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APPROXIMATE ESTIMATION OF THE STANDARD ERRORS OF

COMPLEX STATISTICS BASED ON SAMPLE SURVEYS

David R. Brillinger
University of California, Berkeley and University of Auckland

Nowadays quite complex statistics are routinely computed for sample surveys with
nonelementary probability structure. In order to be able to interpret these statistics, it is
necessary to have some idea of their sampling variability. In this paper we survey some
general methods of estimating standard errors including: balanced repeated replication,
the jackknife, Taylor series expansion and elementary perturbation. In an appendix we
provide a justification of the jackknife procedure for M-estimates.

INTRODUCTION

To set the scene, let me describe a continuing survey that | am presently associated
with. The National Assessment of Educational Progress (NAEP) is an information gathering
project which surveys the educational attainments of 9-year-olds, 13-year-olds, 17-year-clds
and young adults (aged 26-35) in ten different learning areas. The areas are periodically
reassessed in order to measure educational progress or regress. Exercises are prepared by test
developers, groups of exercises are collected into packages and the packages are administered
to probability samples of various populations. Each exercise is attempted by about 2500
individuals and approximately 100,000 persons participate annually. Not all exercise results
are released for publication, because some will be readministered in the future in order to
measure change.

The results are reported in various categories including: age, region, sex, colour, levet
of parental education, size-and-type of community. The basic measure of educational achieve-
ment is the percent of people who can perform a task, or group of tasks. It is especially
interesting to measure “‘group effects”—the difference between the percentage achieved by a
group and the corresponding percentage in the nation.

Because a population is not homogeneous across a nation, observed group percentages
can be misleading; for example, parental education effects may be masquerading as size-and-
type of community effects. In consequence, balanced group effects are computed by fitting
a linear model and generally used for interpretation. Balancing is carried out with respect to
the categories: region, sex, size-and-type of community, colour, level of parental education.
This procedure is meant to “make” the mixture of characteristics in each group, the same as
for the whole population. See Maxwell and Jones (1976).

As an example of a specific question and results we mention the following question
put to 9 year olds in 1970 and 1973. "Putting sand and salt together makes : 1. a
chemical: 2. a compound; 3. an element; 4. a mixture; 5. a solution; 6. | don’t know."”
The answer sought was 4. “a mixture’”. The results found were
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1970 1973 Change

All 9 year olds 61.5% 61.7% +.2%
South East 9 vear olds 55% 59% + 4%
Difference -7% -3% + 4%

Altogether 92 science exercises were repeated in the 1970 and 1973 surveys. The
average change measured was —1.7%. The estimated standard error of this last statistic
was .6%, as determined by a procedure to be described later.

The sampling of the survey began with a selection of 2 primary units (PSU) from each
of 104 strata. Stratification variables were: region, size of community, socio-economic-
status. The primary units consisted of clusters of schools within selected listing units. The
listing units were counties or parts of counties. Within each selected listing unit, a cluster of
schools was selected. Students were then selected at the schools. There were about 12
packages of questions, each administered to groups of about 12 students at a time. About
150 students were required in each PSU. Each package of questions appeared in each PSU.

Correlations are introduced into the data through students being at the same school
and questions appearing in the same package, among other things. A further complication
occurs because questions change packages from survey to survey.

It is not at all clear what the best summary statistics are for a single survey or change.
The questions are not meant to be a sample of questions. Atypical results can creep in
through local conditions. The distributions observed are not normal. Means, medians and
bi-weights are computed generally. These in turn are functions of ratio and regression
estimates involving unequal weights. A basic statistic reported is the median of the
difference observed between a subgroups performance and the national performance for
exercises of a similar sort.

We now turn to a discussion of some estimates of the standard errors of the
complicated statistics described above. We begin with some formulas for a particular age
group and exercise. Set

Yhiik = 1 if student k of schoo! j of PSU i in stratum h answers correctly
= (0 otherwise
The estimate of the proportion correct is
P = I WhijkYhij/ W
where the sum is over all subscripts,
Whijk = 1 /[Prob(PSU hi) . Prob(Sch j ' hi) . Prob{child k hij)]

and W denotes the sum of ail the Whijk- We are also interested in subgroup P-values (sub-
group performances) and delta-P-values (differences between a subgroup’s performances and
the national performance). More complicated statistics are required for estimating the
balanced effects.

Variances for P— and delta—P-- values have been estimated as follows:

PSU totals are taken as basic statistics and there are 2 PSU’s per stratum. For h=1, . H
and i =1,2
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Yhi =L Z Whik Yhijk Y =1LV
k h i
Whi =2 L Wi W =1 ZW,
ik h i
then
h h

Next replicate P—values are computed as
Ppt = (V=Yg Yig) /W =Wy g + W)

(and an analagous formula for P_p2 ) corresponding to discarding a PSU and replacing its
values by its companions. Denote tzhe mean of the P—hi by P_ .

The jackknife P—value is then defined to be
Py = {(1+HP — H P,

The jackknife estimate of the variance of P and PJ is now

2
i (P_pg = P_pp)/4

THE JACKKNIFE

The above is an example of the following general procedure for dealing with data based
on a design of H strata having nj, PSU’s in stratum h. Let A denote a statistic based on all the
data. Let A_,; be the same statistic based on ail the data, but with the hi values replaced by
missing value estimates of the same and let A—h. be the mean of the A—hi . The jackknife
estimate is

AJ = A + )E] (nh—1) (A — A—h.)
and the variance of it and A may be estimated by
2 (1/np=1/Np) szh
h
where 9 9
ssh = D L A - AR
In the case of a multidimensional statistic, A, the last expression is replaced by the sample
covariance matrix 9 T
ssh = gD 2 A g —A_p ) A — Ap)

The above jackknife procedure is one general method of constructing approximate
estimates of standard errors. We now describe other procedures that have found some use.

SIMPLE REPLICATED (INTERPENETRATING) SAMPLES

In this procedure one constructs a number of disjoint replicates of the survey, that
mimic the structure of the overall design. Its great advantage is that it provides one with a
number of independent estimates of the parameter of interest, and classical variance
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estimation formulas may be employed. Its great disadvantage is that individual replicates
may not be able to be based on sufficient data.

This type of procedure has a fong history as the following quote from Guy (1839) |
illustrates, “where our means or instruments of observation are imperfect, or the things |
observed differ widely in numerical value, a large number of observations is necessary, in |
other cases a smaller number can suffice. Perhaps the best rule which can be given for
ascertaining whether the observations which we have collected are sufficiently numerous to
yield a true average, is to divide the whole number of observations into groups of equal size
and compare them the one with the other ..."”

TAYLOR EXPANSION (LINEARIZATION)
Suppose that the statistic of interest has the form

A= A(Thi H i= 1, ...,nh : h= 1,.--,H) = A(Thi)
= Alty) + T % (T —ty)T Aplt) +

where T i is a p—diménsional vector of sample values, t i is the associated population mean
value, wpnere Ah denotes the {vector-valued) derivative of A with respect to values of stratum
h and the error in the final expression is assumed to be not too large.

Then the classic result (of Gauss) is that the variance of A may be estimated by
T
assuming derivatives are equal within a stratum and with
= T
shh = I (T —Tp ) Ty — Tp) /iy = 1)
Forming this estimate involves a knowledge of derivatives.
This estimate may be related to the jackknife as follows; suppose
(Thi; i=1,...,nh) = Z Shi /nh = Xh
i .
then A = A(X1', ""XH.) . It is clear that
X—'hi = '2. th /(nh—1) = Xh- + (Xh. - xhi) / (nh - 1)

and so i#i i
Api = AT + (X — Xpd T ALOG) /oy — 1)+
Ap = AlTp) + .

giving 2 T T
Sho = Ap (Xp) T B Oy = X ) O = X )T A ) My — 1)

that is, approximately the variance of the Taylor expansion method.

REPEATED REPLICATION

Suppose that 2 PSU’s are selected per stratum ( n,. = 2 ). Form a replicate of the
whole sample by randomly selecting one of the 2 PSU’s in each of the H strata. Let F
denote the set of values in the whole sample and F: refer to those of the j—th replicate. In
the repeated replication procedure, the variance estimate employed is
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J 2
I (AR - AR 12/

assuming J replicates have been selected.

This procedure may be related to the Taylor procedure as follows:
suppose (Thi pi=1,2) = (Xh1 + xh2) /2 = Xh. . Then F = (X1 . ...,XH)

and Fy = (X11""'XH1) say . It follows that

AFp) = AF) + T (X = X0 T ApX) +
and T
(AF) —AF) 12 = T T A TGy = Xp) Xy = X7 AglX) +

The Taylor approximation to the variance appears once again whep one averages over many
selected replications for the averaging of (Xh1 - Xh_) (X-1 - X-_) leads to s, if j=h and
to 0 if j # h. We remark that McCarthy has proposed that the replicates be selected in a
balanced manner, for example in accordance with pieces of Plackett-Burman designs.

SIMPLE PERTURBATION

Suppose that the estimate is given by A = A(T1, ...,TH) where an estimate s, of the
covariance matrix is available and where the Th are approximately uncorrelated. For e small,
form the perturbed statistics

Aj = A(T1 + 881 C1j' ...,TH + eBHCHj) j = 1, ...,J

where C = [chj lis a design matrix satisfying CCT =1, the identity, and Bth = Sphh-
Now estimate the variance of A by
D T i - 2
Making a Taylor expansion, this last expression may be seen to be
T
E':‘ Ah(T1' ...,TH) Shh Ah (T1, ...,TH) +
that is the result of the Taylor procedure.

This method is seen to relate to the jackknife procedure when n, = 2 via the
correspondence Bh = (Xh.I - Xh2) ] 2%, Chj =+ 2 —% or 0, and e = 1 for now

Xp, * eBhChj = Xp1 + Xp2 OF Xy, - Likewise it relates to repeated replication by taking
Chj == 2%,

A COUNTEREXAMPLE TO THE JACKKNIFE

The jackknife is not always a justifiable procedure. Consider a simple random sample
of size n taken from a population with median m . Suppose n = 2k + 2 is even and that the
sample values are ordered with x; the i—th largest. The median may be estimated by
(xm+2 + xm+1) /2 . The jackknife estimate of variance using groups of size n—1 may be

determined as
Sz_h = n(xm+2 - Xm+1 )2/8.
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The variance of the sample median is known to be asymptotically 1/[4n f(m)2]where f(x)
is the density of the x’s. The variate s”,, may be seen to be tending to 1/[16n f(m)2] which
is too small. The difficulty here seems to be caused by the poor degree of approximation of
the sample median by a linear statistic. The jackknife procedure may be reasonable if the
sample is split into r groups of size (r—1)s, where n = rs and s is larger than r . (This
particular counterexample is due to Lincoln Moses.)

Another difficuity that can sometimes arise with the jackknife is that the statistic of
interest may become singular when based on the reduced number of observations.
CONCLUDING REMARKS

In conclusion we mention that there are connections between the procedures discussed
in this paper and cross-validation analysis, the sensitivity analysis of control engineers,
procedures for computing system performance or ‘‘tolerancing””, Mickey’s procedure for
constructing unbiased estimates, influence curves and Hartigan’s technique.

The procedures would appear to be especially useful in dealing with M—estimates and
robust regression estimates. For this reason a brief justification of the jackknife for
M—estimates is provided in the Appendix.
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APPENDIX

A class of complex estimates, coming into common use, is the class of M—estimates.
Given sample values X1, eer Xn these are defined as a statistic, A, providing the minimum
value of a penalty function

M(X,A) + ... + M(X,A)
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Least squares estimates are examples of M—estimates. So are maximum likelihood estimates.

If m{X,A) denotes the derivative of M(X,A) with respect to A, then the M—estimate A is a

solution of the equation
m(X1,A) + ..+ m(Xn,A) =0 .

Suppose AO is the true value of A, satisfying E m(X,AO) = (. Suppose m’ and m” denote
the first and second derivatives of m with respect to A. Let a’ and a’’ denote E m’(X,AO)
and E m"(X,AO) respectively. Then Chibisov (1973} develops the asymptotic expansion

-a'l )/ na'? — (% m(X;Ag) / n )2 2" /23 + ..

This expansion may be manipulated to find an expression for A__i the M—estimate based on
the data excluding the observation Xi . At this point it is important to note the expansion
is being carried out in terms of polynomials of the means z m(Xi,AO) [/ n,

T (m(X,Ag) — a') /n, T m"(X,Ag —a") / n, ... and to note that Arvesen {1969)
shows how to justify the jackknife for regular functions of means. We can now set down,

Theorem. Suppose the conditions of the theorem of Chibisov {1973) are satisfied with
k=3, r =8, m=4 (in his notation.) Let A_ = z A_; [n,Aj=nA- (n—NA__,

2 = (n=1) T (A_p; —A_p,)? . Then n (A — Ag) and n(A; — Ag) are both

asymptotically ngrmal with mean 0 and variance E m(X,AO)Z/ a’2 . Also s?_ tends to

E m(X,AO) / a'4 in probability and n1/2(AJ - AO) /s__ is asymptotically standard normal.

This theorem provides a justification for the use of the variance estimate 52_ for the
statistics A and A in the case of M—estimates and when one observation is dropped out at
a time in forming the jackknifed estimate.
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