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ABSTRACT

Births by census division are studied via graphs and maps for the province of Saskatchewan for the years
1986-87. The goal of the work is to see how births are related to time and geography by obtaining con-
tour maps that display the birth phenomenon in a smooth fashion. A principal difficulty arising is that
the data are aggregate. A secondary goal is to examine the extent to which the Poisson-lognormal can
replace for data that are counts, the normal regression model for continuous variates. To this end a
hierarchy of models for count-valued random variates are fit to the birth data by maximum likelihood.
These models include: the simple Poisson, the Poisson with year and weekday effects and the Poisson-
lognormal with year and weekday effects. The use of the Poisson-lognormal is motivated by the idea
that important covariates are unavailable to include in the fitting. As the discussion indicates, the work
is preliminary.

KEY. WORDS: Aggregate data; Borrowing strength; Contouring; Extra-Poisson variation; Locally-

weighted analysis; Maps; Periodogram; Poisson distribution; Poisson-lognormal
distribution; Random effects; Spatial data; Time series; Unmeasured covariates.

1. INTRODUCTION

The concern of this work is spatial-temporal data, that is quantities recorded as functions
of space and time. The analysis of such data should be ‘‘easy’’ because of the graphing
possibilities, e.g. rate versus time or effect versus geography, in the manner of residual plots
so often employed in regression analysis; however in the present case the aggregation of basic
elements leads to substantial difficulties.

The specific data studied consists of daily births for the calendar years 1986 and 1987 to
women aged 25-29 for each of the 18 census divisions of the province of Saskatchewan. The
corresponding population sizes, as determined in the 1986 Census, are also employed in order
to compute rates. The reason that Saskatchewan was selected for this pilot study is that it is
moderate sized and its boundaries and those of its census divisions are fairly regular. (The latter
was important at the early stages of the work because computer based maps were then
unavailable). Women aged 25-29 were selected because that was the 5 year age group with most
births. These data were provided to the author by Statistics Canada. They are characterized
by being aggregate, by being non Gaussian and by being non stationary in space and time.

It is wished to understand the relationship of births to time and geography, specifically to
allow temporal and spatial patterns of fertility and possible surprises to show themselves. There
are two central aspects to the study; a locally-weighted analysis of aggregate data is developed
and random effects models are set down and fit to handle extra-Poisson variation. The latter
part may be viewed as an inquiry into the flexibility of the Poisson-lognormal to handle
unmeasured covariates and errors. The locally weighted analysis proceeds by developing
weights, w;(x,y), that are meant to reflect the influence of the i-th census division (an
aggregate) on the point location with coordinates (x,y). Given census division data, these
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Figure 1. Top: Time series of annual births to women aged 25-29 in 1986 for the Province of Saskatchewan.
Bottom: Periodogram of the square roots of the count graphed above. The solid lines provide approximate
95% marginal confidence limits. The peak corresponds to a period of 7 days.
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weights are then applied to individual terms of the log-likelihood or corresponding estimation
equations and parameter estimates evaluated.

It is to be emphasized that this is a preliminary report on work in progress. For example
the fine structure of the data is not taken advantage of and no measures of uncertainty of the
various estimates have been provided. The expressions employed for the weights, in this present
work, are naive and bound to change form with further study, but the character of the analysis
may be anticipated to remain of some interest.

The companion paper Brillinger (1990) considers some aspects of the spatial case alone.

2. BIRTHS AS A TIME SERIES

The top graph of Figure 1 provides the total number of births in Saskatchewan for each
day of 1986. The dashed line is the 1986 mean level. The solid line is the result of heavily
smoothing the series and is meant to highlight any trend. This graph does not, with casual
inspection, provide striking evidence of any special phenomenon. However when the
periodogram of the square root of the counts is computed, see bottom graph of Figure 1,
something of interest appears. (The square root is employed to make the series more nearly
symmetrical and normal). The upper and lower solid lines on the graph provide approximate
95% marginal confidence limits about a heavily smoothed version. A peak is apparent at a
frequency of .143 cycles/day corresponding to a period of 7 days. This periodic phenomenon
is well known in the analysis of birth data, see e.g. Cohen (1983) and Miyaoka (1989) and
references therein. It is usually ascribed to doctors intervening in the natural process of labour
and inducing births particularly on weekdays.

3. BIRTHS AS A SPATIAL PROCESS

Figure 2 provides, for each census division, and for women aged 25 to 29 the annual rate
of births for the years 1986 and 1987 combined. One sees the highest rate of .208 births per
woman per year to occur in the northern half of the province while the two lowest rates appear
in the census divisions containing Regina and Saskatoon.

Figure 3 provides the numerical difference between the annual rate for 1987 and that for
1986 for each of the 18 census divisions. (Note that the 1986 census population has been taken
as the divisor in each case). The differences are scattered around 0. It is to be noted that these
rates are, however, based on fairly widely varying population sizes.

In the previous section the presence of a phenomenon of period 7 days was noted. Figure 4
presents the difference between the average weekday rate and the average weekend rate,
(weekdays meaning Monday through Friday) for each census division. In all but one census
division, the weekday rate is higher. This is consistent with various other studies and, as sug-
gested in Section 2, is very possibly due to doctors inducing labor on weekdays (to avoid births
on weekends).

The various rates presented in Figures 2, 3, 4 are average values for individual census
divisions. ‘

4. PROBLEMS ARISING

Maps of most quantities of direct interest that assign average values to the wholes of
counties thereby lie, lie, lie.
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With these graphic words Tukey (1979) deplores the use of maps such as those of Figures
2, 3, 4 that are constant across geographic divisions. Indeed examination of Figure 2, as does
common knowledge, suggests that the birth phenomenon quite likely varies smoothly across
census division boundaries. A principal concern of this work is to develop contour maps dis-
playing smooth variation. It is hoped that such maps will prove useful in the discovery of general
stochastic descriptions of the phenomenon and will allow insightful exploratory analyses.

A second concern of this work is with the statistical distribution of the counts themselves.
A natural special stochastic model to employ is the Poisson. Yet in past studies the birth process
has been found to relate to many socio-economic quantities, e.g. diet, lifestyle, weather,
environment, weekday, holidays, age structure. Further the population of the various census
divisions has varied around the Census Day values throughout 1986-87 and lastly the women’s
ages are scattered from 25 to 29. In summary it seems necessary to employ a more flexible model
than the Poisson, specifically a model able to handle omitted covariates. The Poisson-lognormal
will be employed in this work. As a sideline, due to the presence of the standard deviation
parameter in the Poisson-lognormal, there will be a borrowing of strength that takes place in
combining the data values, in the manner described by Mallows and Tukey (1982). (The term
‘““borrowing strength’’ is employed, rather than for example ‘‘empirical Bayes”’ as some might
prefer, because it has been in use for a substantial time period and because of its broader implica-
tions). Dean et al. (1989) is another recent reference concerned with handling extra-variation.

5. LOCALLY-WEIGHTED ANALYSIS

In the case of nonaggregate data, locally-weighted fitting is a convenient fashion by which to
estimate smoothly varying quantities. Suppose one has a variate Y with probability distribution
p(Y | ©) depending on the finite dimensional parameter 8. Suppose one wishes an estimate
of © particular to the location with coordinates (x,y). Suppose the datum Y; is available for
location (x;,y;). Let W;(x,y) be a weight dependent on the distance of (x;,¥;) to (x,y).

Consider estimating 6 by maximizing the weighted log-likelihood
Y Wixy) logp(Y; | ©) ¢))
i
or (often equivalently) by solving the system of estimating equations

Y Wiy ¥(Y,16) =0 @

with ¥ (Y | ©) = dlogp/d0, the score function.

To illustrate the technique consider an elementary case, specifically take Y to be normal with
mean x and variance o2, The locally weighted estimate of u at (x,y) results from minimizing

Y Wixy) [Y; - ul?

i

and is given by

B(xy) = Y, Wixy) Y.-/ Y Wi,
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Figure 2. The average annual birth rate for women
aged 25 to 29 for the years 1986 and 1987,
plotted above census divisions. ‘R’ and *'S”*
indicate the locations of Regina and Saskatoon
respectively.
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Figure 4. The average weekday rate minus the average
weekend rate for the same data as Figure 2.
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Figure 3. The 1987 rate minus the 1986 rate for the
same data as Figure 2.

Figure 5. The weights, Wi(x,p) applied in equations (1)
or (2), computed via expression (4), for four of
the census divisions. The weights are not shown
for all the divisions in the interests of clarity.
The contours at levels .50 and .99 are shown.
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an expression with intuitive appeal. It is to be noted that such formulas are commonly used
in computer graphics as interpolation procedures, see for example Franke (1982).

Among references we may mention Gilchrist (1967) concerned with ‘‘discounting’’, Pelto
et al. (1968), concerned with least squares, Cleveland and Kleiner (1975), who suggested the
use of moving midmeans and Stone (1977) focusing on regression. In the discussion of Stone’s
paper, Brillinger (1977) suggested the form (2) for a general distribution and justified it as a
Bayes’ rule. Specifically consider the loss function

L(Y|©) = —logp(Y | Q).
Suppose an estimate is desired at r = (x,)). The Bayes’ risk may be written
E{L(Y|©,)} = E[E(L(Y ]| ©,) | r}]}.

Bayes’ rule seeks

HgnE{L(YI 0) | r}.

With data Y}, r;, and W;(r) a kernel centred at r;, one approximates the conditional expected
value here by

E(logp(Y | ©) | r} = } Wi(r)logp(Y; | ©)

and so is led to expression (1).

Tibshirani and Hastie (1987) develop an equi-weighted local likelihood estimation procedure.
Cleveland and Devlin (1988) develop the least squares approach in real detail. Staniswalis (1989)
studies and implements the general p case. Advantages of the locally-weighted technique
include: no ‘‘hidden model’’ distribution assumption, the possibility of discerning non-
additivity, variants for resistance and influence, simple additivity of the observation compo-
nent, and no matrix inversion (as, for example, kriging requires).

The birth data of concern in this work is aggregate (or grouped) totals over census divisions.
The procedure of the preceding section cannot therefore be employed directly. The problem
is that of obtaining appropriate weights w;(x,y) evidencing the effect of the census division
i on the location (x,y). Suppose | R; | denotes the area of census division /. Then the naive
weight function is

[y

wi(x,y) = [R———l for (x,y) in R;
i

and equal O otherwise. In this work functions of the essential form

1
wi(x,y) = R (W(x — uy — v)dudv 3)
il&

will be employed where W ( -) is a kernel appropriate for the nonaggregate case as for example
studied in Cleveland and Devlin (1988). The formula (3) may be motivated by consideration
of the Poisson point process case, see Appendix II. Estimates will be determined via the criteria
(1) or (2) with W, replaced by w;.

A i o
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The specific weights employed at r = (x,y) in this preliminary work are
wi(r) = exp{ — (1 — p)2lr - r;1%/27%) 4

outside the ellipse (ry — )8, '(ry — 1;)’ = d? = 5.991 and equal 1 inside. Here Irl? =
x4+ ¥4 p = do/N(r — F)S;7(r = T,)’ and 7 = .025, where f; = E U and §; = varU,
with U; a variate uniformly distributed within R;. This choice of p makes the weight function
continuous. The logic is that the census divisions are approximated by ellipses with the same
mean and variance-covariance matrix. (The specific values were chosen after a bit of experimen-
tation, in part to make the area in the initial ellipse about .95 of the division’s). One could have
employed other shapes than ellipses, e.g. rectangles, but this is preliminary work and it is
anticipated that later work will employ weights of the form (3).

Figure 5 displays the .50 and .99 contours of the w;(x,y) plotted for several of the census
divisions. The contours are seen to follow the general shapes of the census divisions. The jag-
gedness in some of the contours results from the discreteness of the 40 x 40 grid employed
in the computations.

Other weight functions constructed with somewhat similar problems in mind may be found
in Tobler (1979) and Dyn and Wahba (1982). Advantages of the present approach, as listed
for the nonaggregate case above include: the terms in (1) or (2) are additive and do not interact,
no matrix inversion is needed, and resistance to outliers is easily built in.

Cliff and Ord (1975) Section 5.1, discusses measures of the influence of counties on other
counties. The concern of this present paper however is the influence of a ‘‘county’’ on a point
location. [t is to be remarked that perhaps the weight, providing the influence, should depend
on some covariates, e.g. county population.

6. A POISSON FIT

Throughout the analysis, the female population aged 25-29 and births to its members will
be considered. Leti = 1, ..., 18 index census division. Let N, denote the census count of the
women in the i-th division. (These are the counts for Census Day, 3 June 1986). Let B; denote
the total number of births to women aged 25-29 in the two years 1986-87.

Suppose that the probability distribution p( ) of Section 5 is that B;is Poisson with mean
2N, . (The presence of the multiplier 2 is so the parameter g is an annual birth rate). One logic
for the Poisson assumption comes from the idea that birthdays are random, see Brillinger (1986).

With the Poisson assumption, the locally weighted estimate of the annual birth rate at loca-
tion (x,y) is given by

pley) = Y] W.-(x.y)B,-/Z Y, wilxy) N (5)

i

These values are computed for (x,y) on a 40 by 40 grid and the corresponding contour plot
is given in Figure 6. The contours are seen to vary smoothly. This (smoothed) rate varies from
.14 to .20, with the higher values in the upper half and the lower centred around the Province’s
most urban part.

As indicated previously, the data under study has important temporal characteristics. Models
need to take this into account. In particular the weekly periodicity needs to be handled as well
as possible trends in population sizes. The following model seems worth considering. Let j be
an indicator variable with j = 1 if the count is for a weekday and j = 2 if the count is for
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Figure 6. Expression (5) graphed for the weights of (4) Figure 7. The estimated birth rate exp{ &} obtained by
with B; the count of births in census division locally weighted fitting assuming that the num-
i during 1986-87 and N; the corresponding ber of births, B, given the population at risk,
population count of women aged 25-29. N, is Poisson with mean Nexp{a + 8 + v}

with the first + sign plus for weekdays and
minus for weekends and the second + plus
for 1986 and minus for 1987.

Figure 8. Plot of the estimated weekday effect B(xp) Figure 9. The estimated year effect 7(x,y) as per
obtained as per Figure 7. Figure 7.
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a weekend. Let £ be a second indicator variable with & = 1 for 1986 and k = 2 for 1987. Let
B;j denote the corresponding number of births in census division /. Suppose that By given
N, is Poisson with mean N;exp{a + 8; + ). B;is the weekday effect, v, the year effect and
it will be assumed that 8; + B,, v1 + 72 = 0 to make the model identifiable. If there is no
weekday effect, then 8;, 8, = 0. If there is no year effect, then vy, y, = 0. Now, via locally-
weighted analysis presented in Section 5, one can obtain estimates of «, 8 and v as functions
of location (x,y). (For simple balance in the computations, only the first 364 = 7 x 52 days
of each year have been employed).

Figure 7 provides the estimate exp{&(x,») } obtained of the annual birth rate. It is interesting
1o note that, relative to the constant rate Poisson model, the contours have expanded out some-
what from the urban areas. Figure 8 provides the estimated weekday effect, 8, (x,7), obtained.
Inits case there is bulge to the east. These values are quite a different representation from that
of the naive differences of Figure 4. In particular, now there is a reflection of the differing
population sizes. The order of magnitude of the B’sis .08to0 .13 while & is order —2.1to —1.6.
Figure 9 provides the estimated year effect, 4,(x,y). Its values vary from —.03 to .03.
Numerically, the weekday-weekend effect is the larger.

The just preceding analysis suggests that there are basic variables that can affect birth rates
and that modelling and analysis needs to take this circumstance into account.

7. POISSON-LOGNORMAL FITS

With a multi-dimensional explanatory variable x in hand, a Poisson model that has B of
mean Nexp {xO } might do a good job of explaining the data. Examples of explanatory variables
include: diet, lifestyle, weather, environment, holidays, population change, age structure,
vagaries of boundaries. In the present situation, these variables are not at hand. The omitted
variables in the model will be assumed specifically accumulated into an error variable. It will
be assumed that, given e, the variate B is Poisson with mean Npexple} and that e is normal
with mean 0 and variance o2. In the case of this model B is said to have a Poisson-lognormal
distribution. Some information on this distribution may be found in Shaban (1988). Sometimes
€ enters directly from the problem context, see Brillinger and Preisler (1983) for one example,
but in the present case it is simply assumed present.

A critical difficulty, that arises in working with a Poisson-lognormal model, is that closed
expressions do not exist for the probability function. Yet the model is clearly flexible for
introducing effects and handling unavailable variables. Following the work of Bock and
Lieberman (1970), Pierce and Sands (1975) and Hinde (1982), one can proceed via numerical
quadrature. The probability function may be written

p(Y) = %S(ve") Yexp( — ve™) ¢(2)dz

with ¢ the standard normal density, with Y corresponding to B and with v corresponding to
Np. To proceed with a data analysis the integral is approximated by a finite number of terms
involving nodes, z;, and weights, w;,

L
p(Y) = — Y3 (ve¥) Yexp( — ve™}w.
i=1

1
Y!

Listings of nodes and weights may be found in Abramowitz and Stegun (1964) for example.
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Figure 10. A plot comparable to Figure 7, except that Figure 11. A plot comparable to Figure 8, except now
now a normal error term is added to the (as in Figure 10) a normal error term has
linear predictor. been added to the linear predictor.

Figure 12. A plot comparable to Figure 9, except now Figure 13. The estimated standard error, 4 (x,y), of the
(as in Figure 10) a normal error term has normal term added to the linear predictor.

been added to the linear predictor.
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Figures 10, 11, 12, 13 provide the results of fitting the Poisson-lognormal model including
weekday and year effects and employing L = 5 nodes. The model assumes B;;, given NV, and
Z is Poisson with mean

Nexpla + ﬁj + yx + 0Z}

Z denoting a standard normal deviate and further assumes the separate Z’s independent. Here /
indexes census division, j weekday or not and & year. Figure 10, a contour plot of exp{&(x,y) },
again shows a dip around the urban region as in Figure 7. The irregularity in the figure sug-
gests that in one case perhaps the estimation procedure converged to a local extremum. Figures
11 and 12 similarly provide 8 (x,») and 4 (x,»). There are again suggestions of local extrema.
Figure 13, a contour plot of 6(x,y), is not easily described. It suggests that the estimate, &,
is fairly variable. The estimate is seen to be of order of magnitude .1 and so comparable to
the weekday effect of Section 6.

All the work on estimation with the Poisson-lognormal, that we know about, involves some
form of approximation. For example Clayton and Kaldor (1987) approximate the conditional
Poisson log-likelihood by a quadratic and Aitchison and Ho (1989) also employ numerical
integration, albeit after a transformation of the parameters. A new type of approximation has
recently been proposed in Crouch and Spiegelman (1990). Its effectiveness for the Poisson-
lognormal remains to be studied.

8. DISCUSSION

Locally-weighted analysis and random effect models appear to provide a flexible means of
dealing with a broad class of problems involving geographic data. The random effect terms
have two important roles: handling omitted effects and borrowing strength for improved
estimates of the principal parameters. For the Poisson alone, naive totals are efficient, yet there
exists extra-Poisson variability due to omitted variables in the present case.

The approach is computer intensive, because of the numerical integration and the maximum

‘likelihood estimation at many points on a grid, but proved quite manageable on the Berkeley

network of Sun 3/50’s.

Much future work remains including: tools for assessing fit, uncertainty computation and
display, weight function choice (particularly choice of 7 in (4)), analyses for other age groups
and provinces, and appropriate asymptotics. Further understanding needs to be gained as to
why with nearby initial values the optimizing routine sometimes converged to somewhat distant
estimates. An advantage of the present circumstance is that there exists immense amounts of
other data to be made use of as work progresses. Examination of Figures 6 on shows an

" important limitation of the technique - it is providing too much fine detail in the northern half

of the province.

Other recent papers devoted to the analysis of vital statistics rates are: Cressie and Read
(1989), Clayton and Kaldor (1987), Tsutakawa (1988) and Manton e al. (1989). These papers
are however not directed at the problem of obtaining a smooth surface, which is the concern
of this work.

It is amusing to note that the presence of the weekly period in the phenomenon allowed the
author to deduce early on in the work that a confusion had arisen over which data set was to
be supplied. When the days of fewest births were determined for the initial data set supplied,
the days were found to be (apparently) Friday and Saturday. This was because the year 1987
had been supplied, and not the desired 1986.
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After the analyses were completed it was learned that the birth counts were based on 1981
census divisions, while the population counts were based on 1986. Luckily the boundaries have
not changed much, but this circumstance provides yet more reason for wanting a procedure
that can handle extra-variation.

9. ADDENDUM

In the paper a case has been made for the inclusion of an error term, ¢, to reflect pertinent
covariates that were unavailable for the analysis. This led to the employment of the Poisson-
lognormal distribution. In Tukey (1990) an index of urbanicity of a census division is con-
structed. It is based on the populations of the three largest places in the division. The values,
x;, of the index are given in Figure 14 and are seen to be lowest in the census divisions con-
taining Regina and Saskatoon.

The table below gives the results of employing Glim to fit the successive Poisson models
for By given N;: (i) Nexp{a + B; + v}, (ii) Niexpla + 8; + v, + dx;}, and (iii) &;
expla + B + v + 8% + %),

Variables Deviance d.f. p-value
weekday, year 227.3 69
+ urbanicity 86.69 68
+ urbanicity**2 83.13 67 .088

Figure 14. The values of the Tukey index of urbanicity.
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By bringing in this urbanicity variable, x;, now a Poisson model is satisfactory for the
circumstance.

Finally the Referee made some comments that spell out quite specifically the assumptions
and limitations of this present study. The work is continuing and the intention is to address
these comments. Rather than paraphrasing, it seems more sensible to provide the referee’s own
words.

““The choice of weights is ad hoc and requires more thought. If one had two divisions,
both of the same area but with vastly different populations N;, should the weighting be
the same? It depends on whether area or population density is thought to be more impor-
tant. Use of the latter may remove the spurious fine detail in the northern half of the
province.”’

*“There are traps with N;’s, which the author appears to be aware of, but I think the
reader needs extra warning. It might help to have approximate measures of uncertainty
([Section 1] promises none). Figure 3 cannot really be interpreted, since positive or negative
values may be due to random fluctuations about zero. The contours in Figure 6 are calculated
with vastly different precision, and in some respects are incomparable. And, [in Section 6],
upon estimating «, 8 and v, it would be tempting (but unwise) to assume that such values
are significant.””

““All random variables in sight are assumed independent. Another way to motivate these
weighted models is to assume a multivariate distribution, with the property that the conditional
mean at (x,y), given the surrounding data, is a weighted combination of those data. Then the
joint distribution exhibits dependence.”’
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APPENDIX 1

In this Appendix a few computing details are provided. The census divisions and the
province boundaries are specified as polygons. To compute the weights w;(x,y) an algorithm
was required to check whether a given point was inside a given polygon. To compute the mean
and variance of a random point inside a given polygon, an algorithm for breaking a polygon
up into triangles was required. Such algorithms are discussed in Preparata and Shamos (1985)
for example. The approximate likelihood was maximized via the Harwell FORTRAN routine
va09a. For the parallel computations the 40 by 40 grid was broken up into 20 disjoint segments
and the computations thence carried out on 20 separate work stations. As in Brillinger and
Preisler (1983), factors were introduced into the likelihood to stabilize the computations.
Miyaoka (1989) found that the computations could be sensitive to the number of nodes
employed. In the present series of computations, the number was increased until the results
did not change much. There is also the problem of selecting inital values. Here they were taken
to be the method of moment estimates, although these are perhaps too inefficient.




268 Brillinger: Modelling of Spatially Aggregate Birth Data

APPENDIX II

For simplicity, consider the case of a point process {x;} with rate function v on the line.
The local weighted log likelihood for a Poisson process is, up to a constant,

E W(x — x;) logv(x;) — [W(x — u)v(u)du.
J
So, the locally weighted estimate of the rate is

Px) = ) Wix - x,)/g W(x — u)du,
J

the usual form of estimate. Suppose now the line is broken into intervals R;, and the aggregate
count available is N(R;). One desires

E W(x ~ x;).

XjeR,-

If this last is to be approximated by ON(R;), then the method of moments leads to

6 = '(W(x—u)du/lRH
. R

and thence to expression (3).
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