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ABSTRACT

Births by census division are studied via maps for the province of Saskatchewan for the year 1986. A principal goal
of the work is to see how births are related to gecography by obtaining contour maps displaying the birth phenomenon
in a smooth fashion. A hierarchy of models for count-valued random variates are fit to the data by maximum likeli-
hood. Models include: the Poisson, the Poisson with a weekday cffect and the Poisson-lognormal. The last mentioned
is motivated by the idea that important covariates arc unavailable to include in the analysis.

KEY WQRDS: Aggregate data; Contouring; Extra-Poisson variation; Locally-weighted analysis; Maps; Poisson dis-
tribution; Poisson-lognormal distribution; Random effects; Spatial data; Unmeasured covariates.

1. INTRODUCTION

The concern of this paper is data that has been aggregated over geographical regions. The analysis of such data
should be "easy" because of the graphing possibilities, ¢g. quantity versus geography in the manner of residual plots so
often employed in regression analyis; however in the present case the aggregation leads to important dilficulties.

The specific data studied consists of daily births for the calendar year 1986 to women aged 25-29 for each of the
18 census divisions of the province of Saskatchewan. The corresponding population sizes, as determinied in the 1986
Census, are also employed in order to compute rates. The reason that Saskatchewan was selected for this pilot study is
that it is moderate sized and its boundaries and those of its census divisions are regular. (The latter was important at
the early stages of the work because computer based maps were unavailable.) Women ages 25-29 were selected
because that was the 5 year age group with most births. These data were provided to the author by Statistics Canada.

The data is characterized by being aggregate, by being nonGaussian and by being nonstationary in space and
ftime.

It is wished to understand the relationship of births to geography, specifically to allow spatial patterns of fertility
and possible surprises to show themselves. There are two aspects to the study; a locally-weighted analysis of grouped
data is developed and random effects models are set down and fit to handle extra-Poisson variation.

It is to be emphasized that this is a preliminary report on work in progress. For example the fine structure of the
data is not taken advantage of and no measures of uncertainty of the various estimates have been provided. The paper
focuses principally on annual totals for the 18 census divisions. The related paper Brillinger {1990) considers both
temporal and spatial aspects.

Saskatchewan has 18 census divisions. These may be seen in Figure 1. That figure also provides the total
numbers of births 1o women aged 25 to 29 for 1986 and the correspouding female population sizes on Census Day, 3
June. (Actually because of Statistics Canada’s confidentiality requirements the final digits have been rounded (o the
nearer of 2 and 7). The small population in the northern half of the province is evident. Figure 2 gives the annual
birth rates plotted by census division. The divisions with the lowest values, .131 and .133 births per year, coirespond
1o the cities of Saskatoon and Regina respectively. Figure 3 is a chioropleth map of the rates with intensity of hatch-
ing proportional to birth rate.

, 2. PATCH OR CIILOROPLETII MAPS

Maps of most quantities of direct interest that assign average values to the wholes of counties thereby lie, lie, lie.

in these graphic words Tukey (1979) deplores the use of maps such as those of Figures 2, 3 that are constant across
geographic divisions. Indeed examination of Figure 2, as does common knowledge, suggests that the birth
phenomenon quite likely varies smoothly across census division boundaries. One of the concerns of this work is to
develop maps with smooth variation. It is hoped that such maps will prove useful in the discovery of general models
and will allow insightful exploratory analyses.

A second concern is with the statistical distribution of the counts themselves. A natural special stochastic model
to employ is the Poisson. Yet the birth process has been found to relate to many socio-economic quantities, eg. diet,



lifestyle, weather, environment, weekday, holidays, age structure. Further the population of the province has varied
around the Census Day values throughout 1986 and lastly the women's ages range between 25 and 29. In summary it
scems necessary to employ a more flexible model than the Poisson, a model able to handle omitted covariates. The
Poisson-lognormal will be employed in this work. As a sideline due to the presence of the standard deviation parame-
ter in the Poisson-lugnormal, there will be a borrowing of strength that takes place in combining the data values.

3. LOCALLY-WEIGHTED ANALYSIS

In the case of nonaggregate data, locally-weighted fitting is a convenient fashion by which to estimate smoothly
varying quantities. Suppose one has a variate ¥ with probability distribution p (Y | ©) depending on the finite dimen-
sional parameter 8. Suppose one wishes an estimate of © particular to the location with coordinates (x,y). Suppose
the datum ¥; is available for location (x;,y;). Let W;(x,y) be a weight dependent on the distance of (x;,y;) to (x,y).

Counsider estimating 8 by maximizing the weighted loglikelihood

X Wilxy)logp(Yi] ©) (1)
‘

or (often equivalently) by solving the system of estimating equations
T Witey) y(tif §)=0 @
1

with y(Y'} 8) =9 log p/d8 , the score function.

To illustrate the technique consider an elementary case, specifically take ¥ to be normal with mean p and vari-
ance 02, The locally weighted estimate of i results from minimizing

T Wily) 1Y ~p?
and is given by

Alx,y) =X Wiley) Yi/ T Witx.y)

an expression with intuitive appeal. It is to be noted that such formulas are commonly used in computer graphics as
interpolation procedures, see for example Franke (1982). .

Among references we may mention Gilchrist (1967) concerned with "di\scounting", Pelio et al. (1968), con-
cerned with least squares, Cleveland and Kleiner (1975), who suggested the use of moving midmeans and Stone
(1977) focusing on regression. In the discussion of Stone’s paper, Brillinger (1977) suggested the form (2) for a gen- -
eral distribution and justified it as a Bayes’ rule. Cleveland and Devlin (1988) develop the least squares approach in
real detail. Tibshirani and Hastie (1987) develop an equi-weighted local likelihood estimation procedure. Staniswalis
(1989) studies and implements the general p case. Advantages of the locally-weighted technique include: no "hidden”
model distribution assumption, the possibility of discerning nonaditivity, variants for resistance and influence, simple
additivity of the observation component, and no matrix inversion (as, for example, kriging requires).

4, CONSTRUCTION OF THE WEIGHTS

The birth data of concern in this work is aggregate (or grouped) totals over census divisions. The procedure of
the preceding section cannot therefore be employed directly. The problem is that of obtaining appropriate weights
w; (x,y) evidencing the effect of the census division i on the location (x,y). Suppose | R;| denotes the area of
census division i. Then the naive weight function is

wix,y)=U] Ri| for(xy)inR;
and equal 0 otherwise. In this work functions of the essential form

wi{x,y)= —[—}%;T—R[W(xw J—v)dudv 3)

will be employed where W(.) is a kemel appropriate for the nonaggregate case as studied in Cleveland and Devlin
(1988). The fonnula (3) may be motivated by consideration of the Poisson point process case. Estimates will be
determined via the criteria (1) or (2) with W; replaced by w;.

The specific weights employed at r = (x,y ) are

wi(r) = exp(~(1-p) | r —ri| | %27 @

omside‘\/_m:___numsﬁ____(_m-i’,- S k(g —r;Y=d3 =5991 and equal 1 inside. Here |]ri{2=x2+y2
p=dy/ N —F;)S7Hr ~T;) and =025, where F; =E U; and S; =var U; with U; a variate uniformly distributed
within R;. The logic is that the census divisions are approximated by ellipses with the same mean and variance-
covariance matrix. (The specific values were chosen after a bit of experimentation, in part to make the area in the ini-
tial ellipse about .95 of the division’s.)

Figure 4 displays the .50 and .99 contours of the w; (x,y) plotted for several of the census divisions. The con-
tours are scen to follow the general shapes of the census divisions.
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additive and do not interact, no matrix inversion is needed, and resistance to outliers is easily built in.

Cliff and Ord (1975) Section 5.1, discusses measures of the influence of counties on each other. The concern of
this present paper is the influence of a "county” ona point location.

5. THE SIMPLE POISSON

Throughout the analysis, the female population aged 25-29 and births to its members will be considered. Let
i =1,.., 18 index census division. Let N; denote the census count of the women in the i-th division. (These are the
counts for Census Day, 3 June 1986.) Let B; denote the total number of births to women aged 25-29 in the year 1986.

Suppose that the probability distribution p (.) of Section 3 is that B; is Poisson with mean N;ji. The parameter i
is a birth rate. One logic for the Poisson assumption comcs from the idea that birthdays are random, see Brillinger
(1986).

With the Poisson assumption, the locally weighted estimate of the birth rate at location (x ) is
fGey) =X wix.y) B/ Twi(x.y) Ne ©
i 3

These values are computed for (x,y) on a 40 by 40 grid. The corresponding contour plot is given in Figure 5. The
contours are seen to vary smoothly. This (smoothed) rate varies from .14 to 20, with the higher values in the upper
half of the province and the lower centred around the most urban part of the province.

6. TIIE POISSON WITII WEEKDAY EFFECTS

While the focus of this paper is on spatial analysis, it is usefult to briefly take some definite note of the temporal
aspects that are present. It is common knowledge that birth rates vary with the day of the week due to medical inter-
vention, see for example Miyaokoa (1989). The total number of births cannot therefore be reasonably expected to be
a homogeneous Poisson. The following model seems worth considering. Let j be an indicator variable with j = 1 if
the measurement is for a weekday and j =2 if the measurement is for a weekend. Let Bj; denote the corresponding
number of births in census division i. Suppose that Bj; is Poisson with mean Niexpf{ o+B;}. B is the weekday effect
and it will be assumed that By + B2 = 0 to make the model identifiable. If there 1s no weekday effect, then By, B2 =0.
Now, via locally-weighted estimation as described in Sections 3 and 4, one can obtain estimates of o and B as func-
tions of location.

Figure 6 provides the estimate exp{o(x ,y )} obtained of the sanual birth rate. Itis interesting to note that, relative
to the constant Poisson model, the contours have expanded out from the urban area for the annual rate. Figure 7 pro-
vides the estimated weekday effect Bi(x,y). In its case there is bulge to the east. The order of magnitude of the B’s is
.00 to .10 while L is order -2.0t0 -1.6 .

The just preceding analysis suggests that there are basic variables that can affect birth rates and that modelling
and analysis necds to take this circumstance into account.

7. THE POISSON-LOGNORMAL

With a multi-dimensional explanatory variable x; in hand, a Poisson model that has B; of mean N; exp(x;0]
might do a good job of explaining the data. Examples of explanatory variables include: diet, lifestyle, weather,
environment, holidays, population change, age structure, vagaries of boundaries. In the present situation, these vari-
ables are not at hand. The omitted variables in the model will be assumed specifically accumulated into an error vari-
able. It will be assumed that, given €;, the variate B; is Poisson with mean N; pexp(e;} and that g is normal with
mean 0 and variance o2. Here B is said to have a Poisson lognormal distribution. Some information on this distribu-
tion may be found in Shaban (1988).

A central difficulty, that arises in working with a Poisson-lognormal model, is that closed expressions do not
exist for the probabilty function. Yet it is clearly flexible for introducing effects and handling missing variables. Fol-
lowing the work of Bock and Lieberman (1970) and Pierce and Sands (1975) however, one can proceed via numerical
integration. The probability function may be written .

pO)= ylrj(vem ) expf—ve St }o(z)dz
with ¢ the standard normal density, with y corresponding to B and with v corresponding to Ny The integral is

approximated by a finite number of terms involving nodes and weights.

Figures 8 and 9 provides the result of fitting employing 61 nodes. Figure 8 again shows a dip around the urban
region as in Figures 5 and 6. The irregularities suggest that perhaps the estimation procedure converged, to a local
extremum. Figure 9 is not easily described. It suggests that the estimate is fairly variable. The estimate ¢ is seen to
be of order of magnitude .1 and so comparable to the weekday effect of Section 6.

8. DISCUSSION



Locally-weighted analysis and random effect models appear to provide a flexible means of dealing with a broad
class of problems involving geographic data. The random effect terms have two important roles: handling omitted
elfects and borrowing strength for improved estimates of the principal parameters. For the Poisson alone, naive totals
are efficient, yet there exists extra-Poisson variability due to ommited variables in the present case. The approach is
computer intensive, because of the numerical integration and the maximum likelihood estimation at many points on a
grid, but proved quite mangeable on the Berkeley network of Sun 3/50’s.

Much future work remains including: tools for assessing fit, uncertainty computation, weight function choice
(including choice of 1 in (4)), analyses for other age groups and provinces, and appropriate asymplotics. Some further
results are provided in Brillinger (1990).

Other recent papers devoted to the analysis of vital statistics rates are: Clayton and Kaldor (1987), Tsutakawa
(1988) and Manton et al. (1989). These papers are not directed at the problem of obtaining a smooth surface, which
is the concern of this work.

After the analyses were completed it was learned that the birth counts were based on 1981 census divisions,
while the population counts were based on 1986. The boundaries have not changed much, but this provides even more
reason for wanting a procedure that can handle extra-variation.
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APPENDIX

In this Appendix a few computing details are provided. The census divisions and the province boundaries are
specified as polygons. To compute the weights w; (x,y) a routine was required to check whether a given point was
inside a given polygon. To compute the mean and variance of a random point inside a given polygon, a procedure
breaking the polygon up into triangles was required. Such routines are discussed in Preparata and Shamos (1983).
The likelihood was maximized via the Harwell FORTRAN routine va09a. For the parallel computations the 40 by 40
grid was brokcn up into 20 disjoint segments.

FIGURE LEGENDS

Figure 1. Births for the 18 census divisions of Saskatchewan for the year 1986 to women in the 25-29 age group and
corresponding total numbers of women in that age group on June 3 of the year. (As discussed in the text, the
final digits of counts have been rounded to the nearer of 2 and 7.)

Figure 2. Annual birth rates for the 18 census divisions for women aged 25 to 29.
Figure 3. The rates of Figure 2 displayed via intensity of hatching.

Figure 4. The weights, W;(x,y) applied in equations (1) or (2) computed via expression (4) for four of the census divi-
sions. They are not shown for all the divisions in the interests of clarity.

Figure 5. Expression (5) graphed for the weights of (4) with B; the count of births in census division i and N; the
corresponding population count of women aged 25-29.

Figure 6. The estimated birth rate assuming that the number of births, B, given the population at risk, N, is Poisson
with mean N exp{a & B} with the pJus sign for weekdays and minus for weekends. Local weighted fitting is car-
ried out to obtain the estimate exp{a(x,y)}.

Figure 7. Plot of the estimated weekday effect ﬁ(x .y ) obtained as per Figure 6. <
Figure 8. A plot comparable to Figure 6, except that now a normal error term is added to the linear predictor.

Figure 9. A plot comparable to Figure 7, except now (as in Figure 8) a normal error term has been added to the linear
predictor.

Birth and populalion counts Annual birth rates
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