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Summary

The problem of estimating a given integral of a regression function
is considered. The proposed estimate may be viewed as a continuous
analog of the post-stratified mean of sample survey theory. The asymp-
totic distribution of the estimate is derived, under regularity conditions,
and an estimate of its variance suggested.

1. Introduction

In seismology, travel time tables provide estimates of the time
required for an earthquake wave to travel to an observatory as a funec-
tion of the (angular) distance between the epicenter of the earthquake
and the observatory. In practice the tables are constructed from data
involving events whose azimuth angles, from the observatory, are not
uniformly distributed. However the seismologist does not generally
wish any interval of angles to be weighted more heavily than any
other. This situation leads to the consideration of the following prob-
lem: let Y be a random variate whose distribution depends on a real-
valued quantity X and in particular let

E{Y|X}=pX), var{Y|X}=d(X).

Suppose that it is desired to estimate the value

(1.1) 0= uarg@da

for some given function g(x). (In the seismological example mentioned
9(x)=1/(2r) for 0<x<2r.) Suppose that the observations (X, Y;), i=

1, ..., n are available. One means of proceeding is to form f(x) an
estimate of the density of the X’s at x and then to form

(1.2) b=n"t 21 Vg(X)IF (X)),

271



272 DAVID R. BRILLINGER

a weighted mean of the Y’s, as an estimate of the desired value 4.

The connection of the estimate (1.2) with the traditional post-
stratified estimator of sample survey (discussed for example in Cochran
[4], Section 5A.8) may be seen as follows. Consider a random sample
of values Y;, ---,Y, selected from a finite population of size N. Sup-
pose the population is known to contain N, values in stratum k, h=1,
---, H. The post-stratified estimate of the mean of the population is
given by

(1.3) SIY,.N/N

with Y, the mean of the sample values coming from stratum k. To
see the connection set X;=h if Y, comes from stratum % and set 3{X}
=1 if X is 0, =0 otherwise. Then

Vo= 3 Yol X—h}/S 0{Xi—h)

and (1.3) is seen to be of the form (1.2) with
9(X)=N,/N

and
fX)=S o(X~h}In

if X=h. The procedure of the present paper is referred to as a con-
tinuous form of post-stratification because it may be viewed as corre-
sponding to allowing the stratum label # to take on all values in a
continuum.

Returning to the problem of constructing an estimate of the value
(1.1), Priestley and Chao [9] propose

HX)=3 Y (X — X, JWA(X—X)

as an estimate of p(X) where W, (x) is a weight function concentrated
near £=0. This suggests as an estimate of ¢

2 YiXi— Xi) | o) Walo — X)do =3 V(X X, )o(X)

an expression of the form of (1.2) with f () a nearest neighbor type
density estimate. Quite a broad array of estimates of regression fune-
tions, p(X), have now been proposed and certain of their properties
investigated. (See for example Watson [15], Nadaraya [8], Rosenblatt
[11], Priestley and Chao [9], Stone [13], Singh [12], Benedetti [1], Clark
[3], Stone [14].) Those properties while suggestive, do not lead im-
mediately to the interesting properties of the statistic (1.2).
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The concern of this paper is to develop certain useful results con-
cerning the estimate (1.2). Generally the concern is with the, ap-
parently more relevent, case of fixed X’s, however some comments are
made concerning the case of stochastic X's.

2. Initial results and assumptions

It is assumed that X, X,, --- are fixed values. It is assumed that
Y, Y, -+ are independent random variables with E{Y;|X.}=u(X)),
var {Y;| X;} =¢*(X;). This implies immediately that

2.1) Efd=n"'3 u(X)g(X)/f(X)
(2.2) var f=n"* 3] (X)g(X.)Y/ f(X.)!

and that, under a minimal further condition (given for example in Feller
[5], p. 256), 6 is asymptotically normal.

Before serious thought can be given to the estimate 4 though, it
is necessary to investigate whether the quantity of expression (2.1) is
near 0 of (1.1) and to indicate an estimate of the variance (2.2). If
#(X) is an estimate of the regression function p(X), then an obvious
estimate to consider for (2.2) is

(2.3) nt S| Y, — i X) Po(Xo)H F (X

This statistic will be investigated later. At this moment further con-
ditions are set down concerning the X; and g(-), p(-) and o(-).
Let F,(x) denote the empiric distribution function of the X’s, that is

2.4) F(x)={number of X;<x; ¢=1, ---,n}/n.

AssuMPTION I. There exists a function F'(x) with the properties (i)
(2.5) d,,:sgp |F(x)—F(x)| — 0, as n— oo,
(ii) F'(x) has a bounded third derivative, (iii) its first derivative f(z) is
such that f(x)=e>0 for some ¢ and all .

If the X’s are a sequence of independent identically distributed ran-
dom variables, then (2.5) holds almost surely with d,=(2n)""*(log log n)'%,
see Chung [2]. Assumption I forces the X’s to have an asymptotic
density.

Suppose next that the density estimate, f (x), appearing in the
estimate (1.2) takes the form

F@)y=n" S W @—X)=| Wie—wdF.w)



274 DAVID R. BRILLINGER

where W, (x)=0b;'W(b;'x) with b, a binwidth parameter tending to 0 as
n— oo and with W(.) satisfying,

AssumpTION II. W(x), —oco<a< oo, satisfies W(—x)=W(x),
| Wda=1,
| W@)ds, | lepw@ds, | IW@)do<eo
where W'(x) denotes the derivative of W(x).
Define
Fe@)=| Wa@—u)fudu.

With Assumptions I and II one can measure the nearness of f(-) to
f*(-) and to f(-). Specifically, by Taylor expansion it is clear that

(2.6) sup | *(2) — £ (@) <+ sup | £ | [uF{Wwldu b2
where f” denotes the second derivative of f. Next one has

F@)—£*(@)=| Wia—wdiF.w - Fw)

- S [F(w)— F(w)] Wi (& —w)du

after an integration by parts and so
@7 sup| £ () — /()| <bs'd, || W@l da
Combining (2.6) and (2.7) one has
(2:8) sup ./ (z) — /()| =0(b) + O(b;'d.) -

The expression will tend to 0 provided b,, b;'d,— O.

Expression (2.8) may be used to measure the nearness of Eé of
(2.1) to the desired 6 of (1.1). First it is necessary to set down,

AssuMPTION III. The functions g9(x), u(x), —co<w<oo, are such
that

| I@)g@do< oo

and the function p(x)g(x) is of bounded variation.

Now one has
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|E§—n" 3 f(X)g(X)/f (X)) A
=n™ SX)l9X|I FX)— F X AX)F(X)

<n~inf f(x))™" sup | f(2)— f(@)] 3 | (X |g(X) | £ (X))
=0(b2)+0(b;'d,)

using (2.8) and the Lemma in the Appendix. That Lemma also implies
that

w5 X)X (X) = o)+
and so one has
2.9) E é:S w(@)g(x)dz+0(d,) +0(2) +0(b:'d,) -

Were this paper simply an exercise in numerical integration, investi-
gating the degree of approximation of the integral (1.1) by the finite
sum (1.2), with no errors present (that is ¢(X)=0), then expression
(2.9) would give the answer desired.

Because stochastic errors have been assumed present it is of inter-
est to investigate the variance estimate (2.3). That statistic is based
upon an estimate, pu(X), of the regression function x(X). As indicated
earlier, quite a number of estimates have been proposed. In connec-
tion with the one used suppose,

AssuMPTION IV. The estimate p(X) has mean-squared error
W X)=E | (X)) —pu(X)
satisfying %(X)<e,0%(X) with ¢,— 0 as n— oo.
A final requirement is,

AssuMPTION V. The functions f(-), g(-), o(+) are such that
| @ty f@)o <o,
*(-)g(-)*/f(-) is of bounded variation and f(-) is bounded.
With these assumptions and arguing as before
E {0 5| Y~ X)X f (X))} ~var b~n | f@g(o)] (@)

The variance estimate is asymptotically unbiased.
In summary, an estimate of the integral (1.1) has been constructed
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that is asymptotically unbiased, consistent, normal and an estimate of
its variance has been investigated.

3. Further remarks

The discussion following Assumption III indicates that the more
nearly constant are the functions f(x) and p(x)g(x) the less biased the

estimate 4 may be expected to be. This suggests that prior to com-
puting the estimate, the X values should be transformed, whenever
possible, to make these functions more nearly constant.

In the case that g(x)=f(x), the problem is seen to be that of
estimating EY. The estimate under discussion in the paper is one
making use of supplementary information concerning a variate X,
rather than the simple mean of the Y’s.

X has been taken to be real-valued. This is no real restriction,
the development for multidimensional X follows quite directly. The
Lemma of the Appendix may be replaced by one of Zaremba [16].
The previously mentioned references on non-parametric regression func-
tion estimation, generally provide estimates for the multidimensional case.

It has been assumed throughout that the X’s are fixed, rather
than stochastic. This seems the more appropriate inferential basis.
Were the asymptotic distribution desired for the case of (X, Y}), 1=1,
.-+, n, a sample from a multidimensional distribution, this could be
found using the asymptotic representation of Révész [10] for a multi-
dimensional empiric distribution.

In order to save computations, one might choose to estimate the

variance of 4 via the jackknife procedure, (Mosteller and Tukey [7],
Chapter 8). This however will lead to an overestimate of the variance
as it is appropriate to the aforementioned case of stochastic X.
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Appendix

LEMMA. Let h(z) be a function with variation V(h). Let F(x) be
a distribution function on (—oo, o) and given X,, ---, X, let F,(x) be
given by (2.4) and let d, be given by (2.5). Then
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n ST~ | R@)F (@) | < VR,

Proor. Follows directly from the corresponding result for the

uniform distribution given in Koksma [6].
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