic spike trains at the L10-L3 synapse (IPSP). Time and fre- 
quency statistics. All figures are described in detail in the text. The 
presynaptic discharge was very irregular and at a moderate rate, 
and so was the postsynaptic one. The corresponding square root 
of the ACH's  and the spectra are shown in B, C and D. The coherence 
estimate (E) is significantly high up to about 1.6 cps. Hence, the model 
based upon the a(u) function in F is considered acceptable; compare 
F with the square root of the CCH in A. The L 10 spike train had 
N = 1 7 4 5  action potentials; its interval statistics were mean /~ 
0.509 sec, s tandard deviation G0.294 sec, and coefficient of varia- 
tion 0.578. L3 spike train: N 301; # 2.947 sec; G 1.546 sec; CV 0.525. 
These graphs were constructed with the same data as Fig. 1 in 

Bryant et al. (1973) 
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since they are population parameters. All graphs are 
therefore estimates, though sometimes referred to as 
functions for brevity. Figure 1 illustrates the domain 
over which the model (3), based upon the first-order 
kernel a(u) and the rate # were there no input, is 
plausible, and when a(u) gives a faithful representation 
of the rate effects of the single average presynaptic 
spike (or PSP). The presynaptic cell L 10, driven by a 
"Poisson" form, was very irregular and (for Aplysia) 
at a moderate rate of 1.96 spikes/sec; correspondingly, 
the postsynaptic discharge in cell L3, where IPSP's 
were elicited, also was "Poisson". Graphs A and B 
depict time domain statistics. The square root (A) of 
the CCH shows the typical polyphasic effects asso- 
ciated with the single, average PSP, including here a 
pronounced slowing of L3 for about 0.5 sec after the 
reference L 10 spike (at time zero), followed by a brief 
"rebound" acceleration. The solid horizontal lines 
indicate the limits of the approximate 95 Too confidence 
band, set a plus and minus two standard deviations 
about the estimate (dotted line) of the square root of 
the overall mean rate of L 3. These lines confirm the 
statistical significance suggested in Bryant et al. (1973) 
of the polyphasic effects of the average PSP, whether 
"inhibitory" as here or "excitatory" as in Fig. 4. The 
advantage of having a formal confidence procedure is 
clear. The square root of the ACH's of L 10 (B) and 
L3 (not shown) have the character expected for 
"Poisson" forms, depressed near the origin partly be- 
cause of refractoriness, but otherwise constant. Graphs 
C and D give the logarithm to the base 10 of the 
estimated power spectra of L 10 and L 3, respectively. 
The broken line is the level they would have were the 
trains Poisson at the same rate, or the asymptotic 
value as 2~  ~ ;  the solid horizontal lines are approxi- 
mate 95 % confidence limits. The estimates are small 
at low frequencies, suggesting that the spikes of the 
trains are farther apart than those of the comparable 
Poisson train. The highest frequency appearing in 
these and later estimates of spectra is 4 cps; after some 
experimentation, we found that power spectra did not 
deviate much from the Poisson level beyond this 
frequency. Graph E is the estimated coherence (with 
the 95 % point of the null distribution indicated by the 
broken line): it is significantly high up to about 1.6 cps, 
suggesting that the two cells are tied together strongly 
in their slow and the moderately rapid behaviors. 
Finally, the estimate gz(u) of the time function a(u) 
calculated in the manner of Eq. (24) is shown (Graph 
F). As indicated earlier, this function attempts to un- 
fold or deconvolve the postsynaptic L3 train by re- 
moving the character of the presynaptic L 10 train in 
order to reveal the underlying "primary effect" of the 
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average presynaptic spike on L 3's rate. The confidence 
band (plus and minus two standard deviations) for 
the estimate is indicated. As shown, the primary effect 
is a biphasic slowing-accelerating sequence with a 
prolonged (about 3 sec) tapering off acceleratory phase. 
The anticipatory peak, apparent in the CCH, can 
disappear when the data is deconvolved in this manner. 
At very high L 10 rates, L 3 was silent most of the time. 

Figure 2-I illustrates the domain over which the 
model based exclusively upon a(u) and # is not suffi- 
cient, and where a(u) does not represent faithfully the 
rate effects of the single presynaptic spike (or PSP). 
The presynaptic cell L10 produced approximately 
once every 25 sec a spontaneous burst with an intra- 
burst accelerando pattern. The postsynaptic cell L3 
also was very bursty, completely shut off during the 
L 10 bursts but firing between them. The estimate 
(Graph A) of the autospectrum of L 10 shows a con- 
centration of power at the low frequencies (from 0 up 
to about 0,2 cps), suggesting a propensity of the cell to 
continue doing whatever it is presently doing. The 
power at 0 frequency is greater than it would be for a 
Poisson with the same rate, suggesting that the spikes 
of the train are more clustered than in the latter. The 
power of most frequencies is smaller by about 0.55 
logarithmic units or decibels, i.e. 3-5 times smaller, 
than that of the Poisson, and by about 2.5 units, i.e. 
320 times smaller, than those of frequencies close to 
zero. Graph B is the autospectrum of L 3  and 
exhibits substantial power at the very low frequencies; 
it has, however, characters of its own, including another 
maximum at about 2 cps. The coherence estimate 
(Graph C) is remarkably high at 0 frequency and then 
drops to insignificance almost immediately. The very 
small coherences at virtually all frequencies that were 
present in reasonable amounts in the autospectra of 
both cells indicates that the simple model is insufficient. 
A high coherence value exclusively at zero suggests 
that only the very slowly evolving behavior of the 
two cells is related. 

Figure 2-II illustrates the commonplace situation 
where extreme presynaptic pacemaker-like regularity 
precluded a meaningful estimation of the kernels. 
Cell L10 was driven regularly at 2 spikes/sec; L3 
fired in bursts with usually evenly spaced AP's. The 
frequency domain statistics are especially useful in 
this case. Graph A, the estimate of the autospectrum 
of L 10, shows peaks at the fundamental frequency of 
about 2 cps and at the harmonics. The power at most 
other frequencies is smaller by about 2 decibels than 
of the Poisson at the same rate, and by about 3.5 than 
that at the pacemaker frequency (or its harmonics): 
i.e. the former power is about 100 and 3200 times 
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Fig. 2. Frequency statistics for the L 10-L3 synapse. I. Non-linear 
part in the transformation domain. The presynaptic discharge was 
very "bursty" (A) and at a moderate rate. The coherence (C) was low 
throughout all frequencies except at those close to zero. II. Impossi- 
bility of estimating the kernels meaningfully. The presynaptic 
discharge was extremely regular at 2 spikes/sec. Its power (A) as 
well as the coherence (C) concentrated at that frequency and its 
harmonics. I. L 10 train: N t422; # 0.501 sec; G 0.059 sec; CV 0.118. 
L3 train: N624; # 1.132sec; a 1.141 sec; CV 1.008. II. L10 train: 
N1630; #0.476sec; a2.368sec; CV4.976. L3 train: N416; 
#1.837sec; ~r3.335sec; CV1.815. Data as in Fig. 5-A,B,C of 
Bryant et al. (1973) for I and in Fig. 4-D, E, F of Bryant et al. (1973) 

for II 

smaller than the other two, respectively. Graph B, the 
estimated autospectrum of L3, also shows peaks at 
the 2cps frequency and its harmonics; in addition, 
L3 has its own spontaneous behavior with strong 
frequency components at about 0.08, 1.48 and 3.48 cps 
(the latter possibly caused by the beating together of 
the 1.48 and 2.00 cps components). The coherence 
estimate (Graph C) is very high at the driving frequency 
of 2 cps (and its harmonics): hence, the IPSP ties the 
cells together at that frequency. However, because 
fAA()~) is near 0 for so many frequencies, the variance 
expression (24) indicates that one cannot construct a 
meaningful estimate of a(u). 
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Fig. 3. Non-linear domain at the L 10-L 3 synapse. Time and frequen- 
cy statistics. L 10 and L3 had a somewhat bursty pattern, as illus- 
trated by the square roots of the ACH's (B, C) (and by the autospectra 
which are nor shown). The coherence (D) is high only around the O 
and 1.2 cps frequencies. The linear model does not suffice, and the 
a(u) function (F) does not provide an acceptable description (e.g. 
has oscillations over negative times) of rate effects: it still constitutes 
an improvement over the time domain statistic (A). The gain (E) 
is maximum between 0.8 and 1.6 cps. L 10 train: N 1018; # 0.780 sec; 

1.369sec; C V  1.755. L3 train: N992; #0.800sec; er0.582sec; 
CV 0.727. Data as in Fig. 5-D, E, F in Bryant et al. (1973) 

Figure 3 illustrates the domain where the linear 
model (3) does not satisfy but where a(u), though not 
representing faithfully the rate effects of the single 
presynaptic spike, still represents an improvement 
with respect to the ordinary time function. In this 
case, L 10's spontaneous bursting was less pronounced 
than in Fig. 2-II, and correspondingly L3  was never 
silenced for long intervals. Graph A, the square root 

of the CCH, contains (mainly for positive times) a 
clear oscillation of period about 0.75 sec, superimposed 
upon a slower downward drift (roughly from - 3  to 
5 sec) due to L 10's bursts. Graphs B and C are the 
square roots of the L 10 and L3 ACH's, respectively. 
The uniformly high values of B up to about 3.5 sec 
are consistent with L10's bursting behavior; the 
lack of significantly low values close to the origin 
relates to the fact that successive AP's in the burst 
were very close to each other, indicating a short re- 
fractory period. The estimate of the autospectrum of 
L10 (not shown) has, by comparison to a Poisson 
process of the same rate, excess power up to 0.24 cps, 
deficient power to about 1.0 cps, and the same power 
beyond 1.0cps. The autospectrum estimate for L3 
(not shown) has more power in the immediate neigh- 
borhood of 0 than at the next interval of frequencies. 
Graph D, the coherence estimate, shows two pro- 
nounced but narrow peaks, one at 0 frequency, the 
other at about 1.2 cps, indicating that only the slowly 
evolving behavior of the two trains and that at 1.2 cps 
are associated. Graph E, the estimated gain, shows a 
boosting in the L 10 to L 3 transformation of frequency 
components from 0.8 to 1.6 cps, i.e. of periods from 
0.65 to 1.25sec: apparently, the L10-L3 synapse 
enhances particularly that oscillatory behavior. The 
ci(u) in Graph F exhibits successive slowings and 
accelerations over a 5 sec interval; these include some 
to the left of 0 which, since they anticipate the presyn- 
aptic AP, cannot be attributed to a causally determined 
"primary effect". A simple comparison of Graphs A 
and F, however, does suggest that even in this case 
where the estimate is not plausible there are advan- 
tages in the deconvolution operation to form fi(u): 
for example, whereas the CCH exhibits its oscillations 
superimposed upon a pronounced dip (caused by the 
bursting character of L 10), the graph in F oscillates 
about a constant level. 

In a case where L 10 was "Poisson"-driven at 1/sec, 
and L3 fired quite irregularly, many (but not all) 
L 10 spikes produced L3 slowing for periods of up to 
4sec, i.e. there was "inhibition of long duration" 
(e.g. Fig. 6 in Bryant et al., 1973). The coherence 
estimate was high up to about 0.7 cps. The fi(u) 
dropped off very rapidly as u increased from 0, and 
then recovered slowly, reaching zero level only at 
close to 3.0 sec. 

Figure 4 illustrates the domain of plausibilit3; for 
the linear model and for a(u) as a rate effect descrip- 
tion at the stable EPSP junction between fibers in 
the right viscero-pleural connective RVP and R15. 
The junction was driven by a "Poisson" form whose 
consequences only partially disrupted R15's typical 



224 

LogJ 
~ 

.48 

~ ( u )  A 

f 0 - 5  5 I0 

a(u)  B 

, 2  

5 0 

- . 2  

TIME u (sec) 

5 I0 

R 
ID 

w ~ L3 C 
(D L Z 
W i 
O:::: 
w 
- i - _  

o 

FREQUENCY (cps) 

Fig. 4. Linear part of the transformation domain for a right-viscero- 
pleural to R 15 synapse with an EPSP. Time and frequency statistics. 
Coherences (C) are high up to about 3 cps. The square root of the 
CCH (A) shows the anticipatory dip followed by a peak by a rebound 
dip. The a(u) (B) shows the peak and the rebound dip, thus eliminating 
the anticipatory dip attributable to a characteristic of the presynap- 
tic discharge. Viscero-pleural train: N 1606;/~ 0.200 sec; ~ 0.117 sec; 
CV0.585. R 15 train: N440; /~0.730sec; a 1.150sec; CV 1.575. 

Data as in Fig. 14-A of Bryant et al. (1973) 

bursting. Graph A, the square root of the CCH, has 
polyphasic character showing an anticipatory dip, 
followed by an acceleration and then another dip. 
The coherence estimate in Graph C is low at very 
low frequencies and then of some magnitude ap- 
proximately from 0.2 up to 3.0 cps. The a(u) estimate, 
Graph B, reveals a strong brief acceleration (about 
60 msec) followed by a less marked slowing lasting 
about 2.5 sec. The anticipatory dip does not appear, 
confirming that it was introduced by the particular 
character of the input train (see above and Brillinger, 
1975b). This ~(u) is, to a degree, a mirror image of 
the ~(u) of Fig. 1-E. 

The validity of partial coherence analysis as a tool 
for confirming a real, or for discarding a spurious, 
interaction is illustrated in Fig. 5. In that experiment, 
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Fig. 5. Value of partial coherences. Confirmation of the a priori 
knowledge that there is no influence. An irregular ("Poisson") 
pulse train of hyperpolarizing pulses drove L10 which in turn 
acted on L3: there was no direct pulse influence on L3. Pairwise 
coherences (pulses-L10, A; L10-L3, B; pulses-L3, C) were high 
for the smaller frequencies. On the basis of C alone, there is no way 
of telling how much of the pulses-L3 association is due to the L 10 
mediated effect on L3 and how much to a direct influence. The 
partial coherence D with L 10 eliminated was not significant how- 
ever, and this is compatible with the a priori knowledge. Pulse train: 
N 729; # 1.020 sec; G 0.560 sec; CV 0.549. L 10 train: N 702; /~ 
1.060sec; a0.670sec; CV0.632. L3 train: N613; #l .210sec;  

0.290 sec; C V  0.240. Data as in Fig. 16 of Bryant et al. (1973) 

"Poisson"-driven inward-current pulses were injected 
into L 10 which in turn elicited IPSP's in L 3: ebviously 
the association between the pulses and L 3 was due to 
L 10's intervention and there was no direct effect of 
the pulses upon L 3. The estimated pairwise coherences 
are all high for low frequencies, Graph A being 
pulses-L 10, B L 10-L 3 and C pulses-L 3. The estimated 
coherence is least in the last case as was to be expected. 
Graph D gives the estimated partial coherence of the 
pulses with L3 eliminating L 10: it is essentially zero, 
confirming the self-evident fact of no influence other 
than that mediated by L 10 from the pulses to L 3. 

Figure 6 illustrates a practical application of the 
partial coherence which leads to a conclusion in- 
volving functional connectivity. In this case L 10 fired 
spontaneously as a pacemaker, and entrained two 
followers L2 and L3 via large IPSP's. The estimated 
coherences for L 10-L3 in Graph A, for L 10-L2 in B, 
and for L3-L2 in C are all high around 1 cps, the 
pacemaker frequency. The high coherences involving 
L 10 can be explained by the recognized and powerful 
IPSP's it elicits in the other cells. The high L3-L2 
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Fig. 6. Value of partial coherences. Rejection of the hypothesis of a 
direct connection between two neurons (L 2, L 3) influenced through 
IPSPs by a common source (L 10). All pairwise coherences are high: 
i.e. those between the driver L10 and each of the followers L2 (A) 
and L3 (B) and that between the followers (C). The latter is com- 
patible with the idea of an influence between L2 and L3, but this 
hypothesis is rejected by the low value of the partial coherence (D). 
L10 train: N767;  ff0.970sec; a0.121sec; CV0.125. L3 train: 
N742; f t l .000sec; G0.130sec; CV0.130. L2 train: N523; # 
1.380 sec; a 0.524 sec; C V  0.380. Data as in Fig  15 A, B, C of Bryant 

et al. (1973) 

coherence either can reflect exclusively the common 
drive L10 exerts on both L2 and L3, or can depend 
on a hypothetical interconnection between L2 and 
L 3. There is no electrophysiological evidence of such 
a connection, but this could be due to an electrode 
location in the soma remote from where the corre- 
sponding PSP's are generated. The existence of such an 
unrecognized influence was investigated using partial 
coherence analysis of L2 and L 3 with L 10's influence 
eliminated. The partial coherence (Graph D} is not 
significantly different from zero. This leads to the 

physiologically interesting conclusion that, if an addi- 
tional pathway exists, it is inactive under the present 
conditions. 

Figure 7 is a final example of the power of the 
frequency domain approach. L 10 fired spontaneously 
with a strong pademaker rhythm whose frequency 
1/T was 2.34cps, corresponding to a period T of 
0.428 sec. The coherence estimate between L10 and 
L3 (not shown) was very high at this frequency. 
However, Graph A, the square root of the time domain 
statistics (ACH) of L3 shows no clear sign of the 
period T corresponding to this frequency; indeed, the 
interval between the origin and the first mode (esti- 
mating the "dead time" of the cell) is about 0.750 sec, 
i.e. longer than T and corresponding to a frequency 
of 1.33 cps. Contrastingly, Graph B, the estimate of 
the power spectrum of L 3, does have a peak (indicated 
by the arrow) at 2.34 cps, from which the L 10 pace- 
maker period and frequency might have been identified 
were they unknown. L 3 reveals its frequency 1/T with 
period T by firing at periods 2T, 3T, ... that are 
integral multiples of T. There is, in addition, a peak 
at 1.33 cps. 

Discussion 

The present communication explains a quantitative 
model that explores and describes the influence ex- 
erted by a presynaptic train upon the corresponding 
postsynaptic one; the conceptual entity that allows this 
influence can be referred to as "synaptic operator" 
(Bryant et al., 1973). The procedure used derives 
from a mathematical method for identification of 
point-process systems (Brillinger, 1974), and permits 
interpretations and conclusions in qualitative and 
physiological terms. 

The general plan of the model is based upon 
functions referred to as "kernels" that relate rate 
changes to one or more time arguments and reflect 
biologically meaningful issues. That (#) of zero-order 
is simply the overall average rate of the postsynaptic 
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Fig. 7. Usefulness of the frequency domain. 
The presynaptic (L 10) pacemaker rhythm 
(2.34 cps, period 0.428 sec) was not apparent 
in the time domain statistic A of L3, but 
did show up in the autospectrum B, re- 
vealing that it was indeed transferred. L 10 
train: N1537; #0.430sec; a0.017sec; C V  
0.040. L 3 train: N 509; # 1.290 sec; a 0.420 sec; 
C V  0.326. Data as in Fig. 4-A, B, C of Bryant 

et al. (1973) 
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cell when the specific presynaptic neuron is silent. A 
first-order kernel relates to the rate changes elicited 
by the single average presynaptic spike, or PSP. The 
higher order kernels (which will be analyzed separately, 
Brillinger et al., in preparation) relate to interactions 
between two or more pre- and/or postsynaptic spikes 
and measure these joint effects for any possible timing 
of the conditioning events. For example, a kernel of 
second-order will evaluate how the PSP facilitation 
at any time after any pair of PSP's is reflected by the 
postsynaptic rate. 

Results added specific details of biological interest, 
apart from confirming the generalization that every 
regular system in Nature is in some way non-linear, 
but under certain conditions can be approximated sat- 
isfactorily by a linear model. Concretely, they showed 
that a domain of presynaptic discharges reasonably 
close to that of natural performance has two sub- 
stantial and separate portions. In one, where pre- 
synaptic discharges are irregular and at intermediate 
rates (e.g. Figs. 1, 4), an acceptable description of 
synaptic transfer is provided by a model (3) and (4) 
based upon the rate when the presynaptic cell is 
silent and upon linear sum of appropriately timed 
first-order kernels. In this part of the domain, the 
function a(u) becomes an adequate representation of 
the rate effects of the average presynaptic spike, i.e. 
becomes the average impulse response function. Hence, 
this part can be referred to as "linear". It should be 
noted that the assumption underlying expressions 
(3) and (4), i.e. that only the expectations are so related, 
is far weaker than the linearity assumption of ordinary 
system analysis, where the output y is essentially 
linear on the input x except for the error term. The 
large number of cases where this model was plausible, 
as revealed by substantial coherences in a broad 
frequency range, was remarkable. 

The appropriateness of a(u) as an uncontaminated 
description of single spike effects allowed the confirma- 
tion of the idea that both "inhibitory" or "excitatory" 
synapses generate biphasic effects. The unexpected 
strength of the late effects (e.g. acceleration with IPS P's) 
were confirmed, an issue which together with their 
genesis and implications have been discussed else- 
where (Brillinger, 1975b). 

The "contamination" due to the presynaptic 
discharge form could thus be minimized and, in 
favorable cases, eliminated. Contrastingly, the CIF, 
even with the "Poisson" form, exhibits an "anti- 
cipatory" event (Bryant et al., 1973) whose genesis is 
explained heuristically as follows for IPSP's (and 
similarly for EPSP's). The instant when the presyn- 

aptic cell A fires is the time origin for both the AB 
cross-intensity function, mAB(U ), and the A auto- 
intensity function, mAA(U). The latter has a trough 
around 0 and is flat elsewhere. Now at any particular 
time u, mA~(U) depends on complex summation of 
"primary" effects that have invariant time courses 
with respect to the evoking A spikes and are elicited 
with characteristic relative timings that reflect, on 
the average, mAA(U). At long delays (large u's), mAA(U) 
is flat, so that primary effects are elicited in complete 
asynchronicity. Hence, their average consequences 
arise from uniformly staggered spikes and therefore 
produce no CIF deviation from flatness. At small 
delays (small u's), mAA(U ) has a trough so that primary 
effects are elicited less than on average. Hence, to ob- 
tain mAB(U), one must subtract from the average 
amounts that depend on the primary effect and on 
the low mAA(U ). An important portion of the primary 
effects of IPSP's involves slowings, and subtracting 
negative amounts implies increased mAB(U ) values. In- 
creases from the dead time preceding the A spike 
appear clearly as the "anticipatory" peak. Increases 
from that following the A spike combine with its 
primary effects and therefore are less apparent. Other 
presynaptic forms have more drastic effects. The CIF, 
revealing the postsynaptic rates around each presyn- 
aptic spike, does not provide an adequate representa- 
tion of the rate effects of each. The solution a(u) of 
Eq. (1) suffers considerably less from such effects. 

It is desirable to stress the differences between 
several current functions of time. The postsynaptic 
rate changes occurring around the single presynaptic 
spike (or PS P) reflect in a complex way several issues 
like the statistical properties of the presynaptic train, 
and the rate effects of the single presynaptic spike. 
They are revealed by the CIF (Bryant et al., 1973; 
Knox, 1974; Moore et al., 1970). The rate effects of 
the single presynaptic spike reflect, in turn and also 
in a complex way, issues like PSP shapes and spike 
generation mechanisms. They are best predicted by 
the first-order kernel a(u): in the linear portion of the 
domain, a(u) provides a realistic and accurate descrip- 
tion (referred to as average impulse response function), 
but in the non-linear portion (see below) it cannot be 
considered necessarily as realistic, though it still re- 
mains a part of expansion (9). Therefore, the rate 
changes around the presynaptic spike, those re- 
sulting from it, or the best linear predictor of the 
latter have profiles that are partly independent from 
one another and from the PSP shape, though they 
do relate because the latter is a common determinant. 
It is of interest to study each curve independently 
and understand its genesis, as well as to analyze their 
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differences. For example, those between CIF and PSP's 
were pointed out by Moore et al. (1970), Bryant 
et al. (1973) and Knox (1974), all of whom noted that 
they relate but neither linearly nor simply; those 
between the CIF and a(u) are stressed here (e.g. 
Figs. 1, 3). 

In the other portion of the domain, where pre- 
synaptic discharges are either bursty or very rapid 
(e.g. Figs. 2-I, 3), acceptable descriptions require other 
models, which can be referred to as non-linear. These 
incorporate kernels of several time arguments that 
account for interactions between two or more AP's, 
either presynaptic (i.e. implying PSP facilitation or 
anti-facilitation), postsynaptic (e.g. implying refracto- 
riness), or both. Strictly neurophysiological work has 
demonstrated interactions, recovery cycles, and their 
dependence on timing; earlier results (e.g. Segundo 
et al., 1963), however, often were neither exhaustive 
nor completely satisfying, providing few examples 
and using preparations where monosynapticity was 
questionable. These important issues can now be ex- 
plored more precisely, thoroughly and convincingly, 
using higher-order kernels in a more suitable prepara- 
tion such as this one (Brillinger, Bryant and Segundo, 
in preparation). The non-linear portion includes also 
pacemaker-like presynaptic discharges, even though 
the present results (e.g. Fig. 2-II) did not allow con- 
clusions in this respect: indeed, when pre- and post- 
synaptic discharges are regular, their correspondence 
is complex, involving zigzag relations between rates 
and other effects (Perkel et al., 1964; Schulman, 
1969; Segundo, 1970). 

Several neuronal properties (e.g. Segundo, 1970; 
Segundo et al., 1969), e.g. spontaneous activity, PSP 
shapes and interactions, current-to-rate conversion 
refractoriness, are well known and recognized as 
mediators of the influence that presynaptic spikes 
exert upon postsynaptic spikes, i.e. the influences 
whereby fluctuations of generation intensity are trans- 
ferred in terms of time courses and amplitudes. The 
model proposed here "handles" - i.e. accounts for 
and describes quantitatively and largely separately - 
the effects upon the postsynaptic rate of each of these 
properties as affected by any number (i.e. zero, one, 
two, and so on) of pre- and/or postsynaptic firings at 
any given relative timing. Several of these properties 
cause non-linear effects (e.g. Granit et al., 1966): the 
relative magnitude of their respective contributions 
will arise from construction of higher order models. 
Our present tentative interpretation of the genesis of 
non-linearities, based upon observation of the trans- 
membrane potential records where PSP interactions 
are not large, attributes the main responsibility to 

limiter behavior, post-firing excitability changes, and 
pacemaker interactions. 

The idea of a network of neurons influenced 
trans-synaptically and generating AP's is the con- 
ceptual framework for an important approach to the 
nervous system where the elementary building-block 
is the transformation at an individual junction from 
pre- to postsynaptic activities. The dynamic features of 
the synapse is an important biological question, since 
an opinion that is plausible (though not immune to 
epistemological criticisms, Efron, 1967; Thorn, 1972) 
claims that complete understanding of higher func- 
tions reduces to the behavior of membranes and 
molecules; knowing how the neuronal network op- 
erates is an indispensable intermediary prerequisite. 
Regardless of the language in which it is posed (quan- 
titative and physiological, or sophisticated and mathe- 
matical), or of its aims (clues to integration or to local 
physico-chemical mechanisms), synaptic identifica- 
tion is always based upon a joint description of pre- 
and postsynaptic activities. Matched pairs can simply 
be listed, but a catalog provides little insight by itself. 
Heuristic extraction of qualitative conclusions has 
provided most progress in the field so far. More 
quantitative use of data and construction of mathe- 
matical representations as discussed here are also of 
value (Marmarelis and Naka, 1973a) for qualitative 
conclusions are often based upon quantified argu- 
ments. Indeed, models provide precise and concise 
canonical descriptions which imply a conceptualiza- 
tion of transformations and can serve as substitutes 
for experiments that are preliminary, technically 
difficult, or predictive. 

The present work developed rigorous and ex- 
haustive mathematical techniques and provided inter- 
pretations inferred from anatomically simple situa- 
tions. Examples of such contributions are the follow- 
ing. The synaptic influence can be characterized via 
functions that do not depend on the presynaptic 
discharge and that are meaningful in terms of well- 
known biological realities (e.g. spontaneous spike 
generation, the effects of a single spike, and the inter- 
actions between several pre- or postsynaptic ones at 
all possible relative timings). The model that best 
predicts the postsynaptic discharge corresponding to 
any input can be constructed, as an expansion, to any 
degree of pre-specified accuracy. The physiological 
circumstances where a "linear" model is acceptable 
and where it is not were recognized: where it is plausi- 
ble, the kernel of the first-order provides the uncontami- 
nated rate effects of the single presynaptic spike. The 
partial coherence allowed conclusions as to connecti- 
vity, evaluating mutual influences between two post- 
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synaptic cells while submitted to a common presyn- 
aptic drive: we know of no other manner in which 
this may be done, apart from favorable electrophysio- 
logy. The practical value of rigorous confidence pro- 
cedures for physiologically interesting estimators (so 
far used without them) seems self-evident, 
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