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Abstract— Fingertip positions can be conceptualized as Brow-
nian particles within a force field. Using stochastic differential
equations (SDEs) the force field and its associated potential
function can be formally related to observed fingertip positions.
Using observed fingertip positions the force field can then be
“solved.” This provides a means of describing, comparing, and
simulating finger-movement trajectories without formulating
the kinematics of the hand. Through discretization of SDEs, the
resulting mathematical forms are merely regression equations,
which can be solved using familiar mathematical tools such
as ordinary least squares and maximum likelihood estimation.
Experimental “effects” are specified in the force-field part of the
regression, and the Brownian perturbances as the random error
of the regression. Using SDEs to specify potential functions can
support haptic scientists performing exploratory data analysis,
wishing to summarize finger-movement trajectories, compare
and test differences in finger-movement trajectories between
participants, groups of participants, or experimental conditions,
and simulate/predict finger-movement trajectories.

I. MOTIVATION

This paper presents a framework for analyzing finger-
movement trajectories as Brownian particles using stochastic
differential equations (SDEs). SDEs have have been success-
fully used to model other movement trajectories, such as
animal movements [1], [2], [3], but this has been done using
approximations that do not include terms for momentum.
Typical finger-movement trajectories recorded during haptic
experiments are finely sampled so that time-adjacent posi-
tions typically describe a single direction of movement, i.e.,
movement in a straight line, can be modeled as momentum
in a Brownian particle. Therefore, the current paper’s con-
tributions include extending the existing SDE framework to
include momentum, and illustrating how to this framework
can be used to model finger-movement trajectories.

Critical to this approach is conceptualizing fingertip posi-
tion as a Brownian particle. Besides a random component,
the finger’s movements are affected by its environment,
typically the stimulus being explored. This is achieved by
formulating a force field associated with the stimulus. This
force field pushes the finger towards points of attraction, e.g.,
useful stimulus features, and away from points of repulsion,
e.g., the stimulus border or features not pertinent to the task.
The force field is generated through a potential function, with
areas of high potential that are repulsive, like a hill, and areas
of low potential that are attractive, like a valley. The potential
function and force field are formally related through partial
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derivatives, and their parameters are estimated using linear
regression with the observed finger positions.

When applying this approach, the goal will often be to
solve the potential function from observed finger-movement
trajectories. The potential function of a particular stimulus
may be of interest, and/or how the potential function is
affected by experimental groups/conditions. A particular
experiment will likely compare the potential functions for
different designs of stimuli, groups of participants, or other
experimentally manipulated conditions. Another use of this
approach is to simulate finger-movement trajectories. Obser-
vations of finger movements over a set of stimuli can be used
to generate predicted trajectories over novel stimuli.

The current paper presents the mathematical back-
ground/derivation of the SDE approach, followed by an
illustrative example of analyzing finger-trajectory data. The
mathematical background is covered in detail, with the goal
of being a comprehensive introduction accessible to both
haptic psychologists and engineers.

II. MATHEMATICAL BACKGROUND

There are two mathematical descriptions of Brownian
motion, the constant random motion of particles. Einstein’s
1905 derivation of Brownian motion from the molecular-
kinetic theory of heat [4] resulted in a partial differential
equation, the simplest case of a class of equations now
known as the Fokker-Planck equations, which specified the
time evolution of the probability density of a Brownian
particle. In 1908 Paul Langevin applied Newton’s second
law to the motions of a representative Brownian particle.
Both Einstein’s and Langevin’s approaches have been used
to derive similar results, while the latter is viewed as slightly
more general and correct, simpler, and with immediate con-
nection to Newtonian dynamics [5], [6]. Langevin’s equation
is also notable as the first example of a stochastic differential
equation [5], and serves as the basis for the current work.

A. The Langevin Equation

Starting with Newton’s second law, Langevin wrote the po-
sition r(t) = (x(t), y(t))T of a Brownian particle with mass
m at time t, assuming dr(t)/dt = v(t) and d2r(t)/dt2 =
dv(t)/dt exist, as

m
d2r(t)

dt2︸ ︷︷ ︸
force

= −bdr(t)

dt︸ ︷︷ ︸
friction

+ η(t)︸︷︷︸
random

(1)

where b is a friction constant, governed by Stokes’s law, and
η(t) is a bivariate Gaussian random variable. This expresses



the force on the particle in two parts, a frictional force,
−bv(t), and a fluctuating random force due to molecular
collisions, η(t), [5], [7]. Langevin introduced the random
“complementary force” to maintain the particle’s agitation.
Without the complementary force, the viscous resistance
(frictional force) would stop [6]. The random force takes the
form of a Wiener process, i.e., standard Brownian motion,
which is the integral of Gaussian white noise [8], [7].

1) External Force Field: In the case that the particle is
in an external force field, where the acceleration due to
this force field is K(r(t), t), then the Langevin equation
becomes,

m
d2r(t)

dt2︸ ︷︷ ︸
force

= K(r(t), t)︸ ︷︷ ︸
force field

− bdr(t)

dt︸ ︷︷ ︸
friction

+
dB(t)

dt︸ ︷︷ ︸
random

(2)

where B(t) is a Wiener process with variance parameter
2b2D [9, Eqs. 317-318], [7, eq. 10.1 & ch. 12].1 Einstein was
the first to derive D = (kT )/b, where k is the Boltzmann
constant and T is absolute temperature.

2) Smoluchowski Approximation: Under the assumption
that the coefficient of friction, β = b/m, is large, or
equivalently mass, m, is small, the so-called Smoluchowski
approximation to this equation is,

b
dr(t)

dt
= K(r(t), t) +

dB(t)

dt
(3)

where B is a Wiener process with variance parameter 2b2D
[7, pp. 58 & ch. 10]. Note that because momentum can
only exist for a particle that has mass, the Smoluchowski
approximation removes momentum from the Langevin equa-
tion. This is the approximation used in prior work on animal
movements [1], [2], [3].

B. The Potential Function

In many applications, the force field, K(r(t), t), is taken
to be a conservative force field, derived from a smooth real-
valued potential function H(r(t), t),

K(r(t), t) = −∇H(r(t), t) = µ(r(t), t) (4)

where ∇ = (∂/∂x, ∂/∂y)T is the gradient operator [10,
pp. 280], and the negative sign results from conserva-
tion of energy. The force-related acceleration µ(r(t), t) =
(µx(r(t), t), µy(r(t), t))T is in many situations conceptual-
ized as a drift parameter [11], [2], [3].

C. Relating the Potential Function to Data

In haptics research, the potential function will be used to
examine how finger movements are affected by the stimulus.
The potential function, H(r(t), t), and associated force field,
µ(r(t), t), will be functions of the finger position, r(t), and
important stimulus features taking the form of points, lines,
or regions [3]. Frequently, the potential is a function of the
shortest distance between the finger and a stimulus feature,
i.e., H(r(t), t) = h(d(r, t)) for some function h(·) and

1This formula is alternatively often expressed with β = b/m and K =
F/m for force F . Here we use K as the force field directly.

d(r(t)) being the shortest distance between the finger and
feature [2].

A common scheme is one of attraction/repulsion, where
h(d(r(t), t)) = α(r(t) − a)2, which is the Ornstein-
Uhlenbeck (O-U) process, and describes attraction/repulsion
to a point a. This potential surface either takes the form of
a repulsive hill (α < 0) or an attractive valley (α > 0),
centered on point a with height proportional to the constant
α. The steepness of the hill/valley can vary depending on
the axis if the amplitude is a vector α = (αx, αy)T.

Several potential functions of this type, labeled k =
1, . . . , n, can be incorporated linearly (Eq. 5), resulting in
their combined force fields also combining linearly (Eq. 6).

H(r(t), t) = h1(d1(r(t)), t) + · · ·+ hn(dn(r, t)) (5)

µ(r(t), t) = −2(r(t)− a1)h′1 − · · · − 2(r(t)− an)h′n (6)

where ak = (xk, yk)T is the location of the kth attraction
or repulsion region, and h′k is the partial derivative of hk
with respect to d2

k = (x(t)− xk)2 + (y(t)− yk)2 [2]. More
generally, multiple potential functions of any form can be
added linearly to create a composite potential function whose
force fields also add linearly. This is particularly useful
for creating a stimulus potential function that is formed by
individual features’ potential functions.

There are many parametric potential surfaces beyond O-U,
including Gaussian, gravitational, and Zohdi shapes [12]; in
addition to smooth non-parametric functions and high-degree
polynomials [2], [3], [13]. It is important to note that when
the potential function is a polynomial, the degree of the poly-
nomial is arbitrary and is only chosen to provide a nonlinear
shape. As such, interpretation comes from the overall shape
of the potential function, and not from individual parameters
[12].

D. Modeling: Discretization, Estimation, & Simulation

1) Discretization: The Langevin equation (Eq. 2) must be
discretized to be applied to data discretely sampled in time.
There are several numerical methods for discretizing differ-
ential equations. We use the Taylor series approximations for
the time derivatives of position (velocity and acceleration).
We will write ∆ti = ti+1 − ti = ∆t, i = 1, . . . , N ,
specifying that the data were sampled at a constant rate.

The Euler method (first-order approximation) can be used
to discretize the Smoluchowski approximation (Eq. 3), but
a second-order expansion is necessary for the Langegvin
equation (Eq. 2). It is straightforward to show that, using
neighboring positions and second-order Taylor expansions,
velocity and acceleration at time t can be expressed as,

Velocity: r′(ti) ≈
r(ti+1)− r(ti−1)

2∆t

Acceleration: r′′(ti) ≈
r(ti−1)− 2r(ti) + r(ti+1)

∆t2

(7)



Then, the Langevin equation (Eq. 2) can be written as,

m
r(ti+1)− 2r(ti) + r(ti−1)

∆t2
= µ(r(ti), ti)−

b
r(ti+1)− r(ti−1)

2∆t
+ Σ(r(ti), ti)Z(ti)∆t

−1/2 (8)

where entries of Z(ti) are independent standard
normals. The random term is setup such that
Cov[Σ(r(ti), ti)Z(ti)∆t

−1/2] = Σ(r(ti), ti).
Note that in Eq. 8, ∆t is a known constant and the posi-

tions, r(ti) = (xi, yi), are observed. The goal is to estimate
the parameters of µx, µy , b, and m, and possibly Σ. These
unknown parameters can be estimated using conventional
schemes, such as maximum likelihood estimation (MLE).

2) Estimating the Langevin Parameters: For model es-
timation purposes, it is useful to re-write the Langevin
discretization (Eq. 8) as an autoregressive model,

r(ti+1) =

(
2m

1
2b∆t+m

)
r(ti) +

( 1
2b∆t−m
1
2b∆t+m

)
r(ti−1) +(

∆t2

1
2b∆t+m

)
µ(r(ti), ti) +(

∆t2

1
2b∆t+m

)
Σ(r(ti), ti)Z(ti)∆t

−1/2

(9)

The equivalent Smoluchowski approximation (Eq. 3) used in
previous research is,

r(ti+1) =r(ti) +
∆t

b
µ(r(ti), ti)+

∆t

b
Σ(r(ti), ti)Z(ti)∆t

−1/2
(10)

The autoregressive term in Eq. 9 is absent in Eq. 10. If
γ1 and γ2 represent the coefficients in front of r(ti) and
r(ti−1) in Eq. 9, respectively, then solving for m and b in
terms of γ1 and γ2 is under-constrained because γ1+γ2 = 1.
One may choose to not fix the variance of the stochastic
term, and instead fix b ≡ 1, permitting the comparison of
“momentum” in stochastic models based on mass, m, alone.
Then, γ1 = 2m

1
2 b∆t+m

, γ2 =
1
2 b∆t−m
1
2 b∆t+m

, and m = γ1∆t
2(γ2+1) .

3) Simulation - Time Marching: The time marching simu-
lation of the Smoluchowski approximation is straightforward
using the Euler approximation, and can be used directly from
Eq. 10. However, in the case of the Langevin equation, the
second-order differential equation,

r′′(t) = − b

m
r′(t)− 1

m
∇H(r(t), t) +

1

m
η(t) (11)

where B(t) is a two-dimensional Wiener process, for po-
sitions r(t) = (x(t), y(t))T, and W′(t) = η(t), must
be rewritten as a first-order system for time marching. It
is straightforward to rewrite the second-order differential
equation for the Langevin equation as the following first-
order differential system,

X(t) =

[
x1(t)
x2(t)

]
=

[
r(t)

mr′(t)− w(t)

]

X′(t) =

[
x′1(t)
x′2(t)

]
=

 1

m

(
x2(t) + w(t)

)
− b

m

(
x2(t) + w(t)

)
−∇H(r(t), t)


(12)

Then a time-marching simulation can be performed using the
Euler approximation,

X(ti+1) = X(ti) + ∆tX′(ti) (13)

E. Special Types of Random Walks

In addition to the Ornstein-Uhlenbeck process already
described, the SDE framework can accommodate other spe-
cial types of random walks. A biased random walk has a
tendency to move in a particular direction, captured by the
average drift velocity µ. For constant µ = A, movement
drifts in the direction of A [2].

A correlated random walk describes situations when the
walker has a tendency, a.k.a, inertia, momentum, or persis-
tence to keep walking in the current direction [14]. In this
situation, the walker’s position is no longer a Markov pro-
cess, but its velocity is [15]. The presence of autoregressive
terms (as in the Langevin Eq. 9 allows for correlation [12].

A random walk with a barrier/boundary is accomplished
using a potential function that is nonzero only when r(t) is
on or over the boundary, and increases with distance from
the boundary [1].

III. ILLUSTRATIVE EXAMPLE

A. Methods

1) Participants: Three blind and three sighted individuals
participated in this research. The blind participants used
braille as their primary literacy medium (ages 22, 39, and 38
years old, two females). The three sighted participants were
age-gender matches to the blind participants (ages 23, 39, and
36 years old, two females). The protocol was approved by
the Smith-Kettlewell institutional review board, and informed
consent was obtained from all participants prior to their
participation.

2) Materials and Procedures: Fourteen stimuli were cre-
ated on 9 by 9 in. thermoform sheets, each containing 3-
5 symbols with random rotation and placement. Of the
14 stimuli, 7 contained only T symbols (height 0.3 in.,
width 0.23 in., elevation ??) while the other 7 contained
one L symbol (height 0.3 in., width 0.12 in., elevation ??).
Participants’ encountered the stimuli in random order.

During the experiment, participants were seated at a table
with a stimulus placed directly in front of them. Participants
were asked to determine for each stimulus if it contained a
target L, and if so to indicate its position. The participants
used all 5 fingers on their dominant hands (only one blind
participant was left handed), and started each trial with their
index fingers placed in the center of the stimulus. A computer



beep indicated when the trial had begun and the participant
could begin searching.

The positions of the participants’ index fingers were
tracked by taping sensors (2.0 mm by 9.9 mm) to the tops
of their nails. Wires from the sensors ran through a wrist
band and then traveled up the far wall to avoid falling
under participants’ fingers. Fingers were tracked in three
dimensions at originally 240 Hz with 1.4 mm root mean
square position error using the 3D trakSTAR system (North-
ern Digital, Inc.). Trajectories were downsampled to 12 Hz to
reduce computation time, which did not appreciably alter the
trajectories’ appearance. Each trial was temporally cropped
to remove tracking data before the trial began (before the
participant began moving) and after the trial ended (when
the participant stopped moving or lifted his/her hand from
the stimulus).

3) Analyses:
a) Specifying the Potential Function: A potential func-

tion associated with each stimulus was modeled as the sum
from three sources: (1) distractors, (2) the target, and (3) a
nonspecific general potential. The potential associated with
each distractor was an Ornstein-Uhlenbeck (O-U) term, lim-
ited to be non-zero only when finger position was within 0.5
in. of the distractor’s center. If the potential function traveled
beyond the reach of a fingertip, it would imply that the
participant had prior knowledge about stimulus layout and
“felt” the attraction/repulsion of a distractor from anywhere
on the stimulus. Similar to the distractors, the target was
modeled using an O-U term that was zero beyond the 0.5 in.
diameter around the target’s center. Both the O-U term for
distractors and target were allowed to vary in magnitude for
x and y, and allowed to interact with whether the participant
was blind or sighted. Finally, a high-order polynomial in
x and y provided a general potential function for each
stimulus. The potentials were fit using linear mixed effects
models, with random effects of participant, trial (nested in
participant), and index/time (nested in trial) using [16].

B. Results

In total there were 4 incorrect trials across the participants,
and these were excluded from further analyses. Participants’
average times (Table I) were shorter when the search target
was present and shorter for blind participants, which is con-
sistent with previous visual search [17] and haptics research
[18], respectively. Given the low number of participants, no
statistical tests were performed on trial times.

TABLE I: Participants’ average trial times (with SEs).

Target Sighted (n = 3) Blind (n = 3)

Present 14.28 (1.79) sec 6.40 (1.24) sec
Absent 23.77 (2.68) sec 16.62 (4.20) sec

An example trajectory is shown in Fig. 1. In this example,
the participant’s index finger starts in approximately the
center of the stimulus, and ends on the target L in the upper
right. The participant also touches the two distractor T’s in

the lower left. However, in many trials the participant did not
exhaustively explore all distractors before finding the target
or declaring (correctly) that there was no target. Incorrect
trials were not included in analyses.

Fig. 1: Example trajectory (red) on stimulus (black).

1) Autocorrelation: The discretized Langevin equation,
Eq. 9, is a second-order autoregressive (AR) model. The
sample partial autocorrelation function (pACF) for an autore-
gressive model of order p, AR(p) is expected to have non-
zero values for lags up to p, and then be zero for lags greater
than p [19, 116]. A summary of the pACFs observed for all
80 trials, in x and y (which had no discernible differences) is
shown in Fig. 2. Most notably, the first two lags have pACF
values reliably significantly different from zero, consistent
with an AR(2) process.

Fig. 2: Box and whisker plots summarizing the sample partial
autocorrelation functions for all trials (80) and axes (x and
y). Gray boxes with dashed lines show 25%, 50%, and 75%
quantiles of Wald significance thresholds.

2) Potential Function Modeling: Model results for the
potential function are shown in Table II. Both autoregressive
terms were significant, consistent with the full Langevin Eq.
9, and not the Smoluchowski approximation Eq. 10. The
significant intercept (Table II, Line 1) indicates some bias
for fingers to move down and to the left, and the non-
significant dummy variable for blind participants (Line 2)
indicates that this bias is not significantly different for blind
and sighted subjects. Allowing the bias to vary for x and
y did not significantly improve the model based on the
Bayesian Information Criterion (BIC): original BIC = 4197,
allowing axis variation BIC = 4204.



TABLE II: Model terms, estimates (Est.), SEs, and p values.
Terms 1c are 1 when the condition c is satisfied (participant
is blind or ri−1 belongs to x or y axis), 0 otherwise.

Model Term Est. ×10−3 SE ×10−3 p

1. (Intercept) -120.12 (26.34) < 0.001∗∗∗

2. 1blind 1.27 (5.09) 0.815
3. ri−1 1623.31 (4.89) < 0.001∗∗∗

4. ri−2 -624.94 (4.27) < 0.001∗∗∗

5. Targ. O-Ux−1 408.34 (112.20) < 0.001∗∗∗

6. Targ. O-Ux−1 × 1blind -233.18 (160.43) 0.146
7. Targ. O-Uy−1 369.05 (18.00) < 0.001∗∗∗

8. Targ. O-Uy−1 × 1blind 103.38 (30.97) < 0.001∗∗∗

9. Dist. O-Ux−1 252.82 (7.69) < 0.001∗∗∗

10. Dist. O-Ux−1 × 1blind -77.35 (10.12) < 0.001∗∗∗

11. Dist. O-Uy−1 2.35 (0.94) 0.012∗

12. Dist. O-Uy−1 × 1blind 4.52 (1.05) < 0.001∗∗∗

13. (−2xi−1)× 1x 5.18 (1.55) < 0.001∗∗∗

14. (−3x2i−1)× 1x -0.10 (0.13) 0.418

15. (−4x3i−1)× 1x 0.16 (0.04) < 0.001∗∗∗

16. (−3y2i−1)× 1y -0.65 (0.14) < 0.001∗∗∗

17. (−4y3i−1)× 1y 0.21 (0.04) < 0.001∗∗∗

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

a) Target and Distractor O-U Processes: Both targets
(Table II, Lines 5 and 7) and distractors (Lines 9 and 11)
were estimated as O-U valleys (α > 0), reflecting that they
were “attractive” to participants’ fingertip locations. Targets
were overall more attractive than distractors. Targets were
significantly more attractive (in y) for participants who were
blind than for participants who were sighted (Line 8). In
contrast, distractors were much less attractive (in y, and
marginally more in x) for blind participants than sighted
participants (Lines 10 and 12).

b) High-Order Polynomial: High-order polynomial
terms (Table II, Lines 13-17) were included to capture
any general potential function associated with all stimuli.
Including up to fourth-order terms produced the best model
as indicated by having the lowest BIC when compared to
other models with varying number of polynomial terms: 2nd

order BIC = 4213, 3rd order BIC = 4211, 4th order BIC =
4197, 5th order BIC = 4216, and 6th order BIC = 4230.

Note that some low-order terms were dropped from the
model to avoid singularity (Table II). However, this was
not a concern because the interpretation of the polynomials
comes from their overall shape (Sec. II-C), shown in Fig.
3. Upwards inflection towards stimulus edges acts to keep
finger positions within the stimulus.

Fig. 3: Potential function fit by high-order polynomial terms.
Only significantly non-zero terms shown.

(a) Estimated potential. Black box outlines stimulus edges.

(b) Estimated potential as a surface. Location on stimulus is shown
in in., with (0,0) being the bottom-left corner of the stimulus. White
band is located approximately on stimulus edges (see Fig. 4a).

Fig. 4: Example potential function for a sighted participant
based on model results (Table II) and stimulus in Fig. 4.

c) Complete Potential Function: A complete potential
function for a stimulus is the sum of potentials from the
target, distractors, and polynomial terms. An example po-
tential function is shown in Fig. 4. The general shape of the
potential function keeps finger positions within the stimulus.
Three local low-potential O-U valleys are associated with
the single Target (stimulus upper right) and two distractors
(lower left). These are visible in Fig. 4a as three circular
dark areas, and in Fig. 4b as three stalactites hanging from
the bottom of the potential surface.

3) Simulation: Trajectories can be simulated using Eqs.
12 and 12 and model results (Table II). A simulation on the
stimulus in Fig. 1 is shown in Fig. 5.

Fig. 5: Simulated trajectory (red) on stimulus (black).



IV. DISCUSSION

This paper covers the SDE framework to describe, com-
pare, and predict finger-movement trajectories. Using this
approach, differences in trajectories between experimental
groups can be statistically compared. In the current example,
a significant difference was found between how blind and
sighted participants interacted with distractors and targets.
Specifically, they are more focused on the target, and less
focused on distractors, compared to sighted participants.

SDEs can also be used to simulate finger-movement
trajectories. While the example provided in Fig. 5 uses a
stimulus that was used in modeling, it should be obvious
that simulation can also be conducted on stimuli that were
not used for collecting data included in the SDE model. If
simulation is the primary scientific purpose of a study, it may
be desirable to use some data for model training and some
for testing, with non-overlapping stimuli.

Modeling finger-movements using SDEs was derived us-
ing the analogy between fingertip position and a Brownian
particle. The result was a regression model for finger-
movement trajectories, where model effects were provided
through a potential function and random movements/errors
were conceptualized as Brownian perturbances. However, the
resulting model should not be taken too seriously, as it does
not specify the mechanism through which finger movements
arise. This is similar to any other model in the behavioral
sciences, e.g., one relating income and education level. While
the model describes the relationship between variables, it
does not capture the mechanism of this relationship. In
contrast to a physics model, in the behavioral sciences “all
models are wrong, some models are useful” [20].

The current model can be extended in several ways. While
the current work describes two-dimensional (2D) data, it
is self-evident how to extend the SDE approach to three-
dimensional (3D) data. Beyond this, the current illustrative
example uses thresholding to keep the effect of stimulus
features on the movement trajectories local. An alternative
approach could make use of hidden Markov state space
models, in which the participants are assumed to have
hidden behavioral states, such as examination of a distractor
or general exploration. Being in a behavioral state would
be probabilistic, and could depend on the proximity of
the participant’s finger(s) to stimulus features, exploration
history/time, and could explicitly model noise associated
with the finger-tracking method. These types of models are
used to describe animal movements [21], [22] without a
potential function, to describe switching between high- and
low-variance random walks. Extending the potential function
approach to a hidden Markov state space model could
provide an alternative to the scheme used here, and may
provide different insights into finger-movement strategies.
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