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SUMMARY

The first concern of this work is the development of approximations to the distributions of crude
mortality rates, age-specific mortality rates, age-standardized rates, standardized mortality ratios, and
the like for the case of a closed population or period study. It is found that assuming Poisson
birthtimes and independent lifetimes implies that the number of deaths and the corresponding
midyear population have a bivariate Poisson distribution. The Lexis diagram is seen to make direct
use of the result. It is suggested that in a variety of cases, it will be satisfactory to approximate the
distribution of the number of deaths given the population size, by a Poisson with mean proportional
to the population size. It is further suggested that situations in which explanatory variables are present
may be modelled via a doubly stochastic Poisson distribution for the number of deaths, with mean
proportional to the population size and an exponential function of a linear combination of the
explanatories. Such a model is fit to mortality data for Canadian females classified by age and year.
A dynamic variant of the model is further fit to the time series of total female deaths alone by year.
The models with extra-Poisson variation are found to lead to substantially improved fits.

1. Introduction

Vital statistics are data on the fundamental events of human lives—events such as birth,
death, marriage, and the like. They usually take the form of counts or rates and are often
collected via censuses and legally required registrations. They are used for summarization,
comparison, forecasting, detection of change, hypothesis generation, surveillance, and
studying public health generally.

A continuing presence is a wish to make comparisons—comparisons between regions,
(comparisons between) time periods, (comparisons between) social groups, and so on. Now,
in many circumstances the data are virtually complete so that it is a fact that death rates
differ for two counties or two years or two races. What is more likely of concern then is:
do two death rates differ by more than some level of natural fluctuations? The purpose of
this study is the stochastic conceptualization and formalization of the natural variability of
vital statistics to support their use in comparisons and other analyses. The particular cases
of mortality and of groups specifically delineated in age and time will be emphasized;
however, results for a broad variety of other cases should be apparent.

Quite a number of distinct vital statistics are in common use. These include counts,
rates, and ratios, the emphasis being on the latter two.

Counts. One sets down the total number of deaths in a given time period for a population
of interest, perhaps separately by age, region, or cause. Figure 1, middle, gives this data for
the population of all Canadian females annually for the time period 1926-1982. Figure 2
gives the counts of deaths, again for Canadian females, but now for the years 1950-1972
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Figure 1. The top graph provides the estimated 1 June number of

females in Canada for 1926-1982. The middle graph provides the

year’s total number of female deaths for the same time period. The
bottom graph is the ratio of the previous two, the crude death rate.

and separately by age. The radii of the circles plotted here are proportional to the
corresponding numbers of deaths. An issue that typically arises in mortality studies is
whether the population whose deaths have been recorded is closed or open. In the latter
case the group membership changes continually because of emigration, immigration, and
the like. In the former, changes arise solely from births, deaths, and birthdays. The theorems
of the paper are for closed populations. The data sets are for open populations.

Rates. Rates are relative frequencies. For example, the crude death rate is the number of
deaths in a population of interest during a specified time period, divided by the number of
person-years lived by the population during the time period. A complication that arises
often is that person-years lived has to be estimated. In the case of annual rates, an estimate
of the midyear population is often used. [This procedure “is (largely?) confined to English-
speaking countries,” remarks a referee.] Figure 1 gives the Canadian 1 June population
estimate for all females for the period 1926-1982 and also the corresponding crude death
rate. The three graphs of Figure 1 display rising numbers of deaths and population members,
but a falling death rate. (The kink in the population series in 1949 resulted in part from
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Figure 2. A circle diagram to represent the counts of females dying annually from

1950 to 1972 separated into 19 age groups (age intervals: 0-1, 1-4, 5-9, 10-14, ...,

80-84, 85+). The radius of the circle plotted is proportional to the corresponding
count (and thus an estimate of the count’s variance in the Poisson case).

Newfoundland’s entering Confederation. That naive use of the 1 June figure can lead to
biased results, should be noted.) In the case that a death rate is given for a specified age
group, it is referred to as an age-specific mortality rate. These rates are important because
mortality experience usually varies substantially with age and a crude rate may not display
important phenomena. Figure 3 gives the age-specific death rate for the Canadian females
for the period 1950-1972; again the radii are proportional to the variate of concern. It
evidences interesting trends in mortality. Age-adjusted rates are an attempt to provide
single rates that allow direct comparison of populations with differing age compositions.
They are weighted combinations of age-specific rates. (For example, the weights may
correspond to the composition of some standard population.)

Ratios. The standardized mortality ratio (SMR) may be mentioned. It is the ratio of
observed total deaths to “expected” deaths using the rates of some standard population and
the given person-years lived. It is often used in making comparisons. A useful survey of the
SMR is given in Breslow and Day (1985).

The purpose in setting down the above material has been to bring out the basic quantities
involved in constructing vital statistics—counts and estimates of population size. These are
the quantities whose variability will be fundamental. Discussion of vital statistics generally
and details concerning particular cases may be found in Chiang (1961), Keyfitz (1966),
Benjamin (1968), Fleiss (1981), Benjamin and Pollard (1980), Inskip, Beral, and Fraser
(1983), and Hoem (1976, 1978, 1984a), for example.

The structure of this paper is the following. Section 2 sets the scene and presents some
variability measures in common use; Section 3 sets down a conceptual model for the
biological process of concern and shows how the Lexis diagram and the methodology of
point processes may be used. Section 4 presents specific formulas for a number of cases of
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Figure 3. A circle diagram of the age-specific death rates similar to Figure 2.

interest; the following section discusses the results obtained and describes a simplifying
approximation. Section 6 turns to the (regression) case where measurements of explanatory
variables are available and indicates a model fitting procedure. Section 7 makes use of that
fitting procedure for the two Canadian data sets mentioned above. The final section draws
some conclusions and indicates some problems for further study.

2. Some Background

Discussion will focus on the case of an age-specific death rate for a given year. Let D,
denote the number of deaths in the year for the age group x to x + K, say, and let P,
denote the midyear population for that age group. Then the age x death rate is (usually
taken to be)

M, = D,/P.. (2.1)

(In practice, P, has to be estimated, but D, may be obtained from official records. For the
moment, however, P, will be assumed available.)

In statistical studies, D, is often assumed to be distributed as a binomial variate with
parameter n = P, and its variance is estimated by D,(1 — M,). [See, for example, Pollard
(1970), Daw (1974), Mosteller and Tukey (1977, §11C).] Conceptually, however, this
assumption has to be viewed as an approximation for our case of a closed population (as
opposed to a cohort of individuals). Here some individuals enter the population during the
year, when they reach age x, others leave during the year, when they reach age x + K + 1.
The exposures of the individuals are not all the same and the realizations of the individual
life histories are not identically distributed, as is required for the binomial. Further, P, is
not the number of individuals in the study; rather, it is an estimate of the average number
alive aged x to x + K during the year.
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In research to obtain a more valid variance estimate, Chiang (1961) created a hypothetical
cohort of size Ny = [Py + K(1 — a,)D,]/K and assumed D, binomial with parameter
n = N,. (Here a, is taken to represent the average fraction lived in the year by an individual
who dies then. It is usually taken to be 1.) His estimate of the variance of D, is

D.(1 — Dy/Ny). (2.2)

Chiang develops his result by replacing the lives of those in the population aged, say,
x+ 1, x+2,..., by later stretches of life of those aged x at the beginning of the period.
The value for N, results from equating expressions for person-years lived. In the case that
the death rate is low, both Chiang’s and the preceding estimate are approximately D,. The
latter corresponds to Poisson variation. It will be argued in this paper that it is the Poisson
estimate that should be employed generally, whether or not the death rate is low. Further,
no artificial cohorts will be created in our analysis. It may be remarked that others have
suggested the use of the Poisson; however, their arguments seem always to be accompanied
by a remark that this follows from deaths being rare.

Death rates are often subjected to regression analyses when explanatory variables are
available. The discussion of what is an appropriate variance estimate there becomes the
question of what weights to employ in the regression analysis. Some references are Fryer et
al. (1979), Hogan et al. (1979), and Pocock, Cook, and Beresford (1981). This issue will be
returned to later in the paper.

3. A Conceptual Model

An issue that arises with death counts and rates is: are these not facts (that is, exact values),
and hence not subject to uncertainty? There are, however, various conceptual bases for
treating birthtimes and lifetimes as random. Among justifications that may be provided
are: moments of birth and death appear unpredictable; there exists an immense biological
variability; there exists substantial environmental diversity; there are epidemics; there are
medical advances, accidents, violent deaths; periods of extreme weather occur; and finally,
researchers have constructed useful chance mechanisms for fertility and disease. At the
same time it may be mentioned that there do exist some near-deterministic aspects; in
particular, babies may be induced or born via Caesareans and there exist seasonal fluctua-
tions. (This last issue will be returned to later.) In the framework to be presented, both
times of birth and lifetimes will be assumed stochastic, thence leading to a natural variability
in vital statistics. We mention that other philosophical attitudes have been adopted regarding
the issue of stochastic models. For example, Keyfitz (1966) suggests that “a census may be
regarded as a sample drawn in time from all the times in which substantially the same
conditions prevailed.”

Before sampling results are developed, some notation and assumptions will be set down.
It will be convenient to display individuals’ life histories by slope 1 lines in the age vs time-
of-death plane, i.e., to employ Lexis diagrams. [This technique is discussed and employed
in Benjamin and Pollard (1980), for example.] In the diagram the axes have matched
scales; lifelines begin at birth and end at death. For a set 4 of the plane, the number of
deaths in 4 is given by the number of lines ending in 4. Figure 4 provides an example of a
Lexis diagram with the lifelines indicated. Suppose one is interested, for example, in the
age 40-44 death rate of 1980. It is given by N(B)/N(C), with B and C the regions indicated
in Figure 5.

In setting down definitions and developing results, it will be convenient to make use of
the mathematical machinery of stochastic point processes. Cox and Lewis (1966) is one
reference to this material. Briefly, a linear point process is a random scattering of points
along the real line. Its realizations may be denoted by {s;} with ¢; the coordinate of the jth
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Figure 4. A Lexis diagram, with the sloping lines representing

individuals’ lifetimes. The lines begin at the moment of birth and

end at death. Those ending in region A represent individuals dying
in the corresponding age and time intervals.

point. (Shortly the ¢; will be taken to be the birthtimes of the population members.) An
important parameter of a linear point process is its intensity or rate function, (), given by

Pr{Point in (¢, t + h)} = B(t)h 3.1
for h small. Supposing I to be an interval, and M(I) to be the number of points in I, then

E{M(I)} = J; (1) dt = B(I), (3.2

say. The (linear) Poisson process with intensity 3(-) may now be defined by the requirement
that for disjoint intervals I, . . ., Ik, the counts M(1)), . . . , M(Ix) are independent Poisson
variates with means B(I,), . . ., B(Ix), respectively, K=1,2, . ...
A planar point process is a random scattering of points in the plane. Its intensity function
‘A(-) is given by
Pr{Point in (¢, t + h) - (x, x + h)} = \(t, X)hh (3.3)

for A, h small. If 4 is a region of the plane and N(4) the number of points in 4, then

E{N(4)} = f J; A, x) dt dx = A(A) (3.4)

here.
The planar Poisson process with intensity A(-) is given by the requirement that for
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Figure 5. A Lexis diagram representing the death rate,
N(B)/N(C), for the age group 40-44 and the year 1980, taking M(C)
to be the midyear population.

disjoint regions A4, . . . , Ak, the counts N(4,), . . ., N(Ax) are independent Poisson variates
with means A(4)), . .., A(Ax), respectively, K= 1, 2, . ... Here A(4) is given by expression
(3.4).

Properties of this Poisson process include: (i) var{N(4)} = E{N(4)} = A(A); and (ii) for 4
contained in a region B, the distribution of N(4) given N(B) = n is binomial with parameters

n and A(A4)/A(B).
Returning to the discussion of vital statistics, suppose that the times of birth of the
members of the population of concern are ¢, o2, . ... Let M(I) denote the number of g;

in the interval I. Supposing that M(I) is a stochastic point process, its intensity function
B(¢) will be referred to as the birth intensity. (We remark that, for example, 3(f) would be
periodic were there a weekly effect present.) Next, suppose that individuals live random
lengths of time. Let X denote the lifetime of an individual born at time ¢¢. The distribution
of X is conveniently described by the force of mortality, u(t, x), defined by

Prix<X<sx+ h|X=x} = ult, X\)h (3.5)

with ¢ = g9 + x and 4 small. For example, the probability that an individual born at time
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ao survives to age x is given by

exp{— j; u(oo + 3, ¥) dy}- (3.6)

The death process is defined to be the planar point process with points at the positions
(date of death, age at death); specifically, supposing the jth individual is born at time o;
and dies aged x;, then N(4) denotes the number of points (; + X;, x;) in the region A. It
corresponds to the endpoints of the lifelines of the Lexis diagram. Let A(¢, x) denote the
death intensity [i.e., the intensity of the point process N(-)]; then A(4) is given by expression
(3.4) with

A, x) = B(t — x)u(t, x)exp][— J; rt—x+y) dy}- (3.7)

This last follows from first principles; the three factors on the right have the respective
interpretations: “born at ¢ — x,” “die at ¢ age x,” “survive to #,” assuming appropriate
statistical independence.

A theorem describing the distribution of the death process may now be stated. A proof
is provided in the Appendix.

Theorem 1. 1f (a) the birth process {o;} is Poisson with intensity 8(¢), (b) the lifetimes {X}
of the individuals are independent of each other, independent of the birth process, and
correspond to the force of mortality u(¢), then the death process N(-) is planar Poisson with
intensity (3.7).

This result may be used to derive the distributions of various vital statistics. It is
particularly convenient because for the Poisson process, counts corresponding to disjoint
regions are statistically independent. It is worth remarking specifically that the resulting
Poisson distributions for death counts arise not from rarity (small numbers), but rather
from the assumed total randomness (Poisson) of the birth process and the assumed
randomness of lifetimes.

The assumptions of Poisson births and independent lifetimes were essential to the
derivation of the Poisson result. In fact, the birth process may be expected to show some
clustering because of twin births. Further, lifelines will not be completely independent
because of the existence of multiple deaths (in accidents, for example). However, these
particular phenomena may be expected generally to have small effects. There have been a
number of empirical studies of time series of birth data. In particular, we mention Cohen
(1983), containing a variety of references, and Izenman and Zabell (1976). A prominent
phenomenon brought out in the references is the weekly period present in a variety of data
sets. As mentioned above, inductions and Caesarians are obvious explanations of the
period. Izenman and Zabell (1976) also carried out a spectral analysis of their data (births
in New York City—a very open population!). Their estimated power spectrum shows peaks
corresponding to a weekly period superposed on a fairly flat spectrum. This is what could
be expected were the process periodic Poisson. Other evidence consistent with a Poisson
was found in unpublished work by LeRoy (course project, Statistics Department, University
of California, Berkeley, 1983). She studied the births for 512 consecutive days (a total of
1777 births) at Highland Hospital. This is the county hospital for Alameda County and
there is little intervention in the birth process. No pronounced weekly period was found
and spectrum analysis results were consistent with a pure noise process.

The Poisson process results from various limiting operations. These include rare events,
random thinning, superposition, and large translations [see, for example, Daley and Vere-
Jones (1972)]. One can argue here that many birth processes will result from the super-
position of many separately evolving sub-birth processes, for example, and thereby motivate
a Poisson assumption. However, ultimately any justification of the Poisson has to be
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empirical. Some other works presenting stochastic formulations of the population process
include Jagers (1974, 1975), Keiding and Hoem (1976), Braun (1978), Brillinger (1981),
and Jagers and Nerman (1984). One of the referees remarked on the possibility of developing
a full model for the population process of concern, taking note that births are to members
of the population and so on. An issue was whether or not a Poisson process would/could
result for the birth process. It may be noted that Kendall (1948) developed a result showing
that this is not the case for a pure birth-and-death process. In Section 4 of his paper,
Kendall developed the distribution of the total number of births. It was not Poisson. If a
Poisson is to result from axioms, it seems it must come from many processes being
superposed, from events being rare, or some such. Since some of the births in most human
populations are typically occurring to members of the population and lead to later births
into the population, it cannot be expected that the birth process will ever be exactly Poisson.
It appears sensible and topical for someone to follow up the referee’s suggestion and to
build an econometric-type model of an evolving population. A situation in which the
Poisson birth assumption is clearly inappropriate occurs with manpower studies. Here there
is a steady (deterministic) recruitment to the population so the results derived will most
likely be inappropriate. Batholomew and Forbes (1979) is one reference concerned with
statistical aspects of manpower.

The following result will be used in the next section to set down the distributions of
various statistics of interest. It follows by writing the regions involved in terms of disjoint
subregions and from the fact that for a Poisson process, counts for disjoint regions are
statistically independent.

Corollary. Under the conditions of the theorem, for any regions in the Lexis diagram:
(a) {N(B), N(C)} is distributed as {U + W, V + W}, where U, V, W are independent
Poissons with means A(B — BC), A(C — BC), A(BC); (b) N(B)/N(C) is distributed as
(U + W)/(V + W). Further, (c) N(B) given N(C) is distributed as U + S, where U is
Poisson with mean A(B — BC) and S is independently binomial with mean # = N(C) and
proportion A(BC)/A(C).

4. Some Examples

The preceding theorem and corollary will now be used to set down distributions for various
vital statistics.

Example 1. Crude death rate Let D denote the number of deaths in a given year and P
the corresponding midyear population. Then the crude death rate is D/P. It may be
represented by N(B)/N(C) with B, C regions of the Lexis diagram, analogous to those of
Figure 4, but for the whole age range.

Assuming the complete randomness of births and independent lifetimes as required in
the theorem, it follows that {D, P} has a bivariate Poisson distribution. Specifically, {D, P}
is distributed as {U + W, V + W} of the theorem, with A(-) given by (3.4), (3.7). The crude
death rate D/P, is therefore distributed as (U + W)/(V + W). (Incidentally, this
representation shows that there is a chance that the denominator of this ratio may be 0
when the numerator is not. This happens when all die in the first half of the year.) The
bivariate Poisson is discussed in Haight (1967).

On some occasions one is interested in conditional distributions. It follows from the
corollary that the distribution of D given P is that of U + § with U Poisson and S
independently binomial. In particular, this gives

A(BC)
AC)’

E{D|P} = A(B— BC) + P 4.1)

im ABCO) [, ABC)
var{D| P} = A(B = BC) + P 7 [1 A(C)]. 4.2)
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Restating (4.1), the regression coefficient of D on P is A(BC)/A(C). This is initially
surprising because the region BC refers only to deaths occurring in the second half of the
year to persons born before 1 July of the year. The constant term provides specific
information in this case of concern—a closed population. The relations (4.1) and (4.2) may
be used to guide regression analyses. The conditional variance of D, and indeed its
distribution, are made up of a Poisson and a binomial part. In the case that the expected
number of deaths in B — BC is small, the distribution is approximately binomial and one
is led to the traditional assumption of binomial variation. In the case that B is contained
in C, B — BC is empty and the binomial is exact.

Example 2. Age-specific death rates The age x to x + 4 death rate for 1980 has the form
M, = D,/P, = N(B,)/N(C,), where B, is the set (1980, 1981) - (x, x + 5) and C, is the set
of (¢, y) satisfying 1980.5 < fand x < y — (¢t — 1980.5) < x + 5. (See Fig. 5.) N(B,) and
N(C,) count, respectively, how many die aged x to x + 5 in'1980 and how many were alive
and aged x to x + 5 on 1 July 1980. Because of the (planar) Poisson nature of the death
process, a variety of distributions are now apparent here from the theorem and its corollary.
The distribution of D, is Poisson with mean

1981 x+5
A(B,)) = f] ot0 J; A, y) dt dy. 4.3)

Its variance may be estimated by D,. The distribution of {D,, P,} is bivariate Poisson. The
distribution of D, given P, is not generally simple. An approximation to the distribution
will be presented in the next section.

One simple result is that M, statistics for disjoint age intervals are statistically
independent.

Example 3. Age-standardized rates These have the form
Y, wiN(Bx)/N(Cy) (4.4)

for given weights w, [see, for example, Chiang (1961)]. The distribution may be described
in terms of Poisson variates. It is generally nonelementary.

Example 4. Ratios These are generally based directly on counts. For example, the
standardized mortality ratio (SMR) is given by

N(B) / 2 MN(C), 4.5)

with the M, the rates of a selected standard population. The distribution here is nonele-
mentary, but it may be represented directly in terms of statistically independent Poisson
variates. An approximation to its variance will be suggested in the next section.

5. Some Discussion and an Approximation

The principal purpose of this paper has been to provide a conceptual basis on which
sampling uncertainties of various vital statistics might be derived. Assuming birthtimes in
accordance with a Poisson process, and assuming independent lifetimes, it has been found
that the points (time of death, age at death) are distributed in the Lexis diagram in
accordance with a planar Poisson process. This means, for example, that counts correspond-
ing to disjoint regions of the Lexis diagram are independent Poissons. As many vital
statistics may be written as functions of such counts, a representation for their distribution
has therefore been constructed. The results are found to differ from those of Chiang (1961);
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surprisingly, the results here are simpler. Chiang’s results typically involve Poisson terms
and correction terms, such as the (1 — D,/N,) of expression (2.2). One implication of the
difference is that variances estimated under the present framework will generally be larger.
An extreme case of this is provided by that of the rate for those aged 85 and over. Chiang
(1961, p. 281) suggested estimating this variance by 0. Here it would be estimated by
Dgs/M3s (see below).

The exact distribution of an age-specific death rate has been found to involve the bivariate
Poisson. This is generally an inconvenient distribution to work with. In the case that -
the coefficient of variation of the population size variable is small, as the following
theorem shows, an elementary approximation may sometimes be employed usefully. A
further advantage occurring here is that the particular choice made for the denominator
(person-years lived) becomes not so crucial. Briefly, the approximation is to replace the
denominator by its expected value.

Theorem 2. Suppose that D is Poisson with mean A and that P has mean A and variance
o?; then

-0/ 8-/

2/3
< 3[X (VA + x)] +

(.1

Sl

for VA + x> 0.

The proof of this result is given in the Appendix. The essence is that P may be replaced by
its expected value when its coefficient of variation, o/A, is small.

This result, via a first substitution of A for P, then one of P for A, leads one, for example,
to estimate the variance of the crude death rate D/P by D/P?; to estimate the variance of
an age-specific death rate M, = D,/P, by D,/P?%; and to estimate the variance of an age-
standardized rate ¥ w,M, by ¥ w2D,/P2. This last is to be contrasted with expression (18)
in Chiang (1961)—namely, ¥ w2D,(1 — D,/N,)/P2. For the SMR = D/ M,P,, the
estimate of variance obtained is D/(3¥ M,;P,)*> = SMR/(expected deaths).

In some situations one may have a parametric model of interest. One may then be able
to set down a likelihood function and proceed to compute, say, maximum likelihood
estimates. In particular cases, that likelihood may factor in a pertinent fashion, leading one
to make inferences conditionally. This happens, for example, in the case of a cohort.
Another situation in which things simplify is when individuals’ person-years lived values
are known. Hoem (1984b) discusses this case and presents variance estimates.

Theorem 2 provides a result of use in developing approximations to desired results.
Rosenblatt et al. (1983) develop a uniform approximation to the distribution of a Poisson
variate by a normal. This approximation seems likely to prove of use in the present
situation.

6. Regression

In many studies of mortality, measured explanatory variables are available. The most
common of these are age and (time) period. Others include race, sex, and region. An
individual’s mortality may be expected to depend on various of these. The measurements
may be included, in a quantitative manner, by setting down a functional form for the force
of mortality or a related parameter. In this section, the case of Poisson regression will first
be mentioned; then the case of extra-Poisson variation will be studied.
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6.1 Poisson Regression

The stochastic model of mortality, presented earlier in this paper, led to a Poisson
distribution for the number of deaths. In the case that the population size is P and that a
(possibly vector-valued) explanatory variable x is available, one might assume that the
number of deaths, D, is Poisson with mean P exp{x’8}, 8 being a (possibly vector-valued)
parameter to be estimated. For example, Frome (1983) sets down such a model for lung
cancer deaths of British physicians, taking P to be man-years at risk, and years of smoking
and number of cigarettes per day as explanatories. The Poisson model is found to fit well,
a deviance of 51.47 based on 48 degrees of freedom obtained. [See also Frome and
Checkoway (1985).]

6.2 Extra-Poisson Variation

As is often the case in ordinary regression analyses, it is to be expected that in many
situations essential explanatory variables will not have been observed. Were they all
available, a rate exp{x’g} might be appropriate. In the case of omitted explanatories, we
are led to consider a rate

expi{x’8 + u}, 6.1)

with ¥ normal, mean 0 and variance ¢2. The parameter ¢ provides a measure of the extra-
Poisson variation. Following the work of Bock and Aitkin (1981), Hinde (1982), and
Brillinger and Preisler (1983), the maximum likelihood estimates of 8 and ¢ here may be
determined by a combination of numerical integration and the EM algorithm. That the
error ¥ has been assumed normal is not crucial to the technique; rather, that the distribution
of the error should be “known” up to a finite-dimensional parameter is. Of course, the
estimates will depend critically on the assumed distribution for u.

Briefly, the approach is as follows. Let U denote a latent variate with density function
f(u]v) depending on a parameter v. (In the present case, U is # and v is ¢.) Let Y be an
observable variate with probability mass (or density) function, given U = u, f(y|u, B8)
depending on the parameter 8. (In the present case Y is Poisson and 3 is 8.) Then the
marginal probability mass function of Y is

S8, v) = f S lu, B)f(uly) du. (6.2)
Let 0 = (83, v) and
o) = L1010 63

Supposing that observations yi, ..., y, are available, the maximum likelihood equation
for estimating @ is given by

L wlh=o. 64)

Elementary manipulations allow this last to be written

ooyl w, B Sl w, B)f ) ,

z J 1B, %) =0 ©2)
o D il Bfml)

Z TOi1 B, %) du =0. (6.6)

The difficulty that arises in many cases, particularly the present one, is that the integrations
in (6.5) and (6.6) may not be carried out analytically. An effective approach, however, is



Natural Variability of Vital Rates 705

to carry out the integrations numerically, replacing the probability element f(u| v) du by a
discrete approximation

M
Suly) du = gl DPmd{U = U}, (6.7)

6{u} denoting the unit mass at ¥ = 0. The u,, are nodes and the p,, are corresponding
weights. This all leads to the approximate likelihood equations

M=

M
Z Wil thm, BWn(yi1 B, 7) = 0, (6.8)

i=1 m:

-
[

1
n M
I 3 Wlunl (318, ) =0, (6.9)

where the w,, are weight functions given by

W91 B, %) = SV |t B / £ Sl B (6.10)

These equations are conveniently solved iteratively or via GLIM directives [see Hinde (1982)
and Brillinger and Preisler (1983) for these last].

Other papers addressing the issue of extra-variation include Vaupel, Manton, and Stallard
(1979), Manton, Woodbury, and Stallard (1981), Hougaard (1984), Clayton and Cuzick
(1985), and Yashin, Manton, and Vaupel (1985). The regression approach is studied, for
cohorts, in Breslow et al. (1983). There are a number of papers devoted to the use of
mixture models for lifetime data. We mention Farewell (1982), Heckman and Singer (1982,
1984), and Greenhouse and Wolfe (1984).

7. Two Examples

The modelling and fitting procedure of the previous section will now be illustrated by two
sets of computations. One set involves the fitting of a dynamic (time series) model to the
historical data on Canadian female mortality given in Figure 1. However, the first set
discussed refers to the data of Figures 2 and 3, where both age and period are explanatories.
The computations make use of Gauss—Hermite integration with 11 nodes [see Davis and
Rabinowitz (1975) for the weights and nodes]. The standard errors were estimated as in
Brillinger and Preisler (1983).

Examination of Figures 2 and 3 shows high death counts and rates for the 0-1 age group,
with both counts and rates then falling as time passes. The figures show death counts at the
higher ages increasing (as the population size increases with time), but the death rates
themselves are falling.

Let D;; denote the number of deaths in age group i for year j and let P; denote the
corresponding (midyear) population. The model fit is one of D;; given u;; being Poisson
of rate

Pjexp{Bi. + B, + uy}, (7.1)

‘with the u; independent normals of mean 0 and variance ¢2. The g;. and B, are age and
period effects, respectively. On the basis of Theorem 2, the fitting is carried through as if
P;; is constant. The deviance obtained for a pure Poisson fit (¢ = 0) was 4443 on 396
degrees of freedom. The deviance with the extra-Poisson variance was 1429 on 395 degrees
of freedom—a substantial reduction for the inclusion of a single further parameter. The
estimate of ¢ was .072. It is to be expected that the deviance may be driven down
substantially further by including other explanatories, such as province or other distributions
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Figure 6. The estimated age effects for the data of Figure 2 and
the model (7.1). The values are plotted against the average age
of the corresponding age interval and the value for age 0

is set to 0.
Period Effects
—t
e \.
- AN
*
¢ \,
— .
* ~ /t
*7 N
.‘.\
b AN
Q T,
N,
TN .
"
)
s L
‘1950 1955 1960 1965 1970 1975

year

Figure 7. The estimated period (year) effects for the data of
Figure 2. The 1950 value is set to 0.

for u;;; however, the principal purpose of the present study is to illustrate that mortality
data can be non-Poisson and that a direct procedure is available to handle the extra-
variation, rather than to provide a “complete” analysis of these data sets. Figures 6 and 7
provide the estimated age and period effects, 8;. and 8.;. (Actually, the model was re-
parametrized to u + 8;. + B.;, with 8;., 8.1 = 0 to avoid aliasing.) The age effects show a
“bathtub” shape—corresponding to high infant mortality, then a drop followed by a steady
increase with age. There is a “bump” around age 17.5. This phenomenon has commonly
been associated with high accident rates for this particular age group. In contrast, the period
effects evidence an essentially steady decrease of mortality with time. It seems inappropriate
to speculate on causes for its changes of direction just now.

The fit of a model is often conveniently studied by standardized residuals as well as the
deviance. These are defined as (D — m)/s, where m and s are estimates of E{D} and
vvar(D), respectively, under the model considered. Figure 8 is an estimate of the density
of the standardized residuals under the simple Poisson model. The distribution is exceed-
ingly broad. Figure 9 is the estimated density for the model (7.1). This last figure provides
further evidence of substantial improvement in fit resulting from employing the model
with extra-Poisson variation.

When the computations were carried out with the original data, the residual plots brought
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Figure 8. An estimate of the density function of the standard-
ized residuals resulting from fitting a simple (¢ = 0) Poisson
model to the data of Figure 2.

Estimated Density : Residuals of Full Model

~
(o]
© K
ol *
n
o *
« }» *
° /
)
* *
:F
o .t \.
/ *

N /a '\'
° > \

* *
L ot \
o X *

* *au,
* *raaaa

Z TLLAL LALLM 1 I LT T
-4 -2 [} 2 4 6

standardized residual

Figure 9. An estimate of the density function of the standard-
ized residuals resulting from fitting the model (7.1) to the data
of Figure 2.

out a clear outlier in the published values (Statistics Canada, 1976, Table 6)—namely, the
2.9 rate per thousand for those aged 35-39 in 1951. When Statistics Canada did a search
in response to a request, they found that the value should have been 1.9 in fact. The results
presented here are based on the corrected data set.

It is perhaps worth remarking that when the model with extra-Poisson variaticn was fit
to the Frome data mentioned in Section 6, there was no real reduction in the deviance; it
just fluctuated about with round-off error.

Our second example involves a time series modelling of the data on all Canadian female
deaths during the time period 1926-1982, presented earlier in Figure 1 and taken from
Table 1 of Statistics Canada (1976) and a supplement provided by D. Nagnur. The model
fit is analogous to that for an autoregressive time series of order 1. Let d, denote the number
of deaths in time period (year) ¢ and let p, denote a corresponding measure of population
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Figure 10. The standardized residuals, plotted versus year, re-

sulting from fitting the dynamic model (7.2) to the total counts

of Canadian female deaths during 1926-1982, Figure 1. Also

plotted are heavily smoothed versions of the absolute values of
the residuals.

size. Let u, denote the death rate at time ¢ and suppose that it evolves in accordance with
log u, = vo + v log 41 + e, (7.2)

the ¢ being independent normal variates with mean 0, variance ¢2. Suppose further that
given u, and the past, d, is distributed as Poisson with mean p,u,. A model of this sort may
be expected to be of some use in forecasting.

The model (7.2) was fit by maximum likelihood as in the earlier example. The fitting
was done as if the p, were constant. The deviance for a Poisson model (o2 = 0) was 1844
based on 54 degrees of freedom. For the dynamic model (a2 # 0) it was 276.6 based on 53
degrees of freedom-—a substantial improvement of fit for 1 degree of freedom. The estimates
(and their estimated standard errors) are 7o = .062 (.007), v, = .964 (.003), ¢ = .0168
(.0005). The first two were highly correlated. Figure 10 is a plot of the (conditionally)
standardized residuals versus time. It evidences a suggestion of variability reducing with
time. The solid curves are the results of heavily smoothing the absolute values of the
standardized residuals and are meant as guides for examining the points plotted.

8. Concluding Remarks

The goals of this paper have been to provide a conceptual basis for the description of the
natural variability of certain vital statistics and to make use of that description in the
analysis of two data sets. It was found that under two elementary assumptions (one
pertaining to the birth process, the other to lifetimes) that basic counts of deaths were
Poisson, with those counts corresponding to disjoint regions of the Lexis diagram in-
dependent. It was further demonstrated that sometimes, perhaps because of omitted
explanatory variables, Poisson variability was insufficient. A general model involving
extra-variability was set down and fit the two data sets. These data sets were found to
evidence substantial variability beyond the Poisson.

A continuing issue in analyses of mortality rates, with measured explanatory variables,
by linear regression has been: what are the appropriate weights for the observations?
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Different choices are made in Fryer et al. (1979), Hogan et al. (1979), and Pocock et al.
(1981), for example. Employing a full likelihood analysis, as is proposed in this paper, is
clearly an alternate way to address the issue. Noting that the present computations were in
fact carried out by iteratively reweighted least squares makes the connection even more
apparent.

Next, it is to be noted that this paper has taken the basic quantities to be analyzed to be
simple counts and rates. Clearly other quantities, perhaps specific estimates of probabilities
as in Hoem (1984b) or subtle variants such as the Mosteller (1969) rate D/(P + ¢D) will be
of interest. It would also be of interest to extend the approach of this paper to handle the
case of dependent lifetimes.
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RESUME

L’objet principal de ce travail est le développement d’approximations des distributions des taux brutes
de mortalité, des taux de mortalité par ages, des taux par ages standardisé, des rapports de mortalité
standardisée et des paramétres analogues dans le cas de populations fermées. En supposant un
processus Poissonnien sur les instants de naissance, et des durées de vie indépendantes, on trouve que
le nombre de morts et la population correspondante 4 mi-année ont une distribution bivariée de
Poisson. Le diagramme de Lexis utilise directement ce résultat. On suggére que dans des situations
différentes, il serait satisfaisant d’approcher la distribution du nombre de morts conditionnellement
a la taille de la population, par une loi de Poisson de moyenne proportionnelle a la taille de la
population. De plus, on suggére que les situations ou des variables explicatives existent, pourraient
étre modélisées par une distribution composée d’une loi de Poisson pour le nombre de décés, avec
une moyenne proportionnelle a la taille de la population, d’une fonction exponentielle d’une
combinaison linéaire des variables explicatives. Un tel modéle est ajusté aux données de mortalité
des femmes canadiennes classées par age. Une variante dynamique de ce modéle est de plus ajustée
sur la série des décés totaux des femmes par année. Le modéle avec des variations Poissonniennes
conduit a une amélioration sensible de 1’ajustement.
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APPENDIX

The proof of Theorem 1 will make use of the method of probability generating functionals. The
pertinent methodology may be found in Vere-Jones (1968) and Daley and Vere-Jones (1972), for
example, To begin, note that for a general stochastic point process with points located at positions r;,
the probability generating functional (p.g.fl.) is defined as

={11 o)

for a general function £(-). The p.g.fl. characterizes a point process. The p.g.fl. of a Poisson process
with intensity function »(-) is given by

epr| f [£(r) = 1]v(r) dr}. (A.1)

Proof of Theorem 1. The ends of lifelines in the Lexis diagram occur at the positions (¢; + X, X))
with ¢; denoting the birthtime and X; the lifetime of the jth individual. The p.g.fl. of the death process
is therefore

E{H By + X, X,.)}.
Now
Ex{t(t + X, X)} = f £t + x, x)u(t + x, x)epr|— J: pE+x=-y9 dy} dx, (A.2)

with X denoting the lifetime of an individual born at time ¢. Let 5(f) denote expression (A.2). It has
been assumed that the ¢; correspond to a Poisson process of intensity 8(-). Therefore, from (A.1),

EJll;I n(vj)} = eXp{ f [n() — 118(2) dt}-

Combining these last expressions, one sees that the death process is (planar) Poisson with the indicated
intensity, as was to be proved.
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Doob (1953, pp. 405-407) is an early reference to this type of result—that random translations of
Poisson processes are themselves Poisson.

Proof of Theorem 2. Let
D A\ /v
X= (A - A) / A

€ =(~/X+x)(§— 1);

then elementary manipulations show that the quantity to be bounded is

and

< Prix = |e] < X< x+ |el} (A.3)
< Pr{|e] > 8} + Pr{| X — x| < é}

for any 6 > 0. Now, by Tchebycheff’s inequality, the first probability here is

< var /62 = (VA + x)%0%/52A2 (A4)
For D a Poisson variate of mean ) it is the case that
| Pr{D < u} — Pr{D < v}| < (u — v)c/VA (A.5)

for u, v integers u > v with ¢ = w+27/8. This comes from Theorem 2 of Tsaregradskii (1958) and
from bounding the absolute value of the characteristic function of D by exp(—2\t?/=?).

The second probability in (A.3) for VA + x> 0 is < Pr{v < D < uj with u — v < 26v/X + 2. The
result of the theorem now follows by adding (A.5) and (A.4) and then choosing § to give the smallest
total.

DISCUSSION ON THE PAPER BY DAVID R. BRILLINGER

Norman Breslow (Department of Biostatistics, SC-32, University of Washington, Seattle,
Washington 98195, U.S.A.)

Professor Brillinger has provided an elegant theory for the occurrence of vital events in
open populations from which he derives approximations to the “sampling” variability of
widely used statistics such as age-standardized death rates and standardized mortality ratios.
His development is a welcome step toward putting the statistical treatment of such data on
a rigorous footing. My discussion concentrates on two issues: (i) the generality of his
fundamental assumptions; and (ii) the availability of simple, alternative methods to handle
the extra-Poisson variation often encountered in this domain.

In practice, standardized death rates and mortality ratios are routinely calculated for
specific causes of deaths for open population units that change membership not only via
births and deaths, but also via immigration, emigration, and loss due to death from
competing causes. (In spite of his claim that the development is concerned with closed
populations, the example and discussion make clear the intention to apply the theory to
open populations.) Theorem 1, however, involves entry into the population only via the
birth process and exit only via death. One wonders what additional assumptions may be
required to justify the representation of (D, P) as a bivariate Poisson process when
emigration, immigration, and loss are taken into account, or whether such a representation
is even possible. These quibbles aside, I was pleased to see that the theory led to the standard
approximate representation of D given P as Poisson, and to approximate formulas for the
standard error of the death rate in agreement with those given by Breslow and Day (1986)
among others.
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An alternative approach to the distribution theory that does accommodate the usual
features of open populations is of course via the theory of point processes applied to
censored survival data (Aalen, unpublished Ph.D. dissertation, Department of Statistics,
University of California, Berkeley, 1975; Andersen and Gill, 1982; Borgan, 1984;
Kalbfleisch and Prentice, 1980). Such realistic features of individual life histories as left
truncation (immigration) and right censoring (emigration or loss) are easily dealt with.
Furthermore, this theory provides a stochastic mechanism for the occurrence of the vital
events (deaths) even when the times of entry into the population are considered fixed rather
than random. Of course, it also presumes that individual times of entry and exit into the
population are available.

Provided that the age X time cells are sufficiently small that the death rates within each
one can be assumed constant, the likelihood kernel that arises from a parametric description
of the unknown rate parameters (Borgan, 1984) is identical to that which results by
regarding the number of deaths in separate cells as having independent Poisson distributions
with means equal to the (unknown constant) rates times (fixed) person-years denominators.
This fact provides an alternate justification for the Poisson approximation of Theorem 2,
at least so far as large-sample likelihood inferences about the rates are concerned.

Although this is not explicitly stated, Theorem 2 would seem to invoke the same rare-
event hypothesis that Brillinger has faulted in the work of others. For P Poisson, we have
o = A'2. Thus, the right-hand side of (5.1) will be small only if \!/? is large and (\/A)'/? is
small. Roughly speaking, this means that the expected number of deaths must be large,
while the (average) death rate \/A must be small. Thus, it is still not clear (to me at least)
that the expressions given in Section 5 to estimate variances of the crude or adjusted death
rates are valid when the component rates are large, no matter what the coefficient of
variation of P.

An alternative method for fitting the log-linear model (6.1) with a random error term to
accommodate extra-Poisson variation was described by Breslow (1984). Briefly, one con-
siders a generalized linear model (McCullagh and Nelder, 1983) where the mean u is related
to the linear predictor x’g via the log-link log(x) = x’# and where the variance function
satisfies M(u) = p + o*u? No distributional assumptions are made about the random
perturbations except that they have mean 0 and variance ¢2. Estimates of 8 and o2 are
obtained via an iterative procedure whereby, for fixed o2, quasilikelihood is used to estimate
B whereas, for fixed 8, o is estimated by setting the Pearson sum of squared standardized
residuals equal to its degrees of freedom. This procedure may be implemented easily in
GLIM without having to expand the data vector as in Hinde’s (1982) adaptation of the
normal theory model. [Incidentally, an early reference to this model is found in unpublished
work by Pierce and Sands (Technical Report 46, Oregon State University, 1975).] Large-
sample properties of the resulting estimates have been derived by Moore (1986), who shows
in particular that the asymptotic variance of 8 is unaffected by the need to estimate the
dispersion parameter o2. Thus, the standard errors resulting from the usual quasilikelihood
formulation (which assumes ¢ known) are applicable.

REFERENCES

Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: A large-sample
study. Journal of the American Statistical Association 10, 1100-1120.

Borgan, @. (1984). Maximum likelihood estimation in parametric counting process models, with
applications to censored failure time data. Scandinavian Journal of Statistics 11, 1-16, 275.

Breslow, N. E. (1984). Extra-Poisson variation in log-linear models. Applied Statistics 33, 38-44.

Breslow, N. E. and Day, N. E. (1986). Statistical Methods in Cancer Research. 1. Design and Analysis
of Cohort Studies. Lyon: International Agency for Research on Cancer (in press).



714 Biometrics, December 1986

Hinde, J. (1982). Compound Poisson regression models. In GLIM82, R. Gilchrist (ed.), 109-121.
Lecture Notes in Statistics 14. New York: Springer.

Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data. New
York: Wiley.

McCullagh, P. and Nelder, J. A. (1983). Generalized Linear Models. New York: Chapman and Hall.

Moore, D. F. (1986). Asymptotic properties of moment estimates for overdispersed counts and
proportions. Biometrika (in press).

Chin Long Chiang (School of Public Health, University of California, Berkeley, California
94720, US.A))

In this article, David Brillinger has presented an extensive discussion on the variability of
vital rates. His conceptual model of the planar Poisson process represents a new approach
to the problem. But I still cannot reconcile the differences between the results in his article
and those presented in my 1961 paper. In this discussion I shall make two comments on
Brillinger’s article and clarify two points from my 1961 paper.
The main issue in question is the variability of the number of deaths D, in the death rate
D,

M, = '1—3; (1)

for an age group (x, x + n,) in a current population.

When should we begin counting the variability associated with D,? Brillinger’s planar
Poisson process begins to operate prior to the time of birth of individuals in age group
(x, x + ny), or x + n, years before the current calendar year. If we consider age group
(40, 45) in the year 1980, according to the planar process, we need to keep track of the
variability from the year 1935 of everyone born between 1935 and 1940. But the death rate
M, in (1) is a measure of the mortality experience of a group of people during the age
interval (x, x + n,) in a current year. The death process prior to age x has already taken
place. Randomness should no longer be attached to those who have already died prior to
x. Only the variability of the death process of those living in the age interval (x, x + n,)
during the current year need be considered. In other words, we consider the variability
associated with D, from exact age x on.

The binomial distribution In the corollary to Theorem 1, Brillinger states: “. . .(c) N(B)
given N(C) is distributed as U + S, where U is Poisson with mean A(B — BC) and S is
independently binomial with mean » = N(C) and proportion A(BC)/A(C).” He further
illustrates this assertion with crude death rates and age-specific death rates. In Example 2,
age-specific death rates, we find: “N(B,) and MC,) count, respectively, how many die aged
x to x + 5 in 1980 and how many were alive and aged x to x + 5 on 1 July 1980.” These
points are all good and clear. But they seem to be inconsistent with one’s intuition. The
N(C,) people are of different ages on 1 July 1980 and are subject to different probabilities
of dying. The number of people among N(C,) who die in the second half of the year 1980
will not have a binomial distribution.

An interpretation of N, In Chiang (1961) we introduced a number N, as “a hypothetical
population at age x, in which D, deaths will occur in the age interval (x to x + n,) ...”; we
considered D, a binomial variable and §, = D,/N, a binomial proportion so that the
variance of D, is D,(1 — §,). Now we argue that N, may be taken as the total number of
individuals who reached exact age x during the current calendar year. This may be verified
by means of a Lexis diagram. Figure 1 illustrates the situation for age interval (40, 45)
during the year 1980. The rectangle (40, 45) X 1980, denoted by 4, corresponds to region
A in Brillinger’s planar process. The parallelogram to the right of the rectangle, denoted by
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Figure 1. Lexis diagram.

A’, also has 1980 as its base and its area is equal to the area of 4. The lifeline of an
individual beyond age 40 starts at a point on the line x = 40 extending diagonally upward.
Everyone who dies at an age in the interval (40, 45) during the year 1980 will have his
lifeline ending in the rectangle. For example, a person who has attained his 40th birthday
in 1975 and dies at age 44 in 1980 will have his lifeline ending in the triangle 4a. There are
D, lifelines ending in A4.

Parallelogram A’ contains the lifelines of all individuals beyond age 40 who attained
exact age 40 during the calendar year 1980. Those who die in the age interval (40, 45) will
have their lifelines ending in the parallelogram. An individual who attained age 40 in 1980
and dies at age 44 in 1985, for example, will have his lifeline ending in the triangle 4a, at
the upper right corner of region A’. The two triangles denoted by 4a in the two regions A4
and A’ contain lifelines of people of the same age. Other pairs of triangles in 4 and 4’ with
the same designation also contain lifelines of people of the same age.

Now we use the concept of stationary population and assume that the number of lifelines
ending in rectangle A is equal to the number of lifelines ending in parallelogram A’. Then
the number of lines ending in the parallelogram is also equal to D,. That is to say, the
number of people who attained exact age x = 40 during the year 1980 and die of age (40,
45) is also equal to D,. Thus, in general, if we let N, be the number of people who attain
exact age x during the current calendar year, D, of the N, individuals will die during the
age interval (x, x + n,). Furthermore, using the age-dependent time-homogeneous Brillinger
planar process, one can show that the expected number of deaths in region A’ is equal to
the expected number of deaths in region A. That is, E(D,) in A’ is equal to E(D,) in 4.

Including the variability of P, in the variance of M, There are two measures in general
use that summarize the mortality experience of a given population during the age interval
(x, x + n,): the death rate M, and the conditional probability g, that an individual alive at
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exact age x will die in the age interval (x, x + n,). Studies of the relationship between the
two measures have generated rich literature in life-table construction for current popu-
lations. King (1914), Reed and Merrell (1939), Greville (1943), Wiesler (1954), Sirken
(1964), and Keyfitz (1966), to name a few, have all contributed to the methods of life-
table construction. The following formula was suggested in Chiang (1961) to compute
gy from M,

A nx My
=T = agn My’
where a, is the fraction of the interval (x, x + »,) lived by an individual who dies in the

interval. Justification of this formula also has been given in Chiang (1972), Elandt-Johnson
and Johnson (1980), and Golbeck (1986). See also Keyfitz (1968). Solving (2) for M, yields

)

dx
M: (I = @JIn. + gxaxny ) (3)
Formula (3) is easier to interpret when M, and ¢, are considered as their corresponding
theoretical quantities. Thus, for an individual alive at exact age X, ¢ in the numerator is
equal to the expected number of deaths in the interval (x, x + n,). For the denominator,
we realize that if a person is to survive the interval, with a probability (1 — ¢,), his period
of exposure to the risk of dying is the entire length of the interval—namely, n,. If he is to
die in the interval, with a probability g,, his expected length of exposure is a,#,. Therefore,
the right-hand side of formula (3) is the ratio of the expected number of deaths in the
interval (x, x + n,) to the expected length of exposure to the risk of dying in the interval.
That is the definition of the age-specific death rate.
We can make use of (3) to include the variability of P, in the variance of the death rate
M. Substituting g, = D./N, in (3) yields

D,
neN, — (1 — a)nDy’

M, = “4)
which contains D, as the only random variable. And the midyear population P, in (1)
becomes an estimate of [n, N, — (1 — a,)n,D,] in the denominator in (4). An approximate
formula for the variance of M, can be obtained from

Vg = (d—g—x Mx>2 Mo, )
namely,
VM) = - ML = )M/ (©)
The variance in (6) is greater than the variance
VML) = 5 M1 = 2 ™

by a factor (n.M,/§.)?, which is always greater than unity.

Remark Brillinger used a planar Poisson process to derive a formula for the variance of
the age-specific death rate, while I considered D, as a binomial random variable among N,
people who have reached exact age x. The two approaches, however, have resulted in two
different formulas for the variance of the death rate.
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Jan M. Hoem (Section of Demography, University of Stockholm, S-106 91 Stockholm,
Sweden)

Brillinger’s paper is an appealing reminder of the message that one should recognize the
natural variability in vital statistics, and that better insight into population processes can
be gained by describing such data by proper statistical tools. The pleasing simplicity of
several of his results will facilitate the analysis of data for which his assumption of Poisson
births is a reasonable approximation, such as for data about a single cohort or a few
consecutive cohorts, or for an age-specific period death rate, such as in Example 2 of his
Section 4.

Unfortunately, the assumption of Poisson births disregards essential aspects of the internal
dynamics of real-life populations. Results based on the Poisson assumption must have little
relevance for the analysis of statistics which involve data for several generations, such as
the crude death rate in Example 1 of Section 4. The Poisson assumption could be all right
in a population where “births” are generated by an external mechanism in the manner
sometimes used to model immigration, which would then occur at “age” 0. In normal
populations, children are borne by population members, however, so the occurrence and
timing of births would depend on the size and the (age) composition of the population
itself—i.e., births in one period are generated by population events in previous periods and
in the same period. The consequences are immediately apparent in any population data
which involve both parent and offspring cohorts, at least when there are parent cohorts of
both normal and deviant sizes. To elaborate the evident, in a population where births were
generated by a Poisson process, there would be no reflection in the number of births a
generation after births were depleted by a famine or a depression, or swelled by a baby
boom, and the reduction of the size of a parent generation by the toll of a major war
would have no consequences for the number of subsequent births. In such a Poisson
world, stable population theory would be of no relevance and there would be no room
for economic explanations such as the Easterlin hypothesis [see, e.g., Easterlin, Wachter,
and Wachter (1978)].
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Conversely, since real populations are subject to the internal dependencies which are
made manifest by population waves, the assumption of Poisson births is untenable in
multigenerational analyses.

These commonplace dependencies are of course recognized in the usual population
mathematics, both in deterministic and stochastic formulations. In Scandinavia, the dis-
covery of population waves (and their use to explain population behaviour) is attributed to
Sundt (1855, Chaps 5-7); see Vogt (1968). For appreciations of Sundt’s pioneering work
as a sociologist and a statistician, see Otnes (Working Paper 86, Department of Sociology,
University of Oslo, 1977), Seip (1986), and Iversen (1983).

Westergaard (1880) realized already a century ago that there can be stochastic variation
in vital statistics even when the data do not come from a sample survey; see Keiding (1987).
Since promotion of this idea is still needed, however, there may be some use for an
illustration documenting random fluctuations even at the national level. The two curves in
Figure 1 are plots of ordinary occurrence/exposure rates for first births to married women
born in 1945, for two groups of ages at marriage, by duration of first marriage in 1-month
intervals (2-month intervals after 60 months). The data are for women of Swedish citizen-
ship according to the census of 1960, resident in Sweden, and nulliparous at first marriage.
The solid curve is for 17,211 women first married at ages 20-22. The broken curve is for
9755 women first married at ages 23-25. The latter curve has been plotted only up to a
duration of 30 months, for after that the two curves overlap extensively. These are complete
segments of a total national population of some 8.3 million people. No sampling procedure
is involved.
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Figure 1. Marital first birth rates to Swedish women born in 1945, by duration of first marriage, for
two groups of ages at marriage. One-month intervals up to a marital duration of 60 months; 2-month
intervals afterward.
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Each plot gives a striking impression of a curve with a marked systematic structure,
overlaid with random fluctuations. There is an obvious structural change as we move from
the younger to the older age group at marriage, and it is largely interpretable in terms of a
reduced tendency for premarital conceptions. This fits in a pattern covering neighbouring
age groups and extending to other cohorts. Nevertheless, the presence of random variation
is evident, and it masks the trends at longer durations than about a year of marriage. Note
how the appearance of random fluctuations is dampened as we pass a duration of 60
months and switch from 1-month to 2-month intervals.

Leif Johansson had the data extracted from the Swedish Central Population Register.
They are presumed to be of unsurpassed quality. The curves of Figure 1 have been selected
from a larger material for their nice features, but many other empirical plots from our own
experience would have served our purposes equally well. The computations for Figure 1
were made by Fjalar Finnis.
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Peter Jagers (Department of Mathematics, Chalmers University of Technology and
University of Goteborg, S-412 96 Goteborg, Sweden)

Problems of population growth and composition meet in quite different contexts, and are
analyzed by quite different means. There are human populations, studied in a demographic
tradition. There is the very active area of population dynamics, essentially of a zoological
or ecological nature. There are cell kinetics, bacteriology, population genetics, and several
types of particle multiplication in physics. And in all cases there is an interplay between
special attributes of the particular system under study, and general properties common to
all sets of (more or less) freely reproducing individuals under (more or less) stable or at
least well-described conditions. There is finally a more abstract, mathematical study of
precisely these last properties, epitomized into the somewhat Platonic free populations of
branching process theory.

Time is more than ripe for bringing all these cultures a little bit closer to one another.
Probabilists and statisticians should learn the problems of empirical population science,
and empirical scientists should be relieved of the unnecessary burden of refinding what has
long been known.

From this point of view the present paper is more than welcome. It is written by a well-
known statistician and connects a demographic problem with more general properties of
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point processes. Brillinger’s observation, that even in a not necessarily time-homogeneous
setting a Poisson property of the population birth process enhances a two-dimensional
“Poisson-ness” of the population death process, seems to the point and might well prove
very useful. (Mathematically it is of course, as Dr Brillinger points out, just an example of
the well-known translation properties of Poisson processes.) For my part, however, I shall
not discuss the proposed applications but rather concentrate on the more theoretical
aspirations of the paper: “the stochastic conceptualization and formalization of the natural
variability of vital statistics” as the author unhesitatingly formulates his purpose.

The first issue to be tackled is then how to explain this variability in terms of stochastic
phenomena, the basic events of life seeming, as Dr Brillinger puts it, “facts (that is, exact
values) and hence not subject to uncertainty.” The paper presents some (in my view rather
weak) arguments in favour of treating birthtimes and lifespans as random. Here is my try:

When an individual is born, his or her life could take many different paths. Let us denote
the enormous space of all these perceivable life careers by 2. An element w € Q is thus a
complete biography giving information about anything occurring in a life, such as at which
ages an individual leading the life w begets children, and at what age he or she dies. In other
words, the basic demographic events at an individual level are functions defined on the
abstract space Q. For example, the age at death X (in Brillinger’s notation) is a function
from Q into the nonnegative half-line. Hence, if Q is equipped with some ¢-algebra & of
relevant events and a probability measure P, telling how likely different demographic events
are, then X is a random variable on a life space (Q, &, P), quite according to the textbook
pattern. As usual, this does not at all contradict that for w given, X(w) is a number, i.e.,
“has an exact value.” And obviously the same goes for entities such as the number of births
to be given, or ages at childbearing and any other example you could think of (such as
duration of mitosis in cell kinetics).

In this way what seems a philosophical paradox—how can there be randomness when
everything is determined—dissolves itself by a careful mathematical formulation (as is so
often the case with statistical paradoxes). To sum up, there is no more problem with
randomness in population dynamics than in coin tossing.

But not only does this construction save us from philosophical headache, but it also
guides us into a strict construction of the whole population process. From (Q, <7, P) (or
slightly more complicated versions, if individuals can be of various types and time
inhomogeneity is allowed), a population space can be built by some Ulam-Harris device
[cf. Jagers (1975) or Jagers and Nerman (1984b)] or by Neveu’s tree technique (Neveu,
1986). On this space the vital statistics such as counts, rates, or ratios of various kinds are
then well-defined random variables.

In the more precise framework thus arising one could therefore also study the assumption
boldly postulated in the paper now under discussion. Under what circumstances is a process
of births (or deaths) (approximately) Poisson? For the closed, time-homogeneous case the
issue has actually been analyzed by Héarnqvist (1981), proving a local Poisson tendency as
the population grows. Related Poisson properties for quite general populations have been
exhibited by Jagers and Nerman (1984a).

However, these are results that must be used with much care. Strictly speaking, repro-
ductive systems can never be Poisson due to the feedback that occurs and generates
dependence between occurrences in disjoint sets of the age—~time space. What we can hope
for is limit theorems, for closed populations, as in Hirnqvist’s paper, or for open populations
by results for closed populations combined with classical theorems on superposition of
many independent sources of immigration. And such limit theorems will more easily be
proved directly for the various point processes (of births, deaths, or other events) than via
the translation property of Poisson processes.
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Niels Keiding (University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N,
Denmark)

Rates as estimators of parameters Brillinger’s main interest is to describe the variability
of rates such as the “age x death rate” M, = D,/P, specified in his formula (2.1). This is
taken right out of demographical practice, using the midyear population P, as denominator.
A more satisfactory theoretical-statistical analysis would, however, be to consider such
rates as estimators resulting from well-defined statistical estimation problems. Thus, in the
problem of estimating an (age-specific) death intensity u, (assumed constant for the relevant
age group) under full continuous observation, the maximum likelihood estimator is the
occurrence/exposure. rate D,/A, with A, = exposure to death = the total time lived in the
age interval by the members of the population. In demographic practice, A, often cannot
be observed, but to go from A, to various common demographic approximations should
to the theoretical statistician be considered a problem of estimation under incomplete
observation (Keiding, 1976). In this systematic statistical approach there is no doubt that
the rates, as well as the intensities they estimate, are in units time™', and also the inherently
random nature of the denominator (simply due to the fact that deaths happen at “random”
times over the year, producing a random total exposure 4,) is obvious.

The standard error of the standardized mortality ratio (SMR) Since Brillinger’s point of
departure seems to have been related to computing the standard error of a standardized
mortality ratio (SMR), a few more detailed comments may be appropriate here.

A modern statistical discussion is again phrased naturally in terms of an ordinary
estimation problem, this time of a relative mortality 6 compared to some known standard
age-dependent mortality (Breslow and Day, 1975). Ordinary large-sample maximum like-
lihood theory yields the simple estimator SMR/(expected deaths) of var(SMR), also
obtained by Brillinger in Section 5. [Breslow and Day (1985) present the state of the art
concerning alternative estimators of the standard error of the SMR.]

The simple estimator is often ascribed to Yule (1934), who obtained it by approximating
with a deterministic denominator (as in Brillinger’s Theorem 2) and using a Poisson
approximation to the “canonical” binomial distribution of the observed number of deaths
in the numerator. At Yule’s time the calculation of expected deaths, and hence of the
SMR, was a very well-established method in official statistics (it may in fact be traced back
at least to 1777), but it is particularly interesting in the present context that the view of
death counts, rates, and so forth as essentially random phenomena already penetrated the
textbook by Westergaard (1882), who, like Brillinger, provided fresh input to current
demographic and official statistical methodology by implementing ideas from mathematical
statistics. Westergaard derived the same simple standard error estimator as mentioned
above and used it extensively in his many comparative studies of mortality and morbidity.
Further details on the history of the method of expected number of deaths were given by
Keiding (1987).
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The fact that the denominator of the SMR (“the expected number of deaths™) is essentially
random has caused confusion in quite recent medical statistics (cf. Keiding and Vath,
1986), although Berry (1983) his now provided, in this journal, an authoritative survey of
its use, will full theoretical-statistical documentation.

Epidemiological information in a cross-sectional sample Finally, let me indicate how the
idea of feeding the Lexis diagram with a homogeneous Poisson process of births may prove
useful in developing a consistent mathematical foundation for the interplay between the
cohort and the cross-sectional viewpoints in epidemiology—that is, when the individuals
may enter an irreversible disease state before death. Assume that the life history of an
individual is governed by the semi-Markov process specified by the diagram

H (healthy state) & I (diseased stage)

w(a) \ / a, d)

D (dead)

where the incidence o(a) and the mortality u(a) of healthy individuals depend on age a
only whereas the mortality »(a, d) of diseased individuals may in addition depend on d,
the duration in the diseased state 7. If the birth process is Poisson with intensity A, then
similar Poisson process considerations as used by Brillinger yield the following quantities
relevant to a cross-section of the population at a particular time, say ¢ = 0:

E(# ind. in I at time 0 aged [z, z + dz) with first appearance [y, y + dy)) = h(y, z) dy dz,
where A(y, z) = 0 for y> z and

h(y, z) =\ exp{— fo [u(w) + a(u) ] du}a(y)exp[— J; v(u, u —y) du]

when 0 < y < z;
and similarly
E(# ind. in H at time 0 aged [z, z + dz)) = k(2) dz,

where

k(z) =\ exp{— J; [w(w) + a(u)] du}.

e [ o
y

the mean diseased lifetime, and that

At ‘I; k(Z) dz = MH,

the mean healthy lifetime, so that the joint age-status—duration distribution in a cross-
sectional sample is given by the density

Jl h(y, z)/M, diseased individual with first occurrence at y

It is readily seen that

and current age z, y < z,
k(z)/M, healthy individual with current age z,

M = My + M; = mean lifetime.
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This representation makes it immediate to derive likelihood functions corresponding to
various sampling plans for a cross-sectional sample, containing information on (i), current
age for all and (retrospectively collected) age at first occurrence for the diseased; or (ii)
current age and age at first occurrence from the prevalent cases only; or (iii) the distribution
of current age for all.

The likelihoods simplify into easily tractable examples of current survival analysis
problems under various special statistical models, such as (i) »(a, d) = u(a), that is,
nondifferential mortality for the diseased; or (ii) »(a, d) = »(d), that is, age-independent
but duration-dependent mortality for the diseased; or (iii) one or more intensities constant.

These details are presented in unpublished work by Keiding (Research Report 86/3;
Statistical Research Unit, University of Copenhagen, 1986), as are the following interpre-
tations of the well-known relation in epidemiology:

Prevalence = Incidence X Duration.

A first (calendar-time dynamics) version is to interpret prevalence as the expected number
of diseased individuals at time 0, that is,

J; f Mi(y, z) dz dy = \M,,
y

incidence as the expected number of new cases per calendar-time unit:

oo y
A fo a(y)exp{— f [u(u) + a(u)] du} dy = M4,
0
and duration as the conditional expectation A of remaining life, given that disease has just
occurred. It is then elementary that
AM; = NAA

so that this relation is true in the time-homogeneous regime with no restriction on the
age- and duration-dependence of the intensities.
A second interpretation (cf. Miettinen, 1976) states that

Prevalence odds [= Prevalence/(1 — Prevalence)] = Incidence X Duration.

Interpreting prevalence odds as the ratio between the expected number of diseased individ-
uals and the expected number of healthy individuals will yield

)\M[/}\MH = MI/MHs
so that if duration is interpreted as A as above, one would have

; _ M _ A _ [§ a(s)exp{=[3 [a(u) + w(w)] du} ds
Incidence = A = My~ [5 expl—J3 [a(u) + p()] du} ds

which is the mean incidence (intensity) with respect to the (expected) distribution of current
age in the healthy state H. In the particular case of age-independent incidence «, this of
course reduces to A/My = a, so that prevalence odds = aA. We note that this relation
concerns the (mean) age-dynamics.

A heuristic, discrete-time survey of prevalence, incidence, and duration concepts was
given by Freeman and Hutchison (1980), and the device of Poisson input was used for
studying length-biased sampling by Simon (1980).
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Leslie Kish (Institute for Social Research, The University of Michigan, Ann Arbor,
Michigan 48106, U.S.A.)

This is a stimulating and important work that combines theoretical and empirical
contributions, usually more difficult and more valuable than most of those confined to one
of those ends. It would be difficult for me to add to the technical aspects of this fine paper,
but I shall remark briefly on the philosophical issues it stimulates.

Let us begin with two contradictory definitions:

A: “Statistics, the science concerned with the collection and analysis of numerical
information in order to answer questions wisely.”
B: “Statistics and statisticians deal with the effects of chance events on empirical data.”

Definition A admits the counts of complete censuses as fixed statistical data, but B views
them as products of stochastic processes. Both of them include census statisticians to the
fold, but only B insists that we draw boundaries between their work and those of
accountants, cashiers, and bankers. And let us not base that distinction only on the errors
of measurements; let us concentrate instead on the basic philosophical aspects of stochastic
variations. It is curious that definition A was written by Brillinger (1985), whose article
strongly supports B, written by me (1978).

Yet I (and other practical survey samplers) write in terms of finite populations of fixed
N members. Thus, there exists widespread belief that the theory of sampling concerns
chiefly the fixed parameters of finite populations. Indeed, probability sampling requires
randomized selections from frames that define finite populations for statistical inferences
from sample statistics to the parameters of frame populations.

Most survey samplers recognize, sometimes in writing, the existence of and the need for
“inferential” populations under (or above, behind, or beyond) the frame populations; that
goes both for samples and for complete censuses. Sometimes the terms “target population”
or “superpopulation” have been used, but these have also been loaded and confused with
other meanings and I prefer to avoid them, as I explain elsewhere (Kish, 1987, §2.1).

The fundamental aspect consists of separating the two steps of inference. The first step
involves statistical inference from the sample to the frame populations based on mechanical
randomization, and it is well defined, objective, and public. The second step from the
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frame population to the inferential populations can be multiform, multipurpose,
mathematical or scientific, subjective, and private.

Some statisticians advance models depending on “superpopulations,” and they view
sample selections as if taken directly from them, thus merging into one step the two steps
separated above. However, I distrust this combined view that would merge the defined,
public, objective, complex probability selections with some subjective, changeable models
concerning realizations from superpopulation models. The probability selections often, or
usually, use complex procedures of clustering, subsampling, and stratification. The field of
survey sampling owes its separate existence mainly to those practical, necessary
complexities. On the other hand, sampling theorists tend to propose models of
superpopulations that are relatively simple and mathematical. The clustered structures of
samples and of populations is especially important to survey sampling. For consistency,
such clustering and complexities should also be reflected in the relations of superpopulations
to finite populations. Brillinger also notes the need for going beyond a simple Poisson
model.

We want more models of superpopulations like Brillinger’s, that arise out of actual,
scientific problems. Discussions like his about the structure or process that underlie a
definite realization in a finite population should help our theoretical understanding of the
relation of samples to finite populations and censuses and of these to superpopulations.

Let me admit that I do not know which survey samplers share the strong feelings I
expressed above about: (a) complex, clustered superpopulation models, (b) the two separate
steps to frame and then to inferential populations, and (c) the distinction between sampling
theory and survey sampling. I also propose for consistency similar views both for analytical
statistics for relationships and for descriptive statistics.
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Kenneth G. Manton (Duke University, Center for Demographic Studies, Durham, North
Carolina 27706, U.S.A.)

The paper by Dr Brillinger is a clear and thoughtful presentation of a topic that has often
caused confusion among epidemiologists, demographers, and biostatisticians, i.e., selection
of the appropriate statistical model of the variation of vital rates. Dr Brillinger argues that,
assuming Poisson birthtimes and independent lifetimes, the number of deaths and the
corresponding midyear population in an open population have a bivariate Poisson distri-
bution and not a binomial distribution. He further shows in a theorem that, when the
coefficient of variation of the population size variable is small, one can use a Poisson
approximation for the distribution of the mortality rate.

The implications of Brillinger’s arguments are important and practical. For example, he
shows that the Poisson is likely to be a better model of mortality rates in open populations
than the commonly employed binomial distribution. He suggests that the binomial distri-
bution will probably tend to systematically underestimate the variance of mortality rates.
He suggests that the ultimate test of which model is superior, the Poisson or binomial, is
empirical. We can report, consistent with the examples in this paper, that in many empirical
mortality analyses, the variance of the distribution of rates over areal or other population
~ replicates tends to be at least Poisson—often we find evidence of super-Poisson variability

(e.g., Manton, Woodbury, and Stallard, 1981; Manton, Stallard, and Vaupel, 1986). Indeed,
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it is our concern that perhaps Brillinger does not stress strongly enough the importance of
making empirical tests of the variance of the vital statistics rates as recommended by
Collings and Margolin (1985).

Brillinger argues that certain critical assumptions of the binomial are not very realistic
for the case of an open population (i.e., for persons entering and leaving the population
that individual exposures are the same and that the realizations of individual life histories
are the same). He also shows that formulas due to Chiang [e.g., Brillinger’s equation (2.2)]
constructed to create a more valid variance estimate by constructing a hypothetical cohort
will probably not perform as well as the conceptually and computationally simpler Poisson
model. Finally, he deals directly with the misconception of many population scientists that
since death counts and rates are population values, they are “exact values” and therefore
not stochastic.

Although the paper deals with important issues, several points are raised in the discussion
that deserved closer attention. First, Brillinger suggests that when the Poisson is presented
as a model for mortality rates it “seems always” to be based on the rationalization that it
is for a situation where deaths are rare and, consequently, on the assumption that the
Poisson is a good “approximation” to the binomial. This assumption is not “always” made
by demographers. In Manton and Stallard (1984, pp. 285-287), we show that the Poisson
is an excellent approximation to the variance of the rate estimate even when the rate is
large (e.g., .30) when the denominator is based on person-years of exposure. Furthermore,
it can be shown that, for rates based on midyear population counts, the variance of the rate
estimate is at least Poisson with negative binomial variance to midyear and binomial
thereafter. Specifically, if the force of mortality for persons age tis A fora<t<a+ 1 and
P = ¢72, the number of deaths during the second half of the year, d», is binomially
distributed with parameters N and Q, where N is the midyear population and Q =1 — P.
The distribution of deaths in the first half of the year, d;, is negative binomial with the
same parameters N and P. Since d, and d, are assumed independent, the total number of
deaths d (= d, + d,) is distributed as the convolution of the two distributions or

Pr[d| N, A\] = [exp(—=NN)/d'][NX + O(d?*/NH)]“[1 + O(d?/N?)].

(See unpublished paper of Manton et al. presented at International Symposium on Small
Area Estimation, Statistics Canada, Ottawa, 1985.)

One can see that the accuracy of the approximation to the Poisson is of the order of the
term d®/N2. The expression for the variance of the death count is shown by Manton et al.
(in work as yet unpublished) to be

var(d) = NeM*(1 — e™)(e™ + eM?)/(1 + e™?)
~ E(d)(1 + \/4).

A further potentially useful extension of Brillinger’s results would have been to the case
where cohort as well as period and age effects are represented. This gives way to an age-
period-cohort model of mortality producing a Poisson field with parameters (discussed in
work as yet unpublished by Woodbury, Manton, and Blazer)

Ma, t) = At — a)exp{—ﬁ(t - a) J;a a(uy(u + t — a) du}

X a(a)B(t — ayy(2).

This expression replaces Brillinger’s equation (3.7).

A second area where further discussion would have been useful is in the area of extra-
Poisson variation. We have found that in most of our empirical studies of population
replicates for mortality data there is considerable extra-Poisson variability. Three issues
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that could have been more completely discussed with respect to such extra-Poisson
variability are (i) the robustness of parameter estimates in models which describe this extra-
Poisson variability as a function.of unobserved covariates; (ii) the role of empirical Bayes
procedures in assessing the effect of extra-Poisson variability; and (iii) the implications of
failing to model this extra-variability (e.g., Collings and Margolin, 1985).

Brillinger comments that “of course, the estimates will depend critically on the assumed
distribution for #,” i.e., on the distribution of the unobserved variable. This is an unfortunate
assertion that is made without proof or a citation. The issue of the robustness of estimates
for models with extra-Poisson variability has been raised by Heckman and Singer (1984),
for example, in the case of mixture models for lifetime data. Actually, the Heckman and
Singer papers do not deal specifically with extra-Poisson variability though they do deal
with the effects of unobserved covariates on hazard functions—the topic raised in
Section 6.2. ‘

In hazard models for heterogeneous populations one must postulate (i) a class of
“mixing” distributions to represent the distribution of unobserved covariates affecting the
hazard function, and (ii) the form of the hazard function for the individual. Heckman and
Singer did find sensitivity to the parametric specification of the underlying mixing distri-
bution in the specific data on unemployment durations that they were analyzing. The result
of the analysis of that specific data set, however, has been overgeneralized to suggest that
the estimation of hazard models adjusted for unobserved covariates will be unstable in any
data set (Trussell and Richards, 1985; Hobcraft and Murphy, 1986). There are several
reasons to question such an assumption—and Brillinger’s apparently derivative statement.

First, there are questions about the use of the EM algorithm for certain hazard model
specifications. Specifically, the EM algorithm does not explicitly contain the constraints on
the tail behavior that were shown necessary by Heckman and Singer to achieve consistency
with the Weibull hazard function in the case of a mixing distribution represented by a
number of discrete mass points. Indeed, this concern is not limited to the case of EM
algorithm. In general, the conditions necessary to ensure consistency of estimates are not
embodied in numerical algorithms though it might be possible to introduce such constraints
by appropriately penalizing the likelihood function for certain conditions. ,

A second more general concern is that the characteristics of the data under analysis may
affect the degree of instability of the estimate—as they might in any statistical model. In
the case of hazard models adjusted for unobserved covariates, it appears that the survival
curve for certain types of data may manifest a near discontinuity that is the cause of
instability in the maximum likelihood estimation. Examples of problematic data are
apparently the duration of unemployment data used by Heckman and Singer, where reports
of duration were apparently “clumped” (i.e., there were preferences to report specific
durations) and in infant mortality data where rates drop off rapidly after birth (Trussell
and Richards, 1985). In contrast, Manton et al. (1986) found that, for total or cause-specific
mortality at extreme ages, estimates of parameters in a mixture model for lifetime data
were relatively robust to selection of either mixture distributions (e.g., inverse Gaussian vs
gamma) or hazard functions (Weibull vs Gompertz) of similar types. Marini (in a paper
presented at Population Association of America meetings, Boston, March 1985) also found
stability in analyses of marital duration. In work as yet unpublished, Heckman and Walker
show that it is possible to discriminate between various model specifications using a x -
based measure of fit. Interestingly, they find that modeling unobserved heterogeneity gives
better, and more stable, parameter estimates than the use of different lag functions of
observables—a strategy that has been recommended as a way of avoiding the necessity of
modeling unobservable heterogeneity.

It may be that one can assess the nature of the survival function describing a given set of
data using something analogous to an “influence function” to determine if a particular
hazard model specification will be unduly sensitive. Such a measure could be used as a
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diagnostic tool to evaluate the likely performance of a particular hazard model specification
in a particular data set. The blanket assertions about instability seem unfounded and have
inappropriately discouraged evaluation of hazard models with unobserved variables—even
when failure to deal with such models can lead to seriously biased regression coefficients
and erroneous conclusions (as discussed in Heckman and Walker’s unpublished paper).

The second issue to be addressed in the area of extra-Poisson variability is the role of
empirical Bayes procedures. Again, in reference to the statement about the criticality of
assumptions about the distribution of unobserved covariates, one can refer to the work of
Morris (1983). Morris demonstrates that, when the mean and variance of the distribution
of events are known (or are estimated and treated as known), an empirical Bayes model
where the prior distribution and the distribution of the mortality outcomes of individuals
are natural conjugate distributions will have certain optimality properties, i.e., they will
“minimize the maximum expected squared error loss.” This follows from the properties of
the natural conjugate distributions and the assumption of a quadratic loss function and
not from a justification of the physical properties of the distributions. This property implies
a robustness to model misspecification for empirical Bayes models where rates are affected
by unobserved variables when the model specification uses distributions that are natural
conjugates.

In this context, then, more discussion of the negative binomial, which can be viewed as
arising from a gamma mixed Poisson process (Manton et al., 1981) might have been useful.
A failure to discuss the model representing extra-Poisson variation arising from use of the
natural conjugate distribution to the Poisson distribution seems an important omission in
the paper if discussion of the effects of unobserved covariates is to be undertaken.
Furthermore, in the earlier spirit of the paper, it would have been useful to “correct” certain
misperceptions in the literature based on misunderstanding of the stochasticity of mortality
processes, to identify and stress the potential consequences of simply “ignoring” extra-
Poisson variability (Collings and Margolin, 1985). That is, in analogy to the argument that
rate estimates for populations are nonstochastic, the effect of extra-Poisson variation is
often ignored by demographers and epidemiologists on the rationalization that though such
variation is likely to exist, models that describe such additional sources of variation are not
“robust.” Empirical evidence, the analysis of data characteristics that jeopardize “robust-
ness,” and the empirical Bayes approach all suggest that hazard models reflecting the effect
of unobserved variables are not unstable in all types of data. What has not been balanced
against an appropriate concern about the robustness of the model to misspecification,
_ which should be an issue when applying any statistical model, however, are the errors that
result from retaining an incorrectly specified model. This point was made clearly by
Heckman and Singer (1984), who, even when their model exhibited sensitivity to parametric
assumptions, argued that a failure to include parameters representing heterogeneity could
lead to badly biased results. Thus, they suggest that, when the model is sensitive, heteroge-
neity be adjusted for by a set of nuisance parameters. Furthermore, even if a model
representing the effects of population heterogeneity were sensitive to the specification of
either a mixing distribution or a hazard function, this may represent important information
about the nature of the process being modeled.

‘A third issue that was probably beyond the scope of the current paper, but which is at
least alluded to in the references, is where mortality is generated by a Poisson process
conditional on covariates whose values are generated by multivariate diffusion processes.
The theoretical paper by Yashin, Manton, and Vaupel (1985) could also have been
supplemented by reference to the empirical application of Woodbury, Manton, and Stallard
(1979) and Manton and Woodbury (1985). Andersen (1986) has identified this as currently
an important area in survival analysis that has not received adequate attention. The limited
discussion by Brillinger does not identify the nature of the statistical issues that are raised
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by this rich class of models. For example, Yashin et al. (1985) extend the basic model of
Woodbury and Manton (1977) by considering the additional effect of an unobserved
covariate process on the basic hazard and diffusion processes.

Overall, the paper addressed a number of important issues on which there is considerable
confusion in current statistical practice in dealing with vital event data and suggested some
fundamental changes in current thinking and practices. The author is to be applauded for
the elegance in which he performed these difficult tasks. It does seem that, at times, some
related topics (e.g., the robustness of mortality models in heterogeneous populations) were
alluded to but not fully discussed. This was unfortunate because there are important
misconceptions among population scientists on many of these topics as well and, though
it may not have been practical to deal with those issues in this one paper, the allusions to
these issues sometimes served to confuse, rather than to clarify, certain issues.
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John W. Tukey (Princeton University, Fine Hall, Washington Road, Princeton, New Jersey
08544, US.A.)

My interest in this problem area stems from a request from James A. McCullough, of the
California Center for Health Statistics, for some advice about a simple multiplicity allow-
ance, applicable to the comparison of age-adjusted death rates. The querist very kindly
furnished me a write-up (McCullough, Report No. 83-05070 on Data Matters, California
Center for Health Statistics, 1983) providing two sets of standard errors, one tracing to
Chiang (1961) and the other to Kleinman (1976, 1977). On occasion, these differed widely,
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leaving one with the feeling something was wrong. (We can now see that Kleinman’s
formulas are reasonably close to a careful approximation.)

David Brillinger, who was a natural interpreter between this discussant and Chiang,
because he combined geographical proximity to the latter and much past collaboration to
the former, became involved and, fortunately, decided to work things out from first
principles. To see this paper appearing with discussion heartens me very much.

The original problem The bulk of my own comments go to the essential element of the
original problem: “What is an appropriate standard error for a ‘period study’ based on the
number of deaths, in a specified population during a certain interval of calendar time, by
persons of specified age—the number of deaths in a certain rectangle in the date-age
plane?” I shall treat the denominator of the rate—the population size—as fixed and known,
so only the variability of deaths concerns us.

While I agree with Brillinger that using Poisson variances for deaths and zero variances
for populations is the best simple analysis, I would look to a different approximation if I
wished to refine that simple approximation somewhat. (Looking at a better approximation
may well strengthen our resolve to use the Poisson')

The accompanying Figure 1 shows a more detailed version of Brillinger’s Figure 5, for a
period study in which the age range exceeds the calendar range. (Similar arguments lead to
related results when the opposite is true.) The death-counting rectangle is divided into four
parts, for which the exposures and variances (all conditional on population P) seem to me
to be as follows (observed deaths in B; are denoted D)).

B, consists of deaths where those exposed to risk had no chance of being counted in P,
and thus the corresponding number of deaths earns a Poisson variance, estimated by D,.

B, consists of deaths to individuals either counted in P or dying in D,. We show below
the appropriate estimated variance is closely enough, D,(1 — 4D,/P). (This is four times
the binomial correction.)

B, consists of deaths to individuals counted in P, and thus deserves a binomial variance,
naturally estimated by D,(1 — D,/P).

B; consists of deaths to those escaping P, and thus deserves a Poisson variance, naturally
estimated by Ds.

If the increase in death rate from the bottom to the top of the age range and the rate of
growth of the population are negligible, then D, and D, have the same average value. The
estimated variance for the total number of deaths is then, nearly enough,

2 2
Dy+ D, +D2+D3—%—1PD—%=Totaldeaths— SK—DL%Q@— crudelyzD—STaz;,
where D = D, + D, + D5 + Dy is the total number of deaths. (The last form would be 3 of
an overall binomial correction.)

If a is the length of the age interval, c¢ is the length of the calendar interval, and a = ¢/2

(so that Fig. 1 applies), then, if deaths were (numerous and) uniform over the rectangle,
D, + D, _ac—(c/2)2_1_£
D0+D|+D2+D3_ ac - 4a’
and a better approximation for the estimated variance for the total number of deaths
would be

—_ 2 2 2
D - 3 = ¢/4ay D" = (Total deaths) — Z— ( 1 - i) (binomial correction)

4p 4a

For the situation pictured in Figure 1, a = 5, ¢ = 1, and the factor multiplying the binomial
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Figure 1. More detailed version of Brillinger’s Figure 5, with
fourfold division of the study rectangle (5-year age interval,
1-year calendar interval).

correction is 3(.9025) = 1.13. (For ¢ = 2 and a = 5, the factor drops to 1.01; for ¢ = 3 and
a=510.90)
If we must correct the Poisson variance, multiplying the binomial correction by

[ _5(_<YD
4 2a) P
will be a simple and closely approximate overcorrection (so long as ¢ < 2a). We may well
do quite well enough by using the binomial formula.

It would clearly be worthwhile to carry out similar calculations for a variety of patterns
of population counting or estimation and for more general assumptions, such as

Force of mortality = u(f, X) = po(£)e*™™,
Population size = Py(x)e*‘~"
but this is not the place for such details.

Derivation We now derive the approximation used above.

Consider the ratio of one Poisson, y, to the sum of that Poisson and a constant, E. This
corresponds to those exposed to risk being those who die in B;, y, in number, and those
who are included in the count, E. Since we are conditioning on the count, we treat E as
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fixed. We have
-1 2 3
y __Y Yy _Y_(2 hA
S+ E E(1+E) E (E)+<E>

Y N var2 y ¥ i y
var(y " E) = var( E) 2 cov( Ik E2) + var( E2) +2 cov( Ik E3) + ...

E1~2 var(y) — 23 cov(y, 2)+ [var(y2)+ZCOV(y, PN+ -

and

If y is Poisson with parameter A, then its moments about zero are A\, A2 + A, A3 + 322 + 2),
M+ 6MA3 + 1122 + 6], ... so that var(y) = A, cov(y, ¥y?) = 2A2 + 2), and var(y?) +
cov(y, ¥3) = 10A* + 28)\? + 18\. To estimate these we naturally use ave(y) = A\,
ave(y? — y) = A2, ave(y> — 3y? + 2y) = A>. Substitution gives, for the estimated variance
of y/(y + E),

1 2 1
Ei(y)—p(2y2)+p(10y3+2y+ 10y) + ---

_Y |y ey Yy
'52[1 et E TR T

In most practical situations y/E will be small, and the first correction term will suffice,
giving the result used above.
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The author replied as follows:

I wish to thank each of the discussants for his thought-provoking analysis of the paper and
suggestive comments. I am sure that Biometrics readers will find the package of paper and
discussion to be a dramatic improvement over that of paper alone. The wealth of contem-
porary and historical references that the discussants add, does this alone. The issues
elucidated by the discussants are central. My discussion of the discussion is grouped by
topic.

Stochastic description We all know the advantages that flow from setting down a random
mechanism for measurements and we further know how sensitive analyses can be to the
choice of description made. It is not surprising therefore that various of the discussants
(particularly Professors Jagers and Kish) focus on this aspect. Professor Kish addresses the
case of data gathered in a sample survey (as vital statistics often are) and makes an essential
distinction between the frame of the survey and the inferential population. In this paper it
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is the latter that is of concern. The randomization is not under the statistician’s control
and he is left with the question of what population are the data representative of and what
other data values might plausibly have been obtained. Stochastic description is an invaluable
crutch for seizing hold of countless problems, but it is an assumption that has to be
introduced and one that I do not believe statisticians are honor bound to.

Poisson births Professors Hoem and Jagers attack the Poisson assumption for the birth
process for the case of a population with reproduction, i.e., with births dependent on births
of the previous generation. I do not argue with this and indeed quote Kendall (1948) as
evidence. I make two comments, however. First, the Poisson may still show itself empirically
as a reasonable description. Second, what is really needed for the Poisson distribution of
deaths in an age-period rectangle, is that the points of initial intersection of the lifelines
with the rectangle (i.e., the ages at entry or dates of entry) be Poisson. (That the deaths in
the rectangle are Poisson then follows from the same invariance of the Poisson under
random translations as before.) Now, despite the obvious serial dependence in the popula-
tion, the Poisson may prove a reasonable empirical approximation for the distribution of
these points, particularly when the rectangle is not too large. We suggest that this result
addresses Professor Chiang’s wish not to be concerned with what has taken place before an
individual arrives in the rectangle of concern and also provides a partial answer to Professor
Breslow’s query as to when the Poisson remains reasonable for an open population with
emigration, immigration, and loss. It should when these are occurring randomly. In other
cases one may need to introduce a further (error) variate.

Theorem 2 The essence of Theorem 2 is that in some circumstances one may act as if the
population total, P, is fixed. This is meant to be the crudest approximation and to show
the appearance of historically employed results. For situations in which more detail is
required one needs to employ the bivariate Poisson, or a bivariate Poisson with extra-
variation, or to use another denominator, or to develop a result of a different character.
Professor Tukey commences the development of what could be the next approximation.
Professor Breslow focuses on for just what ranges of values of the parameters is the
approximation of Theorem 2 useful. I had in mind moderate to large \. As stated just
above it is the crudest approximation (but as the discussants mention, often employed).

Extra-Poisson variation In practice, perhaps because of omitted variables, variation
beyond the Poisson may be present. In the paper such variation is handled by
modelling and inferences are then based on the likelihood function. Professor Breslow
describes a “method-of-moment/quasilikelihood”-type approach that requires only a
modelling of the variance. Being based on weaker assumptions, this approach will
be more broadly applicable. However, the likelihood approach may be anticipated to be
more efficient when the assumed distribution is reasonable. Further, it may well
be close to a physical description of the situation and so allow natural interpretation of
the parameters appearing. These last remarks simply parallel corresponding remarks for
the ordinary-linear-regression/generalized-least-squares case. Study of the robustness of the
likelihood approach is needed. Finally, the likelihood approach has an elementary extension
to the case of dependent responses.

Likelihood analysis Professor Keiding propounds taking a likelihood approach to the
problem. Professor Breslow also mentions it. This is an attitude pioneered in the demo-
graphic context by Professor Hoem. I strongly support it. Among its advantages is the direct
ability to recognize ancillary statistics on which to condition. The likelihood approach
would appear particularly pertinent in the case that individual data are available, rather
than the aggregate case of principal concern here.
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Robust/resistant Professor Manton somewhat takes me to task for being concerned about
the robustness of the methods of Sections 6 and 7 to an assumed distribution for the latent
variable u. I remain concerned, though I note his listing of evidence for robustness and I
remember that in Brillinger and Preisler (1983), we found that switching from the normal
to the log-normal or to the gamma had little effect for the data studied. Noting what has
been learned in the case of ordinary regression, however, my feeling is that it would be
better to develop and employ new robust/resistant procedures in practice rather than to
stick to elementary ones. I have a student at work on developing such methods.

Professor Chiang’s formula 1 am glad that Professor Chiang has set down some further
words regarding the reasoning behind his result. I note his assumption of a stationary
unchanging population size. I note his indicating that the expected deaths occurring in
rectangle 4 will be the same as the expected deaths occurring in rectangle 4’. My concerns
are that this will generally not be so for the actual numbers of deaths, and to develop
expressions for the variability of those numbers of deaths. The fact that his variance estimate
is zero for the final age group remains problematic. I am sorry that we do not end in
agreement.

Concluding remarks Readers of the discussion can see that a variety of interesting
problems remain to be studied—for example, taking a systems approach to the problem,
as implied by the remarks of Professors Hoem and Jagers; studying influence measures as
mentioned by Professor Manton; and developing approximations going beyond those
recorded in Section 5. Professor Tukey commences this task in his contribution. It may be
remarked that the results of this paper are quite general, with no assumptions of stationarity
or constant death rates, for example. Improved approximations will come from realistic
particular assumptions.



