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ABSTEACT: Risk analvsis, that is the problem of estimating the probabilities of rare and damaging evenis, is
imporiant in many felds. One can mention the risks from: foods, earthquakes, Torest fires, and space debris.
Computing probabilities is basic © risk analvsis. The estimated probabilities may be fed into the computaion
of insurance premiums for example. In the article the examples of seismic risk analysis and [orest fire chances

are considerad in some detail.
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I INTRODUCTION
The felds of civil engineering and statistcs have
much in common, including the origin of their names

civil = civilis = relating fo state and staistical =
starfus = stafe

Both Helds have much to offer society.

Rish: may be defined as the probability of some hae-
atdous event or calsstrophe, the chance something
bad will happen. In many cases huge amounts of
money are involved (Matonal Acsdemy of Science
19498). The principal concern is low probability-high
consequence events, events that lead o damage, loss,
injury, death, environmental impaiment for example.
Often the work is done as an aid 10 decision making.
In consequence risk models and risk management per-
vide modern technical life. The events ar in space
and time, hence the theory of swochastic processes
plavs an important role.

The held of risk analvsis cuts across the envi-
ronmental sciences including things like: landslides,
avalanches, earthquakes, Moods, huricanes, wrnadoes,
forest fires, space debris, sea storms, hail storms, ..

A common ol in the work of risk analvsis is a
catastrophe model. This may be defined as: a set of

databases and computer programs designed 1o ana-
[vee the impact of different scenarios on hazard-prone
areas (MNational Academy ol Science 1998). In prac-
tice these models combine scientilic risk assessments
of hazard with historical records to estimate the prob-
abilties of disasters of different magnitudes and the
resulting damage o affected strucres. The informas-
tion may be presented in the form of expected annual
losses andfor the probability that in a given vear the
claims will excead a certain amount.

Risk analyses may be required officially. To cite a
specific example: a Core Damage Frequency (CDF)
value of 107" per reactor year is the value endorsed
by the Nuclear Regulatory Commission ina Stall Re-
quirements Memorandum as a benchmark ohjective
for accident prevention (Nuclear Begulatory Comimis-
sion 1997, This rate is the probability of damage o a
reactor core within a year.

A formal risk anal vsis often includes: i) estimation
of probabilities, i) detemmination of the distribution
of damage and i) preparation of products like For-
mulas, graphics, hazard risk maps. There is extensive
use of computing science, substantive subject matter
and statistical methods.

The sections of the paper are! Introduction, Civil
Engineering and Statistics, Insumnce, Two Examples,
Risks ol Risk Analvses, and Summary and Conclu-
Si0Ns.
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2 CIVIL ENGINEERING AND STATISTICS

The subjects of Civil Engineering and Statistics have
much in commaon and they have a fair amount of joint
history. To focus on early work, Gauss contributed
1o both surveving and least squares. He made basic
contributions 1o each feld during the triangulation of
Hannover in the vears 1820- 1544,

Gauss's work is commemorated on the German
Mark note pictured in (Reid 20000). Gauss estimated
that he handled more than a million figures in his sur-
veving work.

In any case few of the talks at this meeting do not
contain important elements of both civil engineering
and statistics.

2.1 Staustcs

Starisiics may be defined as the science ol using data
wisely. It involves data collection, data anal vsis, data
reduction, data modelling, dasta-based inferences. Iis
paradigm is that a datum is a realization of a random
variable. Random variables come in many tvpes in-
cluding images, videos, scatter of points, counts and

Statistics relates directly 1w the Scientific Method.
See the box and arrow diagram of Figure 1.

Fersons who collabomte with statisticians expect:
techniques {e.g. MOM, OLS, MLE, Bayesian, ...}, un-
certainties, efliciency, and goodness of [ amongst
other things.

Among the methods o be used here are: ro-
bustresistant least squares, the generalized linear
maodel, nonparametric estimation, statistical packages
{(Chambers and Haste 1990}, and the jackknile.
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3 INSURANCE

Insurance measures are oflen aken 0 “manage”
catastrophic phenomena. Further, consideration of in-
surance aspects can molivale research work and nsk
analvsis.

Insurance against loss has been around for many
vears. One can mention the code of Hamurabi {1950
BC) which involved so-called bottomry, a form of ma-
ring insurance (National Academy ol Science 1998
The catasirophes such ol the Great Fire of London
1666 AD, and the U.S. foods of the late 1B00s led
to the development of insurance as a major business
(Clark 1999, (Raynes 1964).

The insurance premium paid is meant w reflect the
risk potential. In one method w compuie a premium
one needs the likelihood and potential damage from
possible events. Modern formulae for premiums in-
volve probabilities and distributions. Historically they
involved only expected values (Clark 19949,

The pure risk premiam for damage L is given by

P = FE[L}y = Prab{L # 0}E{L| L # 0}
Itis anexpected value and seen o involve both a prob-
ability and an expected value.. In practice premiums
are losded w cover costs and solvency. Denoting the
reserve available attime ¢ by ;. the insurer wishes

Prob{ Ly = By + Y Py t=1,2,..} <e (1)
A A

for somesmall ¢ = (with j summing overthe chang-
ing number of risks. Formulae [or a loaded premium
include

JI'.il
for some o, [, < where

JLL E{L}, = war | La )

(Beard, Pentikainen, and Pesonen 196%) or they may
be based on the expression (1) and involve the full dis-
tributions of the quantities invol ved. There are various
practical details wbe dealt with including: taxes, rein-
surance, exposure, inflaton, investment return, lags,
interest rates and there are other approaches. For ex-
ample an extreme value approach is @ken in (Em-
brechis, Kloppelberg, and Mikosch 2000) and there
15 a market driven approach {(Bohman 1979). This last
15 adaptive and evolutionary and involves using time
series data on income and expenses W compule a pre-
mium from predicted future expenses. It is interest-
ing o read in (Clark 1999 of the empirical efforts of

(1 appay, po+ By, gy '_--:'.rf_. oy + Gy '_--:'.rf_



companies in the [8th centry 1o find effective pre-
miumm rates on the basis of their gains and loses.

In summary, in delermining insurance premiums
probabilities need o be estimated and so wo do distri-
butions of losses. Some related results may be found
in (Brillinger 19493).

4 TWO EXAMPLES

By wav of illustration consider risk analvses of earth-
quakes and of wildfires, In both thinplate splines are
used below to approximate smooth functions of two
variables. These splines have the [orm

Y
flx,u) o Fr o ey A Z-:ﬂ."f lonp vy (2)
b1
with the (xp. g nodes and
L IIIII|l I:.l. IL : 2 I |:.I'|I' Uk :;'

the distance from the k-th node to (. y), (Powell
1942,

4.1 Seismic Risk Assessment (SREA)

SRA will be defined as the process of estimating the
probability that certain performance varisles al a site
of interest exceed relevant critical levels within a
specified tme period, a5 a result ol nearby seismic
Evenls.

In such a circumstance it s convenient o break
down the problem conceptually as in Figure 2. The
fipure supposes [wo seismic sources are of concern.

The discussion below works backwards from a
struciure al a site of concern o the locations, tmes
and sizes of earthquakes.

a) Damage. There are a variety of ways o describe
and estimate damage. An important method uses the
Modified Mercalli Intensity (MMI). One reason for its
imporiance is that values may be derived from historic
accounts. Another is that it refers w damage directly.

MMI values are given by roman numerals £ o X1
{and sometmes (0 referring 0 no impact.) The scale is
ordinal, increasing with increasing severity of dam-
age. For example the definition of MMI V111 in-
cludes: “Damage slight in specially designed stroc-
tures; considerable in ordinary substantal boildings;
... Fall of chimnevs, .." (Bullen and Bolt 1985).

There amre values that have been proposed o con-
vert MMI values into damage percentages for dif-
ferent types of structures. The following table is an
example of a so-called damageability matrix. It was
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Figure 2: A box and arrow disgram corresponding
to the components of an SRA. The t; are the times
of events and the A, the corresponding performance
variable values. A is a threshold level.
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Figure 3: Loma Prieta MMIs vesus distance [rom
epicenier.

given in{Munich Re 1991). The entries are loss ratios
per risk calegory in %,

MM VI OVII VIO IX X
residential 3 15 5 16 40
comimercial | 6 25 09 25 ol
industrial N 3 11 30

b} Attenuation. To illustrate the general decay ol seis-
mic energy a8 the signal passes through the earth con-
sider the Loma Prieta event of 17 October 1989, The
emcenter of the event was near Santa Croe, Califor-
nia. The October 1991 issue of the Bulletin of the
Sefsmodogical Society of Amenca was devoled o the
Loma Prieta Earthquake and i elfects. There were
62 deaths, 1300 buildings destroved, and 57 billion
in damage. The observed MMI values and a hand-
sketched isoseismal map may be found in (Stover,
Reagor, Baldwin, and Brewer 19940).

Figure 3 plots observed MMI values versus their
distance [rom the epicenter of the eventl. One sees a
general falling off of level as the distance from the
emcenter increases. One also sees a cluster of high
levels at distances around 100k from the epicenter.,
A smooth robustresistant line has been added. The
computation of this line assumed that the MMI val-
nes might be trested as numerical. Support [or this
assumplion is given below.

To process the data one seeks a statistical distribu-
tion for ordinal -valued variates. One way Lo construct
such is to postulate the existence of a latent process
and ordered cot points o, such that the MMI value a

the location with coordinates (x, i) 15 given by

"r.l.l.l ';';..r'ul = ".'H.l.u E“ll]
Consider the maode]

fa KT} ‘r.l.l.l I £y A {3]’

with [, deterministic  and smooth  and  with
fry having an extreme value distribution, Le.
Proble = u) I — exp{—e"}. The use of the
extreme value distribution is plausible given the na-
ture of destruction. It and the corresponding use of
the cloglog link mean that the function glod) of
Splus ((Chambers and Hastie 1990)) may be em-
ploved for the computations, (McCullagh and Nelder
1989), Chapter 5. In the analysis below the Tunction
[y & expressed in terms of thin plate splines In the
computations the data (. ¢y ) were standardized.

The results are given in Figures 4 and 5. The fist
figure provides the estimate of f, , obtained by fitting
the model just described. One sees a general dving off
of the function values as one moves away [rom the
epicenter, excepl [or a rise near San Francisco. This
phenomenon appearad in Figure 3 and has been asso-
cigted with reclaimed land.

Figure 5 provides the estimated cut points and ap-
proximate marginal 953% bounds. One sees that for the
MMI values {{ and above the cut points fall close w
astraight line. This finding lends support 1o the use of
MMI values as if they were numerical as was done in
preparing Figure 3.

See (Brillinger, Chiann, Irizarry, and Morettin
20001} for further details concerning this type of anal-
vais including the use of shrinkage estimates.

A formal relationship describing the @ll-off in en-
ergy with distance as it passes through the mediom is
needed. Following (Joyner and Boore 1981), consider
an attenuation form

Lag(—lag(] Prob{I = i}})

o + Fd 4+ ylogid) + 4M (4)

where « is the distance of a point of concern to the epi-
center ol the event and M the event’s magnitude. This
wis [it to the Loma Prieta data using a robust resistant
algorithm and the results are provided in Figure & for
i V.V T {As only one event was involved 4
could not be estimated. ) In the case of MMI V1 1 one
sees a rapid fall-off with distance.

¢} Event lovainions and gmes One imagines a
marked spatial-temporal point process of earthquake
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Figure 6: Estimated probabilities of the indicated
MMIs as a function of distance from the epicenter.



locations, tmes and sizes. In Calilornia many [aults
have been located. In Figure 2 just two sounces have
been hypothesized, but there could be many. Inan ex-
pression like (4) one might take o to be the distance 1o
the nearest point on the ol from the site. Faols have
been modelled as a line segments and plane segments
with event magnitude related o their siee. There are
many geological Gult maps w work with.

Commonly renewal pmcesses are emploved 1o
maodel the sequence of times. The intervals between
events might be assumed exponential, Weibull or log-
normal,

As an example of a Guir premium compulation, con-
sider a commercial building 25km from an epicenter
and anevent like Loma Prieta. For this case, using the
[actors in Table |, the estimated expected loss is

Ge 103+ 25« 380+ 9e 4754+ 25«0 = 531%
The computations are set up using conditional prob-
ahilities (Pregibon 1980). Assuming the damage per-
cents are constant the standand error is .71

42 Wildfires

The second example ol the paper concerns the prob-
lem of predicting the occurrence of forest fires as a
function of place and time. Let occurrences be de-
noted by (x. .t ) J = L2.3, .n with [, gy} lo-
cation and ¢ time. One has a point process in space
and time.

To illustmte the circumstance consider Figure 7.
The bottom panel shows the locations of forest fires
in Oregon during the period 1989-1996, specifically
those that occurred in Federal lands. These lands are
indicated in the wp panel of the fgure.

The data set for Oregon was large, 578,192,404
voxels and 15,786 fires. To be able to carry out ex-
ploratory data analyses a sample of the data were
used. All the voxels with fires were emploved, but
only a sample of those where no fires occurred. The
sampling [raction was 7 A0012 | This lead o
B0 cases.

To formalize the problem consider voxels (. x4
dax] = (.4 + dy] = (8,1 4+ di] and let

M 1 if a fireinthe (x,y. 1) — vorel

a4

0 atheraise

For convenience suppose that the voxel sides
dx, oy, df I. (In the data and computations
ax, iy I krnoand df is | dav.) Let A, denote the

Dregon Fedaral Lands 1989 - 1996
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Figure 7: The twop panel shows the Federal lands in
Oregon. The botom provides fire locations.



history of the process up o and including time £, and
consider the probability
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In the work presented next a logit model 15 assumed,
specifically
Logit po s = Loy py g /(1= py gy,

miz.y) + gald) + ¢ (3)
with [, ) location, d day of the - year, and { a year
effect. Logit models have been used previously in es-
timating fire risk, see for example (Marell, Owkol,
and Stocks 1993). In the computations the g func-
tions are assumed w be smooth and are represented
by spline functions. The spatial erm, g, involved a
thin plate spline and the day term, g., was a periodic
spline. The Splus functon make. b ) of Funfits, (Fun-
fits 2002), was employed. There were 60 nodes used
and these were taken tobe on a 10km grid throughout
the region.

With the logit link, conditional on the sam-
ple, one had a generalized linear model, (MaCul-
lagh and Nelder 1989), with an offset of log 1/
This meant that swandard glm computer programs
could be used for the analysis. (The new logit was
Lagrit o logrit p + log(1/7).)

The mesults are provided in Figure 8 giving the esti-
imates of the functions ;. g andthe effects L. (The £
of (5) are assumed fixed here, but in work in progress
here they are being assumed random. ) Examining the
top panel one sees fewer fires in 5E Oregon, as could
have been anticipated from the bottom panel ol Fig-
ure K. In the middle panel of the figure one notes a
substantial day of the effect - many more fires in the
summer. The bottom panel shows a definite vear ef-
fect. The year effect values are relative o 1996 as 0
and the horizontal line is at level 0. This analysis pro-
vides base values o reler in computations directed st
[orecasting using predictive explanatories.

Consider the problem of prediction using some of
the indices that have been proposed, specificallv the
problem of predicting whether a fire becomes larpe
once it has startad. Muowal informaton (MDD will be
used o find which indices are most highly associated
with large fires. For a contunous variable, X, and a
discrete variable, ¥, MI is defined as:

LR

,H':I-H} }

Eflog
Hog oo (o)

{6}
where

pl gy Wl Problz < X < z+drandy = y)

Figure B: The wop panel provides the estimated loca-
tion effect for gy of the model (5). The middle panel
provides the estimated day of the year effect. The bot-
tom panel shows the estimated vear effect. Approxi-
male 95% error bounds are indicated.

EstimataciMilarga fims andindices

EE H -«
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Figure 9: The estimated coefficient of MI between a
large (as opposed to small) fire and a selection of pre-
dictor variables.
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Figure 10: Probability of a fire becoming a large fire
as a function of Spresd Component. The arrows give
252 limits.

Mutual information may be estimated using a discrete
version of (6). Amongst the properties of MI are that
MI = implies that the variates involved are statist-
cally independent.

Figure 9 provides estimates of the MI between the
binary variable, ¥ (1 or 1, referring 1o whether a
fire hecomes large. In the figure there are 13 explana-
tories, numberad 2 through 14, The lamgest, number
13, is the so-called Spresd Component (5C) index.
This is a numerical value derived from a mathemati-
cal model that integrates the effects of wind and slope
with Tuel bed particle properties 1w compute the for
ward rate ol spresd ot the hemwd of the fire, {Deeming,
Burgan, and Cohen 1977). The 5C was chosen [or the
next analvsis because it had the highest estimated MI
with the variate a fire becoming large.

Consider the model

Log( = Log( prob{lar ge five| fire and SCY))

a4 480

The use of logl—ilog)} comes from exireme value
considerations. Figure 10 gives the results with the
dots and vertical lines corresponding 1o naive esti-
mates of the probability, (i.e. based on the experi-
ence in an inerval of 5C values), and +2 standand
error limits. One sees the stesdy increase in probabil-
ity with the level of 5C. Inthe data set sdied the the
SC level ranged from | o 169 with a median of B and
quartiles of 5 and 12.

More details of the data set and analyvses may be
found in (Brillinger, K., Preisler, and Benoit 2003 ).

3 RISKS OFRISK ANALY 5ES

AL this point in time many risk models have bean con-
strucied. These have been based on varving amounts
of data and have involved difTering methods of valida-
tion. Many make use of simulation™onte Carlo. As
in the case of those techniques risk analyses have im-
portant limitations. Briefley one can refer to: overde-
pendence on simulation, lack of data, lack ol empir-
ical validation, identifiability issue (different inputs
can lead o similar outputs), the sample vsed [or -
ting may be used to validate the model, assumption of
independence, and the limitations of sensitivity anal-
Yal5.

6 SUMMARY AND CONCLUSIONS

Risk analysis has been considered in general and for
two specific examples. The examples were motivated
by the problem by indicating the tvpe of information
insurers would like.

The demand for risk analvses s growing steadily,
in part because the costs of replacing destroved struc-
tures are growing and in part because of the sieady
increase in the population living in hazardous areas.

In the examples the scientific questions included: i)
what is a [ir insurance premium o cover the damage
that might be experienced by a structure at a panic-
ular location given an earthquake of a given size and
location? and i) what is the probability of a fire in the
Federal Lands in Oregon becoming large? The exam-
ples have in commaon that they are seeking probabili-
ties and distributions. The solutions have in common
that data and subject matier are basic.

Statistical methods are basic o risk assessments.
This is obvious because probabilities and data are in-
volved. It is also the case because statistics adds im-
portant things to what the engineers and scientists
tend o know and do on their own. Statisticians add
things like efficiency resulis, exiensions o different
data types, uncertainly measures. The statistical ele-
ments that appear in the examples include: the use of
stochastic models, probabilities or rates as producis,
nonparameiric estimation, generalized linear model
data types, mbust regression, biased sampling, mutual
information, statistical packages, ...}

The examples presented have shown that the:
stochastic approach is highly effective, that there are
difficolties and opportunities, that there are solutions
and that there are lots of open problems.

The use of engineering judgement needs 1o be re-
ferred . It is sometimes incorporated via Bayesian
methods. There is also statistical judgement. It arises
in the picking of a statistical model, in deciding when



a fit s adequate for continuing o the next stage and in
considering what conclusions may be drawn reason-
ably from a completed analysis.

An interesting practical problem arises, namely
how are government regulalors 1o assess proprielary
huricane and eamhquake models used by insurance
companies T (Matonal Academy ol Science 1998).
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