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THE MAXIMUM LIKELIHOOD APPROACH
TO THE IDENTIFICATION
OF NEURONAL FIRING SYSTEMS

David R. Brillinger

Statistics Department
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Berkeley, CA 94720

The concern of this work is the identification of the (noniinear) system of a neuron
Sfiring under the influence of a continuous input in one case, and firing under the
influence of two other neurons in a second case. In the first case, suppose that the
data consist of sample values X,, Y,, t = 0,x1,+2,. .. with Y, = [ if the neuron
fires in the time interval 1 to t + | and Y, = 0 otherwise, and with X, denoting the
(sampled) noise value at time 1. Suppose that H, denotes the history of the process
to time t. Then, in this case the model fit has the form

Prob{Y, = 1| H,} = ®(U, ~ 9)

where

vl it y—1

U=Y aX .+ Y ¥ b X X,

u=0 u=0 p=0

where vy, denotes the time elapsed since the neuron last fired and ® denotes the nor-
mal cumulative. This model corresponds to quadratic summation of the stimulus fol-
lowed by a random threshold device. In the second case, a network of three neurons
is studied and it is supposed that

b7l

yo—1
U = E a, X, + YE bl

u=0 u=0

with X, and Z, zero-one series corresponding to the firing times of the two other
neurons. The models are fit by the method of maximum likelihood to Aplysia califor-
nica data collecred in the laboratory of Professor J.P. Segundo. The paper also con-
tains some general comments of the advantages of the maximum likelihood method
Sfor the identification of nonlinear systems.
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INTRODUCTION

Following the seminal work of Wiener (15) and Lee and Schetzen (10), the fitting
of nonlinear models to physiological systems has generally been implemented by ker-
nel expansions and the method of moments. Theoretical and practical aspects of this
approach are described in detail in Marmarelis and Marmarelis (11). This present
paper is concerned with fitting instead by the method of maximum likelihood.
Advantages that result include: a more efficient use of the data in a broad variety of
circumstances and, in the case of principal concern, a procedure well adapted to sys-
tems with point process output. In one case studied, the model fit by maximum likeli-
hood also includes a quadratic kernel.

A descriptive model for the firing process of a neuron involves “summation” of
input, followed by firing when the “sum” exceeds a threshold level. In Brillinger and
Segundo (5), a model involving linear time invariant filtering of a continuous input,
with memory back to the time of last firing, was fit. Briefly, this present paper is con-
cerned with a similar model but one including quadratic terms in the input in a first
example, and including the spike train outputs of two associated neurons in a sec-
ond example.

METHODS

Statistical Methods

Maximum likelihood has proven to be one of the longlasting effective estimation
techniques in statistics. This method does have limitations, but these are generally
understood. The procedure is simply described. One sets down the likelihood func-
tion for a data set and model of concern, the likelihood being the probability func-
tion (or probability density function) of the random variables that will be measured.
This expression typically involves some unknown parameters. In the method of max-
imum likelihood one chooses as estimates of the unknown parameters, the values
maximizing the realized likelihood. Expressions are available for the approximate
standard errors of these estimates and for formally testing whether some of the
parameters have prespecified values (e.g., zero). The method is efficient when applied
to large data sets in the sense that, for a given stochastic model and assuming cer-
tain regularity conditions, the distribution of the maximum likelihood estimate is
more concentrated about the true parameter value than the distribution of any other
estimate. One reference to the general properties of maximum likelihood is the book
by Rao (13). :

In the random process situation, the setting down of the likelihood can be com-
plicated by the statistical dependencies present amongst the variates present; however,
once the likelihood has been derived, one proceeds in a direct fashion. To form the
likelihood, one can sometimes proceed via conditional distributions given the history
of the process up to the present. Specifically, if Y, denotes the random variate of
concern at time ¢ and H, denotes the collection of variates {Y,,u < ¢} and f, denotes
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the conditional distribution of Y, given H,, then the probability distribution of the
data is given by

I
I3
This approach is employed with the models of this paper.

Neurophysiological Methods

For the data to be studied, there were experiments of two basic types: some with
a “noise” input and others with spike train inputs. For the first case, the experiments
are described in Bryant and Segundo (7). For the particular case addressed in this
paper, the neuron L5 of Aplysia californica was isolated and impaled with two elec-
trodes. One electrode was for injecting a continually varying current. The second was
for observing the intracellular membrane potential. Specifically, the current injected
was generated to be band-limited Gaussian white noise. For numerical analysis the
input was sampled at 32 Hz. (In other experiments the sampling rate was 50 Hz., but
the results obtained were not qualitatively different.) The output series for analysis
was the corresponding sequence of times at which the neuron was observed to fire.
All told, there were 81700 input time series values and the neuron was seen to fire
2017 times. The details of the method of intracellular recording are given in Bryant
et al. (6). An analysis of this data set was previously presented in Brillinger and
Segundo (5). A brief stretch of the data analysed is presented in Fig. 1. It seems
impossible to discern the “rule” the neuron is employing in deciding whether or not
to fire via direct examination of this figure. Input processes of other types might be
equally or even more informative for the model fit in this paper. It is worth empha-
sizing however that when the present data were collected there were no thoughts of
fitting models of the type to be discussed here. Rather, it was felt that data collected
with noise input would be rich enough for the analysis of many classes of models.
This attitude is dominant in Marmarelis and Marmarelis (11):

For the second case, of a neuron receiving input from two other neurons, the basic

Neuron L5 - Noise Driven
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FIGURE 1. The lower trace provides a stretch of noise input to the Aplysia neuron L5 and the upper
trace the corresponding times at which the neuron fired.
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series of experiments is described in Bryant ez al. (6). The neurons again were from
Aplysia. The neuron L10 was impaled with neurons .2 and L3. Microelectrodes were
inserted in order to measure the individual electrical activity of all three of the cells.
L 10 was allowed to fire spontaneously, that is with no deliberate stimulation. In the
data set analysed, it was seen to fire at more or less regular intervals, (i.e., as a
pacemaker). L2 and L3 were known to be postsynaptic to L.10; however, it was not
known whether there were any direct (causal) connections of L2 and L3 with each
other. Focusing on L2, causal models that might be studied include: L3 — L2,
L10—- L2 and L3, L10 — L2. A brief display of some of the data from this experi-
ment is given in Fig. 2. It again seems virtually impossible to infer relationships on
the basis of a direct examination of the data alone. The number of firings in this data
set were 767, 539, and 741 for L10, L2, and L3 respectively. It is the data analysed
in Fig. 15 a,b,c of Bryant ef al. (6) and in Fig. 6 of Brillinger ez al. 3).

THE BIOLOGICAL AND STOCHASTIC MODELS

The internal process by which a neuron fires has been described as follows. A time
fluctuating potential exists within the neuron. This potential results from a combi-
nation of internal and external mechanisms. When the potential level, at a special
location within the neuron (the trigger zone), exceeds a threshold level, the neuron
fires and the potential is reset to its extant value. General references to the phenom-
enon of neuron firing are Aidley (1) and Segundo (14). Evidence for the resetting of
the potential may be found in Eccles (8), Chapter 2.

The firing process may be described formally as follows. It will be assumed that
the threshold level at time ¢ has the form 8, = 0 + ¢, with the ¢, independent standard
normal variates, ¢ = 0,+1,+2,. ... It will be assumed that the neuron fires at time
¢ if the internal potential U, at time f exceeds 9. In the case of noise input it will be
assumed that the internal potential has the form

Yol Vel y—1

U = Z aquwu + E E bu,thI~qu~u (1)

u=0 u=0 p=0

Firing Times of Neurons L10, L2, L3

10
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FIGURE 2. The corresponding times at which the Aplysia neurons L2, L3, L10 fired in an experi-
ment. The top graph is the L10, the middle the L2 and the bottom the L3 spike train.
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with v, the time elapsed since the neuron last fired and with X; the input signal level
at time ¢. In the second case it will be assumed that U, has the form

Y1 Yyl
U = E a, Xy + E buZz—u + 0,7y, + 62')’12 2

u=0 u=0

with X, and Z, respectively defined to equal 1 or 0 depending on whether or not .2
or L3 respectively fired or not at time ¢. The presence of v, in the upper limits of the
expressions here has the effect of introducing feedback from the system output to the
input and so negates the usual kernel fitting procedures. The terms in 6; and 8, in
Eq. 2 allow the neuron to fire spontaneously in the case of no input.

The functions a,,b, , in Eq. 1 and a,, b, in Eq. 2 reflect spatio-temporal summa-
tion involved in bringing the influences of the driving cell(s) to the trigger zone of
the dependent neuron. In the first case the summation is quadratic. In the second it
is linear. The expression in Eq. 1 is somewhat like that of the Volterra model of the
Wiener-Lee-Schetzen approach to systems, see Marmarelis and Marmarelis (11) for
example; however a crucial distinction results from the fact that U, is not observed
in the experiments of concern. Therefore, the Wiener-Lee-Schetzen identification
techniques cannot be applied directly. The second crucial distinction results from the
variable numbers of terms @, and b.., appearing in Eq. 1. This means that even were
the system linear in U,, which it is not, the usual identification techniques would
lead to biased estimates. This occurrence cannot be handled by dimension estimation
techniques, such as that of Akaike, because the number of terms appearing at time
f depends on ¢.

The term 6,v, + 8,v? has several effects. It can be seen as allowing the distribu-
tion of the (random) threshold to be changing with the time since last firing. It can
be seen as handling the refractoriness of the neuron. Further its functional form
might be altered to, say, exp{—fv,}, to be in accord with analytic models that have
been suggested previously. Its form might be further altered to allow the presence of
an absolute refractory period. The power of the maximum likelihood method is that
it can handle such changes of model directly.

Let H, denote the history of the process, that is the collection of variates {Y,,
u<t, X,,u=t]. Then

Prob{Y, = 1|H,) =Prob{U, >0+ ¢,|H,} = (U, - 0)

under the assumptions made, with & the normal cumulative. The model is seen to
contain two sources of randomness: one derived from the threshold and the second
based on whether or not the neuron fires given the threshold level. Writing

p,:ti)(U,——O)

the likelihood function of the data is given by

M1 - pyr-7 3)
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In the method of maximum likelihood the unknowns, a,,b, ,,8,b,,0,,0, are esti-
mated by maximizing this expression as a function of the unknowns. It may be
remarked that the likelihood of Eq. 3 is not a function of the cross-moments of the
data values, reflecting the essential distinction of the proposed procedure from that
of Wiener-Lee-Schetzen.

Some earlier firing models, including references to such, are indicated in Brillinger
(4). The seminal reference is McCullogh and Pitts (12).

RESULTS

Single Cell With Continuous Input

This is the case of a system with a continuous input process and with a point pro-
cess output.

The model set down above, involving both linear and quadratic terms, was fit to
the data by maximizing the likelihood of expression, Eq. 3. Figure 3 is a graph of
4, the estimate of the linear kernel and + two standard error values graphed about
0 (to allow easy assessment of the significance of the coefficients.) There is seen to

Linear Kernel
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FIGURE 3. An estimate of a,, the linear kernel of Eq. {1). The kernel was estimated at 14 lags. The
solid lines give + two standard error values about 0.
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Quadratic Kernel Estimate
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FIGURE 4. A contour plot of an estimate of the quadratic kernel, b, of Eq. {1). The solid lines cor-
respond to contours at negative levels.

be a latency of approximately .1 second and a later negative swing. Figure 4 is a con-
tour plot of 15,,,,,, the quadratic kernel. Figure 5 is the corresponding perspective
plot. It is seen from these figures that the quadratic kernel appears to be concentrated
near the diagonal and to have a negative bulge at lags corresponding to the location
of the positive peak in the linear kernel. Through its presence it is compensating for
overshoot on the part of the linear kernel. The maximum likelihood analysis does
give standard errors for the individual quadratic kernel values, but there seems no
need to present them here, rather we indicate the likelihood ratio test statistic for the
hypothesis that the quadratic kernel is identically zero. The value of this test statis-
tic is 1894.3 on 840 degrees of freedom (The 840 here comes from the 105 distinct
quadratic coefficients fit and the fact that the data were segmented into 8 stretches
for analysis.) It is virtually impossible for this value to have arisen by chance if in
fact the quadratic kernel is identically zero.
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Quadratic Kernel Estimate
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FIGURE 5. A perspective plot corresponding to Fig. 4.
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FIGURE 6. A graph of an estimate of U, the predictor, of Eq. (1) and corresponding times at which
the neuron fired. One can note large values of U, at firing times.
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Figure 6 provides a plot of U,, the estimate of the predictor, and corresponding
firing times for the segment of data graphed in Fig. 1. Close examination shows that
U, generally takes on high values at firings as the model implies should be the case.

Figure 7 presents the results of attempts to assess the goodness of fit of the model.
The top graph is a plot of the proportion of times the neuron fired when the value
of U, the predictor, lay in a small interval near u, the corresponding abscissa. For-
mally, the points plotted are given by

#g;;:lwimu——h<0,<u+;z;/#{zwizhu~h<(3:<u+h;

for small 4 and selected u. In essence one is forecasting the probability that the neu-
ron will fire. The smooth curve is the assumed Gaussian cumulative, (). The fit
is very good. In fact, the top graph was prepared employing only the data for the first
segment (10000 observations) of the data, 1.e., the fit was assessed for the data of that
segment using the estimates based on the data of that same segment. A more power-
ful test procedure is to employ the estimates derived from one segment of the data
with firings from another segment. The second graph of Fig. 7 presents the perfor-
mance of the predictor estimate based on the first 7 (of 8) segments of the data when
applied to the final segment. The fit is not as good, but does seem reasonable.

Three Cell Network

Figures 8 and 9 provide the results of fitting the threshold model to the output of
cell L2 with linear time invariant summation of input and a term 6,v, + B:97, to
allow for spontaneous firing of the cell. Figure 8 refers to the problem of explain-
ing the firing of L2 by the firings of L3 alone. The solid lines correspond to + two
standard error limits about 0. There is seen to be a significant, negative-valued, sum-
mation function. The lower graph is a plot of the estimated 8y, + 0,/ and 6. Fig-
ure 9 refers to explaining the L2 firing by the firings of both L3 and L10. The solid
lines again correspond to + two standard error limits for the L3 kernel. It is interest-
ing to note that the L3 firings do not enter significantly when the L10 firings are
included. It would seem that L10 is driving both L2 and L3 and that the apparent
connectivity of L2 and L3 is simply through their joint influence by L10. The effect
of L10 is seen to be inhibitory, but there are apparently later rebounds. The lower
graph provides the estimate of 6,y, + 8,7 for this fit.

The lack of influence of the neuron L3 in the presence of L10 may be examined
formally by a likelihood ratio test of the hypothesis that its coefficients are identi-
cally 0. One proceeds by seeing the difference between the minus twice log likelihood
values including just L3 and including both L3 and L10. This difference is 13. with
13 degrees of freedom. There is no evidence that the coefficients of L3 differ from 0.

There are other examples of this type of analysis in Brillinger (4), where figures
of the type of Fig. 7 are also presented allowing assessment of the validity of the
model. The fits all appeared good.

This model and fitting procedure extend quite directly to the case of moderately
large numbers of neurons interacting with each other in possibly complicated
fashions.
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Empirical Firing Probability vs. Predictor
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FIGURE 7. The top graph is a plot of the obtained empirical probability of firing, as a function of
the estimated predictor U, computed for the first 1000 points of the data set and a plot of the cor-
responding theoretical curve, ®(u). The bottom graph shows the resuit of employing a predictor with
coefficients based on the first 7000?@f data points to forecast the firings of an unrelated 10000 data
points,

DISCUSSION

The purposes of this paper were severalfold: firstly to present some new empiri-
cal results, (a) the linear and quadratic kernels for a particular neuron model involv-
ing a threshold device, and (b) inferences re the connectivities in a network of three
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FIGURE 8. This figure to an analysis of spike trains from neurons L2 and L3. The linked points pro-
vide the estimated linear summation function for the firing of L2 as "driven’’ by L3 alone. The solid
lines give + two standard error limits about 0. The lower graph gives the estimated spontaneous
firing term 0,v, + 6,v? and the estimated threshold level, 4.

neurons, again with a model including a threshold device. Secondarily a purpose was
to describe the character of and to list some advantages of carrying out system iden-
tification by the method of maximum likelihood.

In the case involving linear and quadratic kernels and a fit by maximum likeli-
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Responses: L2 from L3 and L10

un
T
o RN \
d be L ..LB /.
RN
2t L10
u? 1 i H i L
o

0.0 0.5 1.0 1.5 2.0 2.5

lag (seconds)
Spontaneous Firing Function
un
threshold

< F
m -
N -
o L L I 1 H

0.0 0.5 1.0 1.5 2.0 25

lag (seconds)

FIGURE 9. For the experiment of Fig. 8, the top graph here provides estimates of the summation
functions, a, and b, of Eq. (2) corresponding to the L3 and L10 inputs respectively. The solid lines
give + two standard errors about O for the L3 estimate. L3 is no longer having any apparent effect.
The lower graph gives the estimated spontaneous firing term as in Fig. 8.

hood, it was found that after assuming a Gaussian distributed threshold, a linearly
increasing dependence on the input signal was apparently too strong. This conclu-
sion came from the negative values of the quadratic kernel estimate around lags (.1,
.1) seconds and the concentration near the diagonal.
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In the case of the three cell network, maximum likelihood and modeling proved
an effective tool for inferring the connectivities. There appeared to be no direct 1L2-1.3
connections. Direct examination of the data, even in this case of pacemaker input,
seemed hopeless.

We end by listing various of the advantages of the maximum likelihood approach.
Some hold broadly and some are particularly pertinent to the present circumstance.
The maximum likelihood approach is highly flexible. Uncertainty measures of the
parameter estimates are directly available. Formal tests of the values of parameters
appearing are also available. In the particular case at hand, the parameters of the
models are directly estimated and can be chosen to be biologically interpretable. The
statistics of the input signals are of no concern to the analysis; specifically, there is
no need for white noise-type input. (Of course in the matter of design it will pay to
think about what is an efficient input.) Feedback, as present in the v, in the model,
caused no difficulty in the analysis. (It is unclear just how to modify the kernel
approach to handle this phenomenon.) Other terms can be included in the model as
necessary, e.g., a spontaneous firing term 8,7y, + 6,v7. A term in t could also have
been included to handle a cell’s slowly dying.

SOME DETAILS OF THE COMPUTATIONS

All of the computations were carried out on a Sun 3/50 Workstation. For the
noise input case the data were broken up into eight segments of 10,000 points and
the individual maximum likelihood estimates of the segments averaged to obtain the
final estimates. (This procedure had the added advantage that the stationarity of the
relationship could be examined. There was no evidence of time trends in the esti-
mated values.) The maximization of the likelihood was carried out by the routine
va09a of the Harwell subroutine library, Hooper (9). The length of running time de-
pended on the aptness of the initial values employed in the optimization, but gener-
ally was of the order of 5-15 minutes. In the case of the three cell network, the
computations were carried out via the statistical package GLIM, by Baker and Nelder
(2). The running times were 10-15 minutes. An example of a GLIM program to carry
out such computations is provided in Brillinger (4).
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