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FOURIER AND LIKELTHOOD ANALYSIS
IN NMR SPECTROSCOPY

DAVID R. BRILLINGER* anp REINHOLD KAISERt

Abstract. Nuclear magnetic resonance (nmr) is a quantum mechanical phenomenon that may
be employed to study the structure of a variety of molecules, crystals and polymers. The time
series data collected are traditionally Fourier transformed and the Fourier amplitudes examined for
peaks. Higher-order transforms are sometimes employed. If the substance and relevant interactions
are known one can set down a set of differential equations describing the temporal evolution of the
state matrix that describes the system. These differential equations are bilinear in the input and
the system state. The time series recorded in an experiment is, up to noise, a linear function of the
entries of the state matrix. In the research to be presented, the Fourier techniques of analysis are
compared with a maximum likelihood analysis based on the state matrix. Results are presented
for an experiment involving 2,3-dibromothiophene.

Key words. bilinear system, Bloch equations, Fourier analysis, maximum likilihood estima-
tion, m-sequence, residual analysis, signal-generated noise, system identification, transfer function

AMS(MOS) subject classifications. 62M15, 62P99

1. Introduction. The concerns of this paper are to provide an example of
the maximum likelihood analysis of data collected in nuclear magnetic resonance
(nmr) spectroscopy and to give some comparative discussion of maximum likelihood
and Fourier based techniques. The nmr case is based upon revered theory allowing
conceptual modelling and a state space formulation. The layout of the paper is: first
some pertinent background concerning nmr is set down, next comes some formal
development following the basic theoretical layout, then a discussion of the problem
as one of system identification is presented. Sections 5 and 6 describe a particular
laboratory experiment carried out and present an analysis of its results. The paper
concludes with a discussion comparing and contrasting the various approaches and

mentions some possible future work.

2. Nuclear magnetic resonance spectroscopy. Nuclear magnetic reso-
nance spectroscopy is a quantum mechanical phenomenon that may be employed
to study the structure of a variety of molecules, crystals and polymers. In the pro-
cedure, a sample of the material whose structure is to be investigated is placed in
a strong magnetic field, 1.41 Tesla for our measurements. This field is constant
in time and uniform in space throughout the volume occupied by the sample. It
exerts a mechanical torque on those nuclei in the sample that carry a magnetic
dipole moment, tending to align these nuclei in the direction of the field. However,
the magnetic dipole of a nucleus is associated with an intrinsic spin angular mo-
mentum, and the torque consequently causes a gyroscopic precession of the nuclear

*Department of Statistics, University of California, Berkeley, CA 94720. Research supported
by NSF Grant DMS-8900613

tDepartment of Physics, University of New Brunswick, Fredericton, CANADA E3B 5A3. Re-
search supported by NSERC Grant A1565
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spin axis about the direction of the magnetic field. The Precession frequency is pro-
portional to the magnetic feld strength at the site of a nucleus and thus provides
information about the nuclear environment. The nuclear precessional motion may
be stimulated by applying to the sample a weak oscillating magnetic field directed
at right angles to the strong constant magnetic field. A resonance effect occurs
when the oscillation frequency of this weak field coincides with a nuclear precession
frequency. The nuclear motion is sensed by monitoring the voltage that is induced
by the moving nuclear magnetic dipoles in a coil that is wound at right angles to the

FIGURE 1
2,3-dibromothiophene
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The data used for our work are derived from a sample of 2,3-dibromothiophene,
This substance is liquid at room temperature, its molecules have the chemical struc-
ture shown in Figure 1. The naturally abundant isotopes of carbon (1*C) and sulfur
( *28) have zero magnetic dipole moment and are thus not observable by nmr meth-
ods. The stable bromine isotopes ( "*Br) and ( #1Br) both carry magnetic dipole
moments, but they also carry a sizeable electric quadrupole moment which couples
them to fluctuating electric fields in the sample and this also makes them inac-
tive for our work. Our data thus arise from the magnetic resonances of the nuclei
(protons) of the two hydrogen atoms labelled H 4 and Hp in Figure 1. The nu-
clei are surrounded by molecular electrons that hold the atoms in the structure of
Figure 1. These electrons tend to shield the nuclei from the strong applied field.
The proximity of the sulfur atom causes the electronic shielding of nucleus & A to
differ slightly from the shielding available to H B, thus leading to slightly different
Precession frequencies for H 4 and Hg. In more detail, the precession frequency of
hydrogen nuclei in our 1.41 Tesla field is 6.00E7 Hz, and the difference of resonance
frequencies of Hy and Hp was found as 32.57 Hz, so the nmr “chemical shift”
between H, and Hp amounts to 32.57/6.00E7 = 0.543 parts per million (ppm).
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The nmr spectrum of 2,3-dibromothiophene is shown in Figure 3b below. The
two doublets of resonance peaks are here separated by the 32.57 Hz chemical shift
and each doublet arises from one hydrogen nucleus H 4 or Hp, respectively. The
doublet splitting of the resonances is caused by a coupling of Hs with Hg via
the magnetic field set up at Hp by the magnetic moment of H,, and vice versa.
(More precisely, it is the part of this coupling that is not averaged to zero by the
thermal tumbling of the molecule in the liquid.) Quantum mechanics yields for each
hydrogen nucleus in a strong magnetic field, two stationary states with nuclear spin
axis either parallel or antiparallel to the direction of the magnetic field. So, one
Hp resonance peak arises from molecules having the H4 spin axis parallel to the
magnetic field, the other from molecules having the H4 spin axis antiparallel to
the field. The strength of this intramolecular nuclear coupling is measured by the
doublet splitting as J=5.76 Hz for the case of Figure 3.

Other significant parameters are various relaxation times classified as either
longitudinal T} or transverse T,. The longitudinal Ty is the time constant with which
the nuclear magnetization eventually aligns itself with the direction of the strong
magnetic field after the sample is placed into the magnet. The transverse T, are the
time constants governing the “frictional damping” of the oscillatory components of
the state vector that describe the nuclear precession. These relaxation times depend
on thermal random motions in the sample. They are of several seconds duration
for our sample.

A quantitative description of the nuclear magnetic spin dynamics in a macro-
scopic sample requires a quantum mechanical formulation in terms of the spin den-
sity operator p, (see Slichter (1990) and Ernst et al. (1987)). The motion of this
operator is described by the von Neumann equation

(2.1) % — Ripp") + (Hp— pH)i%

Here, R is a superoperator describing relaxation of the density operator towards its
thermal equilibrium value p7, the symbol % designates Planck’s constant/27, and
i = /=1. (Superoperators are discussed in Ernst ef al. (1987)). The symbol H
designates the Hamilton operator for the energy of the nuclear magnetic dipoles in
the magnetic fields that are applied to the sample. It can be separated into two
parts,

(2.2) H =H, + H,(t)

such that Hy describes the interactions of the nuclei with the strong magnetic
field and the intramolecular coupling, and H; describes the interaction with the
oscillating magnetic field that is used to stimulate the precession motion. The first
term, Ho, is constant in time and strong compared to the second term, Hy(t), which
is proportional to the stimulating field.

The operators in (2.1) are linear and it is convenient to represent them by
matrices operating in the space spanned by the eigenvectors of Hy. For our sample
which contains only two nmr active hydrogen nuclei, this space is of dimension 4.
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Furthermore, it is numerically helpful to freeze the fast precession by transforming
to a physical z, y, z-space that rotates about the z direction of the strong magnetic
field at 6E7 revolution/sec. Equations (2.1) then take the form shown in Figure 2
for the 16 entries p;) representing the density operator p in matrix form. Only ten
equations are written out in Figure 2, the remaining six are complex conjugates of
the last six since p is hermitian. The relaxation operator R has been represented
by relaxation times T

FIGURE 2
dp t
dzl = §{(P12 = p21) + (pra = par)(e = )}z — (o1 — PL)/Th
dp22 1 T
% '2‘(/121 — P12 + p2a — pa2)(c + 8)vz — (paz — p22)/Th
dp33 ) T
at §(P31 — P13+ p3a = paa)(c — s)yz — (pa3 — p33)/Th
dpgy 1 T
S N -2—{(p42 — p2a)(c+8) 4 (paz — pas)(c — 8)}yz — (pas — p3)/Th
dpia _ i J :
- = Epn( - twatws)+ 5{(/’11 = p22 + prg)(c + 8)—
p3a(c — S)}'ﬂ’ - p12/Tep
d i i
% = -z-pla(J +/ twa +wp)+ '2'{(/011 — paz + pra)(c —8)—

pas(c+ ) vz — p13/Toa

d . i
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dpyy 1 i
7l '2'/’24(—] +./ twa+wp)+ '2'{(P22 — pag — pra)(c+ s) + pas(c — s)}yz—
p2s/Tan
d ] 1
5:4 = '2’P34(—-] -/ twatws)+ ’é‘{(st — pas — p1a)(c — &) + paplc + s)}yz—

P34/T28

The four diagonal elements p;; may be interpreted as probabilities normalized by
Tr(p) = 1, to have the spin system in each of the four eigenstates of the Hamiltonian
H,. Without stimulus and in thermal equilibrium, these are the only nonzero
elements with values

(2.3) Ph=1+e)/4 ph=ph=1/4 pL=01-¢)/4

with £ < 1 depending on sample temperature and magnetic field strength. The
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off-diagonal elements describe the precessional motion and may be interpreted as
coherences between eigenstates of Hy. The stimulus X(t) links them to the diago-
nal elements since H; does not commute with Hy. They may be classified by the
quantum jump involved in the coherence as follows. The set p;3, p13, P24, p34 18 Te-
sponsible for the output signal induced by the precessing nuclear magnetic moments
in the receiver coil. Depending on whether this coil is wound around the sample in
the = or y direction, the output is

(24) Y: = (c + s)Re(p1z + p24) + (c — s) Re(pr3 + pas)
Y, = (c+ ) Im(psz + pae) + (c = ) Im(pss + pas)
Here and in Figure 2 the meaning of symbols is:

J is the coupling strength of H4 with Hp

w4,wp are the precession frequencies in the rotating
coordinate frame of H4 and Hp, respectively

§ = lwyq — wp| = chemical shift
6 = arctan(J/6)  c=cos(8/2) s=sin(d/2) T =VII+82
~ is a scale factor for the input amplitude
The equations of Figure 2 shows that, in the absence of a stimulus X, the four

elements py2, p13, P24, P34 Drecess in the rotating coordinate frame like exp{—1/T; +
iw} with frequencies

(2.5) w=(+J £ /J? + (we —wB)?)/2 + (wa +wp)/2

These are the four nmr resonance frequencies. The superposition of the four damped
oscillations that are observed in some simulated output Y'(¢), t,=0,...,T —1,in
response to an impulse stimulus, is shown in Figure 3a below. The corresponding

Fourier spectrum

T-1
(2.6) 1> vtye

t=0

is shown in Figure 3b. These four p elements are referred to as single quantum
coherences because they are associated with emission or absorption by a molecule of
a single quantum A of angular momentum. Of the remaining off-diagonal elements,
p23 is a zero quantum coherence and py4 is a double quantum coherence. They are
not directly observable in the output Y.
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FiGure 3

Pulse Response
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The 16 equations of motion for the p;x may be written in vector form as

ds(t
(2.7) —a-(t—) =a+ AS(t) + BS(t)X(t)
with S a 16-vector containing the p;x, a a 16-vector holding the four pjTj /T thermal
equilibrium terms and zero otherwise, A a 16 x 16 matrix collecting the diagonal
terms of Figure 2, and B a 16 x 16 matrix holding the off-diagonal terms. B is
symmetric with entries purely imaginary, it does not commute with A. The output

equations (2.4) may be written
(2.8) Y () = Re(c"S(t))

with suitable 16-vectors c.

3. A problem of system identification. The transition equation (2.7) and
the measurement equation (2.8) together describe a system carrying input signals,

F

X, over into corresponding ou
unknown parameters of the syst
the previous section it was seer
could lead to estimates of the '
has long been employed in nm
Information can also be gained
experiments have the possibility
quencies for “large” input, X.
the employment of multipulse s
10 pulses are employed.

In the case of step-function
the solutions of (2.6), see for ex
(3.1) X

X(t
Xt
This is a pulse of height = and
(2.6) is given by
S(t) = eAU—95(s)
S(t) = eP=Y8(u)
(3.2) S(t) = eAUYIS(v)
referring respectively, to the pe:

Figure 3a gives an example
system in thermal equilibrium,
DBT sample. (See Appendix .
grapth gives the modulus of th:
(2.6). Four substantial peaks

have been anticipated from the
frequencies are those of (2.5).




£3
sponse

bt

~onds)

mplitude

zy (H2)

may be written in vector form as

j+ BS(#)X()

j-vector holding the four p}; /T thermal
16 x 16 matrix collecting the diagonal
x holding the off-diagonal terms. B is
does not commute with A. The output

c"S(t))

ion. The transition equation (2.7) and
escribe a system carrying input signals,

47

X, over into corresponding output signals, Y. The concern is to determine the
unknown parameters of the system. A variety of techniques have been proposed. In
the previous section it was seen how Fourier transforming the response to a pulse
could lead to estimates of the “frequency” parameters, and indeed this technique
has long been employed in nmr spectroscopy, see eg. Becker and Farrar (1972).
Information can also be gained via a succession of two-pulse experiments and those
experiments have the possibility of displaying the presence of cross-coupling of fre-
quencies for “large” input, X. The practice of nmr spectroscopy has moved on to
the employmenit of multipulse sequences, eg. Kay. et al. (1990) where sequences of
10 pulses are employed.

In the case of step-function input, one can set down explicit representations for
the solutions of (2.6), see for example Brillinger (1985, 1990). Suppose, now, that
(3.1) X(@)=0 for s<t<u

Xt ==z for u<t<vw
X()=0 for v <t
This is a pulse of height z and width v — u. Writing D = A + Bz, the solution to
(2.6) is given by
S(t) = eA=98(s) + A7 A=) _T]a for s<t<u
S(t) = P YS(u) + D PEW _Tla  for u<t<v
(3.2) S(t) = A8 + A7 A _1J]a for v <t
referring respectively, to the periods before, during and after the pulse.

Figure 3a gives an example of the response, V', to a pulse (3.1) applied to the
system in thermal equilibrium, employing parameter values appropriate to a 2,3-
DBT sample. (See Appendix A.1l.) 600 points have been plotted. The bottom
grapth gives the modulus of the Fourier transform of this output as computed by
(2.6). Four substantial peaks are seen to be present in the latter. This could

have been anticipated from the form of the matrix A and expression (3.2). The
frequencies are those of (2.5).
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Figure 4 gives the evolution of the nondiagonal entries of the state matrix fol-
lowing the pulse input. The time series remaining 0 correspond to pz3 and pi4. 5 - -
The series fluctuates with the frequencies of the elements of A. An interesting
phenomenon is present in the plots of the second and fifth rows. There seem to
be beats, suggesting the presence of two frequencies. To better understand this
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with parameter values corresponding to those of the numerical experiment. The
phenomenon is now seen to arise from the particular relationship of the sampling
rate and the base frequency. Typically but 1 or 2 points are being plotted between
the zero crossings and hence the deceptive appearance.

FIGURE §
Frequency = 52.94 Hz, sampling rate 150 Hz
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Next suppose, a pulse further to the pulse (3.1), is input to the system com-
mencing at time u;. Suppose it is has amplitude z; and width »; — uy, then the
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equations of subsequent evolution are with respect to s, the interval b
3
finished. In the case of small i

S(t) = D, (t - S D! D,(t - —Ta f <t<
(t) = exp{ 1( u3)}S(u1) + Dy [exp{D:( u1)} Ja forui<t<i definition), there are only off-ax

= _ -1 - -
(3.3) S(t) = exp{A(t — 11)}S(»1) + A7 [exp{A(t 1) —-Ta for vy <t Jarge input, (90 degree flip angle
Here D, = A + Baz;. along the horizontal axis occur i
I |7xl is small, then t?e system is approximately l‘inea.r.a.nd the output,. Y, will 4. System identification
show simply the frequencies of p12, p24, P13, P34 following Figure 2. If |yz| is large, . )
nonlinear phenomena may show themselves. To illustrate this, let A(t) denote a occasion employed stochastic o
P v ' ’ Kaiser (1970), Bliimich (1985).

pulse starting at time 0 having width o. Consider a suite of two-pulse experiments
with input X (t) = A(t) + A(t — s), for a succession of values s. That, for example,
the frequency of p2 interacts with that of p14, may be seen from the fifth equation
of Figure 2. "

(4.1) S(t)=—A‘1a+/eA“"’)C

then Fourier transforms the res:
substitutions into the equation (

FIGURE 6
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Simulations of this technique were carried out. Figure 6 presents the absolute

value of the two dimensional Fourier transform of the outputs, Fourier transforming 4.7) Ag(=A, -
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with respect to s, the interval between pulses and u, time since the second pulse
finished. In the case of small input, (1 degree flip angle, see Appendix A.1 for
definition), there are only off-axis peaks apparent along the diagonal A = p. For
large input, (90 degree flip angle), a host of off-diagonal peaks appear. The peaks
along the horizontal axis occur in the manner of expression (4.9) below.

4. System identification by cross-correlation. Nmr spectroscopy has on
occasion employed stochastic or pseudo-stochastic input, see eg. Ernst (1970),
Kaiser (1970), Blimich (1985). One cross-correlates the input and output and
then Fourier transforms the result. This may be motivated as follows: successive
substitutions into the equation (2.7), assuming B or X small, leads to

1 ts
(4.1) S(t)= —A“a+/e““”CX(s)ds+//eA"“’>BeA(’-'>CX(r)X(s)drds+ -

with C = —Ala, see eg, Blilmich and Ziessow (1983), Banks (1988), Brillinger
(1990). The linear, quadratic and third-order asymmetric (or triangular) transfer
functions here are

(4.2) (X - A)IC
(4.3) A+ I - A)'B(HI - A)IC
(4.4) EA+p+v)I-A)'BEA+p)I—-A) B - A)7IC

with similar expressions for the higher-order cases. It is to be noted that peaks
will occur in the absolute values of the linear transfer function at the resonance
frequencies indicated earlier. For the quadratic and higher-order terms, a matching
of frequencies connected by B is needed. Workers in nmr spectroscopy speak of
“coupling” in this type of circumstance.

In the kernel approach to nonlinear systems analysis, it is usual to employ
symmetric transfer functions in expansions such as (4.1), writing for example

(4.5) S(t) =

/al(u)X(t —u)du + //ag(u,u)X(t —u)X(t — v)dudv + ///ag(u,u,w)

Xt —u)X(t - v)X(t — w)dudvdw

with a; and a3 symmetric in their arguments. In the case that stationary Gaussian
input has been employed and the system is quadratic, (i.e. az = 0 in (4.5)), the
linear transfer function is given by

(4.6) Ai(N) = fsx(V)/ fxx(X)

white the quadratic one is given by

(4.7) Ar(=A —p) = fxxs(A 1)/ 2fx x (M) fxx (1)
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with fxx the input power spectrum, with fg x the cross-spectrum of the input and
output and with fyxs a cross-bispectrum of the input and output, see eg. Tick
(1961). These equations suggest how to estimate A, and A;. Extensions exist
to the higher-order terms, see Wiener (1958), Brillinger (1970), Marmarelis and
Marmarelis (1978), Bliimich ( 1985). In the case of pseudorandom input, expressions
(4.6) and (4.7) hold approximately, see eg. Marmarelis and Marmarelis (1978).

The following hybrid technique shows how elementary cross-correlation tech-
niques may be used to display the presence of cross-coupling. Suppose N denotes a
white noise sequence with variance ¢®. Consider the suite of experiments in which
the input is taken to be N(t) + N(t — s) for a succession of values s. (Such an
experiment was discussed in Bliimich (1981).) For each individual experiment esti-
mate the cross-spectrum, fsn (A, 8). Next Fourier transform this with respect to s
to obtain a function of two frequencies. Off-diagonal peaks will be indicative of the
presence of cross-coupling. To be specific, suppose that S(t) is given by (4.5) and
that N is white noise with third cumulant k3 = 0 and fourth x4. By elementary
computations (see Appendix B) one can show that for given lag s, fsn (A, s)is given
by

a? —idsyA (3 a?\* —iXs Al a2y
@8 S0+ M+ () a+e ™8 Ao+ e

plus a term in x4. Here Aj is assumed symmetric in its arguments. (It will be
obtained by permuting the arguments of (4.4) and averaging.) Taking the Fourier
transform of (4.8) with respect to s and denoting the corresponding argument by
i, leads to

(69) 0" (0[800) + 806 + )]+ 23 [ As(h 1, ~0)dole(u) + 600+ 3]

4
+%3[Aa(f\,#, =)+ A p+ X —p = N

plus a term in x4 and with 6 the Dirac delta function. The delta functions are seen
to lead to ridges about the lines y = 0 and # = —=X. Focusing on the last term of
(4.9) and following expression (4.4) the terms

(4.10) (AT - A)T'B(i(A + p)I - A)T'BGAI - A)'C

and their permuted variants will appear. The matrix A is diagonal hence peaks
will appear at appropriate locations (), x).

A numerical simulation experiment was carried out to examine the above tech-
nique. The noise process N consisted of pulses of amplitudes 41 the values being
independent and equiprobable. The flip angle was 10 degrees and otherwise the
parameters were as in Appendix A.1. Figure 7 presents the results of the analysis.
Figure Ta provides the absolute value of ¢7(4.10) supplemented by the 5 other per-
muted terms. A variety of peaks and cross-peaks are seen to appear. Figure 7b is
the result of estimating (4.9). Peaks and cross-peaks occur as well as indications of
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the presence of the delta functions. The procedure does appear practical. In the
estimation the s values ran from 1 to 128 and the cross-spectrum was estimated at
128 frequencies by averaging cross-periodograms of 100 successive stretches of data.

FIGURE 7

Transfer function amplitude - 10 degree flip angle
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There are contrasting circumstances for emplying pulse input and “noise” input.
The noise input has the advantage that input power required is low (but applied over
a longer time). It has the further advantage that the response need be measured
only once and thereafter can be subjected to a number of modelling analyses. The
pulse input requires a high power and in consequence can be hard to produce and
even damaging. However the approach is flexible, with specific pulse sequences able

to be tailored to specific purposes.

Next consideration turns to data collected in a laboratory experiment.

5. Experimental details. The equations shown in Figure 2 describe the
dynamics of the nuclear spin system in a z, y, z coordinate system that rotates at 6E7
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rev/sec about the z direction of the strong magnetic field. The nmr spectrometer
is fixed in the laboratory, and the rotation is simulated electronically by providing
interaction with the sample via a 60 MHz radio frequency (rf) carrier sinusoid. This
carrier is generated by multiplying with 6 the frequency of the output sinusoid of a
10 MHz quartz crystal oscillator that serves as master clock for the spectrometer.
The input stimulus X modulates this carrier by means of a balanced modulator,
and the nuclear output voltage ¥ is demodulated in a phase sensitive detector which
is referenced to the carrier sinusoid. The phase angle of this reference depends on
cable lengths, time delays in electronic components, etc, and the measured output
is thus a projection in some direction ¢ in the z,y plane of the rotating coordinate
frame,

(5.1) Y(t) = cos #Y,(t) +sin @Y, (t) + noise

This output of the phase sensitive detector is low-pass filtered by passing it through
a 4-pole Bessel filter set to a 150 Hz corner frequency in order to reduce high
frequency noise that would be folded into the Nyquist bandwidth by the sampling
described below. The level of the input stimulus exceeds the nuclear response signal
by some 100 dB, and to avoid direct crosstalk from the input to the output, the
modulated carrier is gated to produce short rf pulses, and the detector output is
sampled between input pulses. This time sharing system is governed by a digital
pulse generator that is driven from the 10 MHz spectrometer clock. The data
studied were generated by deriving the input stimulus from a 12-stage binary shift
register with feedback such as to produce the m-sequence

(52) Ty; = :Cj_lrj_4:rj_6zj_12

starting from z; = —1 for j = 1,2,...12. The balanced modulator converts the
+1,—1 levels of the shift register to 0 degree, 180 degree phase shifts of the 60
MHz carrier. The shift register was driven from the pulse generator at a rate to
produce 150 bits/sec. The advantage of employing an m-sequence is that input data
need not be recorded. The m-sequence has period 4095 bits corresponding to 27.3
seconds, and received data were recorded for one such period after the nuclear spin
system had run through at least one prior period to reach a steady state. The pulse
generator was programmed to use the dwell time of each bit, 1/150 sec =6667 p sec,
for the time sharing of input and output as follows.

Time 0 : open 1f gate for 30 psec to apply input pulse to nuclear sample;

77 psec: shift m-sequence to next bit;
3567 u sec: sample output of antialiasing filter;

6667 uusec: loop back to time 0.

The gated and modulated rf carrier was amplified such that a 30 usec pulse pro-
duced a 3.6 degree flip angle, (see Appendix A.1 for the definition). It was later
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learned that the 150 Hz antialiasing filter causes a time delay of 1/300 sec so that
the nuclear output was actually sampled 204 psec after the end of the input pulse.
However, crosstalk was still suppressed.

The 150 Hz sampling rate of the output corresponds to a Nyquist frequency win-
dow from 0 to 75 Hz, and the precession frequencies of the hydrogen nuclei must be
within this window in the rotating coordinate frame, i.e. within (6 E7+75)Hz in the
fixed laboratory frame. Since this frequency is proportional to the intensity of the
strong magnetic field, the 1.41 Tesla electromagnet must be controlled to consider-
ably better than 1 part per million. To this end, our sample held a homogeneous
mixture of 0.24 ml 2,3-dibromothiophene with 0.18 ml dimethylsulfoxide-d6. The
latter compound has six nmr-active deuterium nuclei per molecule, and these yield
a single nmr resonance near 9.21 MHz in a 1.41 Tesla field. A second spectrometer
was set up to operate with the same probe using a rf carrier derived from the 10
MHz system clock by means of a frequency synthesizer such as to be adjustable
near 9.21 MHz. The output of this second spectrometer is used in a feedback loop
to hold the strong magnetic field on the peak of the deuterium resonance of the

sample.
6. RESULTS

6.1. Fourier analysis. The top graph of Figure 8 displays the stretch of
output corresponding to the first 600 points of the m-sequence input. The bottom
graph gives an estimate of |c” A;())| as computed in the manner of expression (4.6).
The second-order spectra that appear were estimated by structuring the data into
15 segments of 512 successive points, the segments were overlapped by 256 points.
Prior to the Fourier transform the values were tapered. The cross- and ordinary
periodograms were computed for each segment, and these then averaged to obtain
estimates of fy x and fxx, and thereby an estimate of [c" A,|. This graph displays
four substantial peaks, in the manner of Figure 3. From the locations of these peaks
the parameters w4, wp, J may be estimated by inspection.

6.2. Maximum likelihood analysis. In practice the electronics of the mea-
surement process leads to a measurement equation more complicted than (2.8). A
further parameter needs to be introduced. It is an unknown, but small, time delay,
7, relative to the input pulse timing at which the sampled values are recorded. The
output is still given by (5.1) but with = built into Y; and Y,. For given initial
values, S(0), for the state vector and given parameter values, the signal S(t) may
be evaluated recursively following expressions (3.2) and (3.3). If the noise in (5.1) is
Gaussian white, then one has a nonlinear regression problem and is led to estimate
the unknowns by minimizing

(6.1) ST I¥(5) - Bleos Y2 (5) + sin ¢Y, ()]
=1

with j indexing the times of measurements and with # a further parameter intro-
duced to handle the unknown scaling of the measurement process. Appendix A.2
presents some further computational details.
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6.3 Results of the analyses. In the results to be presented, the thermal

equilibrium values were taken to be (2.3). Here ¢ is a small positive quantity, that The results are similar, see Fi
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is effectively a scaling variable. Maximum likelihood fitting was carried out for the
full set of 4095 data points and separately for four successive stretches of 1000 points.
The unknown parameters estimated were: J , waq , wg , Ty, o, ¢, 7,8 and the
unknown p;x(0), in total 24 unknowns. Figure 9 and Figures 10, 11, 12, 13 provide
the results. The first panel, in each case is a scatter plot of the fitted versus the

corresponding observed values. The second and third panels are respectively plots ]
of the logarithms of the absolute values of the Fourier transforms of the residual 173095 5798
and observed series. The final panel is a scatter plot of the two log |FT|’s versus 1-1000 5714
each other. 1601-2000 5.848
The complete data set analysis, displayed in Figure 9, resulted in a correlation 2001-3000 5.742
i of .81 between fitted and observed data values. The second through fourth panels 30014000 5.733

in this Figure suggest the presence of signal-generated noise. Specifically note the
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parallel shapes in the second and third and the scatter parallel to the diagonal line
in the fourth panel. It is interesting to note how the peak just above 60 Hz. in the
third panel has emerged from the “noise” level.

FIGURE 9 - COMPLETE DATA SET

Scatter plot log10 |FT| Residuals
2 | "
-
2 -
& o
0 ™
hed
~N
8 |
A
-400 0 200 400 0 20 40 60
fit frequency Hz.
correlation « 0.80824894
log10 |FT| Data Residuals versus Data
['s)
-
[ar]
[aV]

The results are similar, see Figures 10, 11, 12, 13, for the separate stretches
of 1000. The correlation coefficients are considrably higher, .93, .90, .96, .96. For
the fourth stretch it is notable how the “birdie” near 60 Hz has emerged from the
noise. The following table presents the estimates for the principal parameters. The
relaxation times were poorly determined.

J W4 wpg w4 —wWp
1-4095 5.728 49.718 17.154 32.564
1-1000 5.714 49.465 16.830 32.635
1001-2000 5.848 49.784 17.323 32.461
2001-3000 5.742 49.795 17.233 32.562
30014000 5.733 49.661 17.028 32.633
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FIGURE 11 - SECOND 1000 POINTS
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FIGURE 13 - FOURTH 1000 POINTS
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7. Discussion. Three techniques for estimating the parameters of nmr spec-
troscopy will now be discussed. The first technique is to compute spectra of some
order following pulse or noise input. The second is to fit sums of exponential cosines
following pulse input. The third is to build a conceptual model and employ max-
imum likelihood. This last was the special concern of this paper. Each technique
has advantages and disadvantages.

Advantages of the Fourier-based techniques are that they are direct, robust
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and do not need full models. Disadvantages are that some parameters cannot be
estimated and rephasing may be needed to reduce leakage between frequencies.

An advantage of the exponential-sinusoid model, as implemented in Miller and
Greene (1989) for example, is that a full model is not needed. However pulse input
is needed and some parameters cannot be estimated.

Advantages of the full modelling approach include: the parameters are inter-
pretable, efficient fitting methods are available with corresponding estimates of un-
certainty, there is flexibility in parametrization, the state variables may be estimated
and tracked, coupling/ phasing/ nonlinearities are handled as a matter of course. An
advantage of £1 input is that only 3 matrix exponentials need be computed. Disad-
vantages are that: a full model is needed and this will be difficult for large molecules,
which parameters can be effectively estimated and when remains to be understood,
initial values are needed for the optimization routines.

A hybrid appraoch in which a simple model is fit and then the residuals are
examined by Fourier techniques for peaks would seem likely to be effective in a

variety of circumstances.

8. Future work. The source of the signal-generated noise remains a mystery.
There are several ways to approach the problem. One is to better model the anti-
aliasing filter. A second is to sample the output values more often. A third is to
seek other electronic noise sources. If these approaches are unsuccessful then the
least squares criterion (6.1) would be replaced by one from generalized least squares
incorporating the apparent noise spectrum form.

In future work standard errors will be provided for the estimates.
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APPENDIX

A.1 Simulation Details.  For the simulations described in Sections 3 and 4, the
following parameter values were employed: w4 = 498H:z,wg = 17.2Hz,J =
57THz, Ty = 4.0 seconds and all the other T’s 2.0 seconds. The diagonal ele-
ments of p(0) were (1 +¢)/4, 1/4, 1/4, (1 —e)/4 respectively with ¢ nd the
off diagonals were all 0. , the spacing between samples was 1/150 seconds, the pulse
width was taken to be 30/6667 of the sampling interval, with the pulses applied
3100/6667 of the sampling interval after a measurement. These values were meant

to mimic the laboratory experiment.

The amplitude of the applied stimulus is typically described in terms of a flip
angle. In the case of a pulse of width ¢ time units and amplitude vz the flip angle
is given by vzo.

A.2 Computational Details. A few computational aspects of the study will be men-
tioned. The computations were via FORTRAN complex double precisioon on Sun
and Sparc workstations. In order to generate the signal, matrix exponentials are
needed. Computing such things is not elementary, see eg. Moler and Van Loan
(1978). The procedure adopted in the present work was to first obtain the de-
composition, A = UAU™!, via a NAG routine and from that obtain the matrix
exponential, exp{A} = Uexp{A}U~}. The Harwell routine VAO9A was employed
to minimize the sum of squares in the parameters appearing in nonlinear fashion.
The initial state parameter, S(0), appears in a linear fashion, so in the minimiza-
tion it was first “determined” for given values of the other parameters, then these
parameters were determined in turn. Iteration was continued until apparent con-
vergence. Several positive parameters were expressed as exponentials to stabilize
the computations.

B. The Derivation of (4.8) and (4.9). It is convenient to approach the problem via



the Cramér representation
N(t) = /ei"\dZN(/\)
S(t) = / e dZs(N)

where

cov{dZn(N),dZn(p)} = 81 — w)fnn(A)dAdp
cov{dZs(N), dZn(p)} = 6() — Wfsn(A)dAdu

Here cov{X,Y} = E{XY) for zero mean complex variables and fnn = 0%/2m as

N is white noise.
Next note that from X (t) = N(t) + N(t—s)

dZx(\) =1+ e )dZn ()

Writing expression (4.5) in the frequency domain

dZs(2) = A1(N\)dZx (M) + /Az(x — B,B)dZx (X — B)dZx(B)+

/ / Aa(h = = 7 B,1)dZx (A — B 7)dZx(B)dZx (1)

Supposing the third cumulant k3 of N to be zero, the second term here may be
ignored in the computations to come. The last expression is then

AL+ e M)dZn(N) + / As(h— B =78, 7)1+ e OV
e P14+ e *dZN(A - B - v)dZn(B)dZn(Y)
And so

2
aw(M5(0) = E{dZsZn (V) = AL+ BOT +

// As(h— B =7 B )L +e O 4 T AL+ €] [Wﬁ e
5(h - B)? + 62 — 7)2}(5"77)5 + 6(0)(—%—3]#3:17

From the assumed symmetry of Aj, this gives (4.8).

Finally, to get expression (4.9) expand 1 + e~ 4|2, multiply by e~ and

integrate using /e"”"ds = 276(p).
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